Summary:
Instead of existing calls to ps from gnu_parallel, call a new wrapper that does ps, looks for unit test like processes, and uses pstack or gdb to print thread stack traces. Also, using `ps -wwf` instead of `ps -wf` ensures output is not cut off.
For security, CircleCI runs with security restrictions on ptrace (/proc/sys/kernel/yama/ptrace_scope = 1), and this change adds a work-around to `InstallStackTraceHandler()` (only used by testing tools) to allow any process from the same user to debug it. (I've also touched >100 files to ensure all the unit tests call this function.)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10828
Test Plan: local manual + temporary infinite loop in a unit test to observe in CircleCI
Reviewed By: hx235
Differential Revision: D40447634
Pulled By: pdillinger
fbshipit-source-id: 718a4c4a5b54fa0f9af2d01a446162b45e5e84e1
Summary:
This is intended as a step toward possibly separating secondary cache integration from the
Cache implementation as much as possible, to (hopefully) minimize code duplication in
adding secondary cache support to HyperClockCache.
* Major clarifications to API docs of secondary cache compatible parts of Cache. For example, previously the docs seemed to suggest that Wait() was not needed if IsReady()==true. And it wasn't clear what operations were actually supported on pending handles.
* Add some assertions related to these requirements, such as that we don't Release() before Wait() (which would leak a secondary cache handle).
* Fix a leaky abstraction with dummy handles, which are supposed to be internal to the Cache. Previously, these just used value=nullptr to indicate dummy handle, which meant that they could be confused with legitimate value=nullptr cases like cache reservations. Also fixed blob_source_test which was relying on this leaky abstraction.
* Drop "incomplete" terminology, which was another name for "pending".
* Split handle flags into "mutable" ones requiring mutex and "immutable" ones which do not. Because of single-threaded access to pending handles, the "Is Pending" flag can be in the "immutable" set. This allows removal of a TSAN work-around and removing a mutex acquire-release in IsReady().
* Remove some unnecessary handling of charges on handles of failed lookups. Keeping total_charge=0 means no special handling needed. (Removed one unnecessary mutex acquire/release.)
* Simplify handling of dummy handle in Lookup(). There is no need to explicitly Ref & Release w/Erase if we generally overwrite the dummy anyway. (Removed one mutex acquire/release, a call to Release().)
Intended follow-up:
* Clarify APIs in secondary_cache.h
* Doesn't SecondaryCacheResultHandle transfer ownership of the Value() on success (implementations should not release the value in destructor)?
* Does Wait() need to be called if IsReady() == true? (This would be different from Cache.)
* Do Value() and Size() have undefined behavior if IsReady() == false?
* Why have a custom API for what is essentially a std::future<std::pair<void*, size_t>>?
* Improve unit testing of standalone handle case
* Apparent null `e` bug in `free_standalone_handle` case
* Clean up secondary cache testing in lru_cache_test
* Why does TestSecondaryCacheResultHandle hold on to a Cache::Handle?
* Why does TestSecondaryCacheResultHandle::Wait() do nothing? Shouldn't it establish the post-condition IsReady() == true?
* (Assuming that is sorted out...) Shouldn't TestSecondaryCache::WaitAll simply wait on each handle in order (no casting required)? How about making that the default implementation?
* Why does TestSecondaryCacheResultHandle::Size() check Value() first? If the API is intended to be returning 0 before IsReady(), then that is weird but should at least be documented. Otherwise, if it's intended to be undefined behavior, we should assert IsReady().
* Consider replacing "standalone" and "dummy" entries with a single kind of "weak" entry that deletes its value when it reaches zero refs. Suppose you are using compressed secondary cache and have two iterators at similar places. It will probably common for one iterator to have standalone results pinned (out of cache) when the second iterator needs those same blocks and has to re-load them from secondary cache and duplicate the memory. Combining the dummy and the standalone should fix this.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10730
Test Plan:
existing tests (minor update), and crash test with sanitizers and secondary cache
Performance test for any regressions in LRUCache (primary only):
Create DB with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
```
Test before & after (run at same time) with
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom[-X100] -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=233000000 -duration 30 -threads=16
```
Before: readrandom [AVG 100 runs] : 22234 (± 63) ops/sec; 1.6 (± 0.0) MB/sec
After: readrandom [AVG 100 runs] : 22197 (± 64) ops/sec; 1.6 (± 0.0) MB/sec
That's within 0.2%, which is not significant by the confidence intervals.
