Tag:
Branch:
Tree:
f24ef5d6ab
main
oxigraph-8.1.1
oxigraph-8.3.2
oxigraph-main
${ noResults }
16 Commits (f24ef5d6ab8bcde242508536ff504f2c3e304600)
Author | SHA1 | Message | Date |
---|---|---|---|
Peter Dillinger | 3182beeffc |
Observe and warn about misconfigured HyperClockCache (#10965)
Summary: Background. One of the core risks of chosing HyperClockCache is ending up with degraded performance if estimated_entry_charge is very significantly wrong. Too low leads to under-utilized hash table, which wastes a bit of (tracked) memory and likely increases access times due to larger working set size (more TLB misses). Too high leads to fully populated hash table (at some limit with reasonable lookup performance) and not being able to cache as many objects as the memory limit would allow. In either case, performance degradation is graceful/continuous but can be quite significant. For example, cutting block size in half without updating estimated_entry_charge could lead to a large portion of configured block cache memory (up to roughly 1/3) going unused. Fix. This change adds a mechanism through which the DB periodically probes the block cache(s) for "problems" to report, and adds diagnostics to the HyperClockCache for bad estimated_entry_charge. The periodic probing is currently done with DumpStats / stats_dump_period_sec, and diagnostics reported to info_log (normally LOG file). Pull Request resolved: https://github.com/facebook/rocksdb/pull/10965 Test Plan: unit test included. Doesn't cover all the implemented subtleties of reporting, but ensures basics of when to report or not. Also manual testing with db_bench. Create db with ``` ./db_bench --benchmarks=fillrandom,flush --num=3000000 --disable_wal=1 ``` Use and check LOG file for HyperClockCache for various block sizes (used as estimated_entry_charge) ``` ./db_bench --use_existing_db --benchmarks=readrandom --num=3000000 --duration=20 --stats_dump_period_sec=8 --cache_type=hyper_clock_cache -block_size=XXXX ``` Seeing warnings / errors or not as expected. Reviewed By: anand1976 Differential Revision: D41406932 Pulled By: pdillinger fbshipit-source-id: 4ca56162b73017e4b9cec2cad74466f49c27a0a7 |
2 years ago |
Peter Dillinger | 8c0f5b1fcf |
Mark HyperClockCache as production-ready (#10963)
Summary: After a couple minor bug fixes and successful productions roll-outs in a few places, I think we can mark this as production-ready. It has a clear value proposition for many workloads, even if we don't have clear advice for every workload yet. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10963 Test Plan: existing tests, comment changes only Reviewed By: siying Differential Revision: D41384083 Pulled By: pdillinger fbshipit-source-id: 56359f01a57bb28de8697666b342382fac72ce6d |
2 years ago |
Peter Dillinger | cc8c8f6958 |
Refactor (Hyper)ClockCache code (#10887)
Summary: For clean-up and in preparation for some other anticipated changes, including * A new dynamically-scaling variant of HyperClockCache * SecondaryCache support for HyperClockCache This change does some refactoring for current and future code sharing and reusability. (Including follow-up on https://github.com/facebook/rocksdb/issues/10843) ## clock_cache.h * TBD whether new variant will be a HyperClockCache or use some other name, so namespace is just clock_cache for the family of structures. * A number of helper functions introduced and used. * Pre-emptively split ClockHandle (shared among lock-free clock cache variants) and HandleImpl (specific to a kind of Table), and introduce template to plug new Table implementation into ClockCacheShard. ## clock_cache.cc * Mostly using helper functions. Some things like `Rollback()` and `FreeDataMarkEmpty()` were not combined because `Rollback()` is Table-specific while `FreeDataMarkEmpty()` can be used with different table implementations. * Performance testing indicated that despite more opportunities for parallelism, making a local copy of handle data for processing after marking an entry empty was slower than doing that processing before marking the entry empty (but after marking it "under construction"), thus avoiding a few words of copying data. At least for now, this answers the "TODO? Delay freeing?" questions (no). Pull Request resolved: https://github.com/facebook/rocksdb/pull/10887 Test Plan: fixed a unit testing gap; other minor test updates for refactoring No functionality change ## Performance Same setup as https://github.com/facebook/rocksdb/issues/10801: Before: `readrandom [AVG 81 runs] : 627992 (± 5124) ops/sec` After: `readrandom [AVG 81 runs] : 637512 (± 4866) ops/sec` I've been getting some inconsistent results on restarts like the system is not being fair to the two processes, so I'm not sure there's such a real difference. Reviewed By: anand1976 Differential Revision: D40959240 Pulled By: pdillinger fbshipit-source-id: 0a8f3646b3bdb5bc7aaad60b26790b0779189949 |
2 years ago |
Peter Dillinger | 7555243bcf |
Refactor ShardedCache for more sharing, static polymorphism (#10801)
Summary: The motivations for this change include * Free up space in ClockHandle so that we can add data for secondary cache handling while still keeping within single cache line (64 byte) size. * This change frees up space by eliminating the need for the `hash` field by making the fixed-size key itself a hash, using a 128-bit bijective (lossless) hash. * Generally more customizability of ShardedCache (such as hashing) without worrying about virtual call overheads * ShardedCache now uses static polymorphism (template) instead of dynamic polymorphism (virtual overrides) for the CacheShard. No obvious performance benefit is seen from the change (as mostly expected; most calls to virtual functions in CacheShard could already be optimized to static calls), but offers more flexibility without incurring the runtime cost of adhering to a common interface (without type parameters or static callbacks). * You'll also notice less `reinterpret_cast`ing and other boilerplate in the Cache implementations, as this can go in ShardedCache. More detail: * Don't have LRUCacheShard maintain `std::shared_ptr<SecondaryCache>` copies (extra refcount) when LRUCache can be in charge of keeping a `shared_ptr`. * Renamed `capacity_mutex_` to `config_mutex_` to better represent the scope of what it guards. * Some preparation for 64-bit hash and indexing in LRUCache, but didn't include the full change because of slight performance regression. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10801 Test Plan: Unit test updates were non-trivial because of major changes to the ClockCacheShard interface in handling of key vs. hash. Performance: Create with `TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16` Test with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom[-X1000] -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=610000000 -duration 20 -threads=16 ``` Before: `readrandom [AVG 150 runs] : 321147 (± 253) ops/sec` After: `readrandom [AVG 150 runs] : 321530 (± 326) ops/sec` So possibly ~0.1% improvement. And with `-cache_type=hyper_clock_cache`: Before: `readrandom [AVG 30 runs] : 614126 (± 7978) ops/sec` After: `readrandom [AVG 30 runs] : 645349 (± 8087) ops/sec` So roughly 5% improvement! Reviewed By: anand1976 Differential Revision: D40252236 Pulled By: pdillinger fbshipit-source-id: ff8fc70ef569585edc95bcbaaa0386f61355ae5b |