Reviewed By: anand1976
Differential Revision: D39826010
Pulled By: anand1976
fbshipit-source-id: 3202b4a91f673231c97648ae070e502ae16b0f44
Summary:
Historically, `BlobFileReader` has returned the blob(s) read from the file
in the `PinnableSlice` provided by the client. This interface was
preserved when caching was implemented for blobs, which meant that
the blob data was copied multiple times when caching was in use: first,
into the client-provided `PinnableSlice` (by `BlobFileReader::SaveValue`),
and then, into the object stored in the cache (by `BlobSource::PutBlobIntoCache`).
The patch eliminates these copies and the related allocations by changing
`BlobFileReader` so it returns its results in the form of heap-allocated `BlobContents`
objects that can be directly inserted into the cache. The allocations backing
these `BlobContents` objects are made using the blob cache's allocator if the
blobs are to be inserted into the cache (i.e. if a cache is configured and the
`fill_cache` read option is set). Note: this PR focuses on the common case when
blobs are compressed; some further small optimizations are possible for uncompressed
blobs.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10647
Test Plan: `make check`
Reviewed By: riversand963
Differential Revision: D39335185
Pulled By: ltamasi
fbshipit-source-id: 464503d60a5520d654c8273ffb8efd5d1bcd7b36
Summary:
**Summary:**
When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache.
When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache.
**Implementation Details**
Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true)
The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache:
1. If a handle is found in primary cache:
1.1. If the handle's value is not nullptr, it is returned immediately.
1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache.
- 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr.
- 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache.
2. If a handle is not found in primary cache:
2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr.
2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle.
The behaviors of `LRUCacheShard::Promote()` are updated as follows:
1. If `e->sec_handle` has value, one of the following steps can happen:
1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle.
1.2. Insert the item into the primary cache and return the handle to caller.
1.3. Exception handling.
3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released.
The behavior of `CompressedSecondaryCache::Insert()` is updated:
1. If a block is evicted from the primary cache for the first time, a dummy item is inserted.
4. If a dummy item is found for a block, the block is inserted into the secondary cache.
The behavior of `CompressedSecondaryCache:::Lookup()` is updated:
1. If a handle is not found or it is a dummy item, a nullptr is returned.
2. If `erase_handle` is true, the handle is erased.
The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527
Test Plan:
1. stress tests.
5. unit tests.
6. CPU profiling for db_bench.
Reviewed By: siying
Differential Revision: D38747613
Pulled By: gitbw95
fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
Summary:
With the current code, when a blob isn't found in the cache and gets read
from the blob file and then inserted into the cache, the application gets
passed the self-contained `PinnableSlice` resulting from the blob file read.
The patch changes this so that the `PinnableSlice` pins the cache entry
instead in this case.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10625
Test Plan: `make check`
Reviewed By: pdillinger
Differential Revision: D39220904
Pulled By: ltamasi
fbshipit-source-id: cb9c62881e3523b1e9f614e00bf503bac2fe3b0a
Summary:
The patch improves the bookkeeping around the memory usage of
cached blobs in two ways: 1) it uses `malloc_usable_size`, which accounts
for allocator bin sizes etc., and 2) it also considers the memory usage
of the `BlobContents` object in addition to the blob itself. Note: some unit
tests had been relying on the cache charge being equal to the size of the
cached blob; these were updated.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10583
Test Plan: `make check`
Reviewed By: riversand963
Differential Revision: D39060680
Pulled By: ltamasi
fbshipit-source-id: 3583adce2b4ce6e84861f3fadccbfd2e5a3cc482
Summary:
The patch introduces a new class called `BlobContents`, which represents
a single uncompressed blob value. We currently use `std::string` for this
purpose; `BlobContents` is somewhat smaller but the primary reason for a
dedicated class is that it enables certain improvements and optimizations
like eliding a copy when inserting a blob into the cache, using custom
allocators, or more control over and better accounting of the memory usage
of cached blobs (see https://github.com/facebook/rocksdb/issues/10484).
(We plan to implement these in subsequent PRs.)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10571
Test Plan: `make check`
Reviewed By: riversand963
Differential Revision: D39000965
Pulled By: ltamasi
fbshipit-source-id: f296eddf9dec4fc3e11cad525b462bdf63c78f96
Summary:
RocksDB's `Cache` abstraction currently supports two priority levels for items: high (used for frequently accessed/highly valuable SST metablocks like index/filter blocks) and low (used for SST data blocks). Blobs are typically lower-value targets for caching than data blocks, since 1) with BlobDB, data blocks containing blob references conceptually form an index structure which has to be consulted before we can read the blob value, and 2) cached blobs represent only a single key-value, while cached data blocks generally contain multiple KVs. Since we would like to make it possible to use the same backing cache for the block cache and the blob cache, it would make sense to add a new, lower-than-low cache priority level (bottom level) for blobs so data blocks are prioritized over them.
This task is a part of https://github.com/facebook/rocksdb/issues/10156
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10461
Reviewed By: siying
Differential Revision: D38672823
Pulled By: ltamasi
fbshipit-source-id: 90cf7362036563d79891f47be2cc24b827482743
Summary:
... so that cache keys can be derived from DB manifest data
before reading the file from storage--so that every part of the file
can potentially go in a persistent cache.
See updated comments in cache_key.cc for technical details. Importantly,
the new cache key encoding uses some fancy but efficient math to pack
data into the cache key without depending on the sizes of the various
pieces. This simplifies some existing code creating cache keys, like
cache warming before the file size is known.
This should provide us an essentially permanent mapping between SST
unique IDs and base cache keys, with the ability to "upgrade" SST
unique IDs (and thus cache keys) with new SST format_versions.
These cache keys are of similar, perhaps indistinguishable quality to
the previous generation. Before this change (see "corrected" days
between collision):
```
./cache_bench -stress_cache_key -sck_keep_bits=43
18 collisions after 2 x 90 days, est 10 days between (1.15292e+19 corrected)
```
After this change (keep 43 bits, up through 50, to validate "trajectory"
is ok on "corrected" days between collision):
```
19 collisions after 3 x 90 days, est 14.2105 days between (1.63836e+19 corrected)
16 collisions after 5 x 90 days, est 28.125 days between (1.6213e+19 corrected)
15 collisions after 7 x 90 days, est 42 days between (1.21057e+19 corrected)
15 collisions after 17 x 90 days, est 102 days between (1.46997e+19 corrected)
15 collisions after 49 x 90 days, est 294 days between (2.11849e+19 corrected)
15 collisions after 62 x 90 days, est 372 days between (1.34027e+19 corrected)
15 collisions after 53 x 90 days, est 318 days between (5.72858e+18 corrected)
15 collisions after 309 x 90 days, est 1854 days between (1.66994e+19 corrected)
```
However, the change does modify (probably weaken) the "guaranteed unique" promise from this
> SST files generated in a single process are guaranteed to have unique cache keys, unless/until number session ids * max file number = 2**86
to this (see https://github.com/facebook/rocksdb/issues/10388)
> With the DB id limitation, we only have nice guaranteed unique cache keys for files generated in a single process until biggest session_id_counter and offset_in_file reach combined 64 bits
I don't think this is a practical concern, though.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10394
Test Plan: unit tests updated, see simulation results above
Reviewed By: jay-zhuang
Differential Revision: D38667529
Pulled By: pdillinger
fbshipit-source-id: 49af3fe7f47e5b61162809a78b76c769fd519fba
Summary:
RocksDB's `Cache` abstraction currently supports two priority levels for items: high (used for frequently accessed/highly valuable SST metablocks like index/filter blocks) and low (used for SST data blocks). Blobs are typically lower-value targets for caching than data blocks, since 1) with BlobDB, data blocks containing blob references conceptually form an index structure which has to be consulted before we can read the blob value, and 2) cached blobs represent only a single key-value, while cached data blocks generally contain multiple KVs. Since we would like to make it possible to use the same backing cache for the block cache and the blob cache, it would make sense to add a new, lower-than-low cache priority level (bottom level) for blobs so data blocks are prioritized over them.