2 years ago |
Peter Dillinger | 0f91c72adc |
Call experimental new clock cache HyperClockCache (#10684)
Summary: This change establishes a distinctive name for the experimental new lock-free clock cache (originally developed by guidotag and revamped in PR https://github.com/facebook/rocksdb/issues/10626). A few reasons: * We want to make it clear that this is a fundamentally different implementation vs. the old clock cache, to avoid people saying "I already tried clock cache." * We want to highlight the key feature: it's fast (especially under parallel load) * Because it requires an estimated charge per entry, it is not drop-in API compatible with old clock cache. This estimate might always be required for highest performance, and giving it a distinct name should reduce confusion about the distinct API requirements. * We might develop a variant requiring the same estimate parameter but with LRU eviction. In that case, using the name HyperLRUCache should make things more clear. (FastLRUCache is just a prototype that might soon be removed.) Some API detail: * To reduce copy-pasting parameter lists, etc. as in LRUCache construction, I have a `MakeSharedCache()` function on `HyperClockCacheOptions` instead of `NewHyperClockCache()`. * Changes -cache_type=clock_cache to -cache_type=hyper_clock_cache for applicable tools. I think this is more consistent / sustainable for reasons already stated. For performance tests see https://github.com/facebook/rocksdb/pull/10626 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10684 Test Plan: no interesting functional changes; tests updated Reviewed By: anand1976 Differential Revision: D39547800 Pulled By: pdillinger fbshipit-source-id: 5c0fe1b5cf3cb680ab369b928c8569682b9795bf |
2 years ago |
Peter Dillinger | 5724348689 |
Revamp, optimize new experimental clock cache (#10626)
Summary: * Consolidates most metadata into a single word per slot so that more can be accomplished with a single atomic update. In the common case, Lookup was previously about 4 atomic updates, now just 1 atomic update. Common case Release was previously 1 atomic read + 1 atomic update, now just 1 atomic update. * Eliminate spins / waits / yields, which likely threaten some "lock free" benefits. Compare-exchange loops are only used in explicit Erase, and strict_capacity_limit=true Insert. Eviction uses opportunistic compare- exchange. * Relaxes some aggressiveness and guarantees. For example, * Duplicate Inserts will sometimes go undetected and the shadow duplicate will age out with eviction. * In many cases, the older Inserted value for a given cache key will be kept (i.e. Insert does not support overwrite). * Entries explicitly erased (rather than evicted) might not be freed immediately in some rare cases. * With strict_capacity_limit=false, capacity limit is not tracked/enforced as precisely as LRUCache, but is self-correcting and should only deviate by a very small number of extra or fewer entries. * Use smaller "computed default" number of cache shards in many cases, because benefits to larger usage tracking / eviction pools outweigh the small cost of more lock-free atomic contention. The improvement in CPU and I/O is dramatic in some limit-memory cases. * Even without the sharding change, the eviction algorithm is likely more effective than LRU overall because it's more stateful, even though the "hot path" state tracking for it is essentially free with ref counting. It is like a generalized CLOCK with aging (see code comments). I don't have performance numbers showing a specific improvement, but in theory, for a Poisson access pattern to each block, keeping some state allows better estimation of time to next access (Poisson interval) than strict LRU. The bounded randomness in CLOCK can also reduce "cliff" effect for repeated range scans approaching and exceeding cache size. ## Hot path algorithm comparison Rough descriptions, focusing on number and kind of atomic operations: * Old `Lookup()` (2-5 atomic updates per probe): ``` Loop: Increment internal ref count at slot If possible hit: Check flags atomic (and non-atomic fields) If cache hit: Three distinct updates to 'flags' atomic Increment refs for internal-to-external Return Decrement internal ref count while atomic read 'displacements' > 0 ``` * New `Lookup()` (1-2 atomic updates per probe): ``` Loop: Increment acquire counter in meta word (optimistic) If visible entry (already read meta word): If match (read non-atomic fields): Return Else: Decrement acquire counter in meta word Else if invisible entry (rare, already read meta word): Decrement acquire counter in meta word while atomic read 'displacements' > 0 ``` * Old `Release()` (1 atomic update, conditional on atomic read, rarely more): ``` Read atomic ref count If last reference and invisible (rare): Use CAS etc. to remove Return Else: Decrement ref count ``` * New `Release()` (1 unconditional atomic update, rarely more): ``` Increment release counter in meta word If last reference and invisible (rare): Use CAS etc. to remove Return ``` ## Performance test setup Build DB with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16 ``` Test with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics ``` Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations: base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6) folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry) gt_clock: experimental ClockCache before this change new_clock: experimental ClockCache with this change ## Performance test results First test "hot path" read performance, with block cache large enough for whole DB: 4181MB 1thread base -> kops/s: 47.761 4181MB 1thread folly -> kops/s: 45.877 4181MB 1thread gt_clock -> kops/s: 51.092 4181MB 1thread new_clock -> kops/s: 53.944 4181MB 16thread base -> kops/s: 284.567 4181MB 16thread folly -> kops/s: 249.015 4181MB 16thread gt_clock -> kops/s: 743.762 4181MB 16thread new_clock -> kops/s: 861.821 4181MB 24thread base -> kops/s: 303.415 4181MB 24thread folly -> kops/s: 266.548 4181MB 24thread gt_clock -> kops/s: 975.706 4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944) 4181MB 32thread base -> kops/s: 311.251 4181MB 32thread folly -> kops/s: 274.952 