This task is a part of https://github.com/facebook/rocksdb/issues/10156
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10309
Reviewed By: ltamasi
Differential Revision: D38211655
Pulled By: gangliao
fbshipit-source-id: 65ef33337db4d85277cc6f9782d67c421ad71dd5
Summary:
To help service owners to manage their memory budget effectively, we have been working towards counting all major memory users inside RocksDB towards a single global memory limit (see e.g. https://github.com/facebook/rocksdb/wiki/Write-Buffer-Manager#cost-memory-used-in-memtable-to-block-cache). The global limit is specified by the capacity of the block-based table's block cache, and is technically implemented by inserting dummy entries ("reservations") into the block cache. The goal of this task is to support charging the memory usage of the new blob cache against this global memory limit when the backing cache of the blob cache and the block cache are different.
This PR is a part of https://github.com/facebook/rocksdb/issues/10156
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10321
Reviewed By: ltamasi
Differential Revision: D37913590
Pulled By: gangliao
fbshipit-source-id: eaacf23907f82dc7d18964a3f24d7039a2937a72
Summary:
RocksDB supports a two-level cache hierarchy (see https://rocksdb.org/blog/2021/05/27/rocksdb-secondary-cache.html), where items evicted from the primary cache can be spilled over to the secondary cache, or items from the secondary cache can be promoted to the primary one. We have a CacheLib-based non-volatile secondary cache implementation that can be used to improve read latencies and reduce the amount of network bandwidth when using distributed file systems. In addition, we have recently implemented a compressed secondary cache that can be used as a replacement for the OS page cache when e.g. direct I/O is used. The goals of this task are to add support for using a secondary cache with the blob cache and to measure the potential performance gains using `db_bench`.
This task is a part of https://github.com/facebook/rocksdb/issues/10156
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10349
Reviewed By: ltamasi
Differential Revision: D37896773
Pulled By: gangliao
fbshipit-source-id: 7804619ce4a44b73d9e11ad606640f9385969c84
Summary:
- [x] Enabled blob caching for MultiGetBlob in RocksDB
- [x] Refactored MultiGetBlob logic and interface in RocksDB
- [x] Cleaned up Version::MultiGetBlob() and moved 'blob'-related code snippets into BlobSource
- [x] Add End-to-end test cases in db_blob_basic_test and also add unit tests in blob_source_test
This task is a part of https://github.com/facebook/rocksdb/issues/10156
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10272
Reviewed By: ltamasi
Differential Revision: D37558112
Pulled By: gangliao
fbshipit-source-id: a73a6a94ffdee0024d5b2a39e6d1c1a7d38664db
Summary:
The `bytes_read` returned by the current BlobSource interface is ambiguous. The uncompressed blob size is returned if the cache hits. The size of the blob read from disk, presumably the compressed version, is returned if the cache misses. Two differing semantics might cause ambiguity and consistency issues. For example, this inconsistency causes the assertion failure (T124246362 and its hot fix is https://github.com/facebook/rocksdb/issues/10249).
This goal is to require that the value of `byte read` always be an on-disk blob record size.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10248
Reviewed By: ltamasi
Differential Revision: D37470292
Pulled By: gangliao
fbshipit-source-id: fbca521b2791d3674dbf2484cea5fcae2fdd94d2
Summary:
There is currently no caching mechanism for blobs, which is not ideal especially when the database resides on remote storage (where we cannot rely on the OS page cache). As part of this task, we would like to make it possible for the application to configure a blob cache.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10225
Test Plan:
Add test cases for MultiGetBlob
In this task, we added the new API MultiGetBlob() for BlobSource.
This PR is a part of https://github.com/facebook/rocksdb/issues/10156
Reviewed By: ltamasi
Differential Revision: D37358364
Pulled By: gangliao
fbshipit-source-id: aff053a37615d96d768fb9aedde17da5618c7ae6
Summary:
There is currently no caching mechanism for blobs, which is not ideal especially when the database resides on remote storage (where we cannot rely on the OS page cache). As part of this task, we would like to make it possible for the application to configure a blob cache.
In this task, we added a new abstraction layer `BlobSource` to retrieve blobs from either blob cache or raw blob file. Note: For simplicity, the current PR only includes `GetBlob()`. `MultiGetBlob()` will be included in the next PR.
This PR is a part of https://github.com/facebook/rocksdb/issues/10156
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10178
Reviewed By: ltamasi
Differential Revision: D37250507
Pulled By: gangliao
fbshipit-source-id: 3fc4a55a0cea955a3147bdc7dba06430e377259b