4181MB 32thread gt_clock -> kops/s: 1045.98 4181MB 32thread new_clock -> kops/s: 1370.38 4181MB 48thread base -> kops/s: 310.504 4181MB 48thread folly -> kops/s: 268.322 4181MB 48thread gt_clock -> kops/s: 1195.65 4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944) 4181MB 64thread base -> kops/s: 307.839 4181MB 64thread folly -> kops/s: 272.172 4181MB 64thread gt_clock -> kops/s: 1204.47 4181MB 64thread new_clock -> kops/s: 1615.37 4181MB 128thread base -> kops/s: 310.934 4181MB 128thread folly -> kops/s: 267.468 4181MB 128thread gt_clock -> kops/s: 1188.75 4181MB 128thread new_clock -> kops/s: 1595.46 Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x. Now test a large block cache with low miss ratio, but some eviction is required: 1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23 1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43 1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4 1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56 1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59 1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8 1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89 1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45 1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98 1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91 1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26 1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63 610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137 610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996 610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934 610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5 610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402 610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742 610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062 610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453 610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457 610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426 610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273 610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812 The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.) Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc. 233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371 233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293 233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844 233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461 233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227 233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738 233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688 233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402 233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84 233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785 233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94 233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016 89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086 89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984 89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441 89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754 89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812 89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418 89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422 89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293 89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43 89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824 89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32 89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223 ^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.) Even smaller cache size: 34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914 34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281 34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523 34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125 34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48 34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531 34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465 34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793 34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484 34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457 34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41 34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52 As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn: 13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328 13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633 13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684 13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383 13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492 13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863 13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121 13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758 13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539 13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098 13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77 13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27 gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention: 13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852 13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516 13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688 13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707 13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57 13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219 13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871 13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626 Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN Reviewed By: anand1976 Differential Revision: D39368406 Pulled By: pdillinger fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9 |
2 years ago |
Guido Tagliavini Ponce | a0798f6f92 |
Enable ClockCache in DB block cache test (#10482)
Summary: A test in db_block_cache_test.cc was skipping ClockCache due to the 16-byte key length requirement. We fixed this. Along the way, we fixed a bug in ApplyToSomeEntries, which assumed the function being applied could modify handle metadata, and thus took an exclusive reference. This is incompatible with calls that need to inspect every element (including externally referenced ones) to gather stats. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10482 Test Plan: ``make -j24 check`` Reviewed By: anand1976 Differential Revision: D38553073 Pulled By: guidotag fbshipit-source-id: 0ed63fed4d3b89e5056b35b7091fce579f5647ae |
2 years ago |
Guido Tagliavini Ponce | d976f68977 |
Fix assertion failure and memory leak in ClockCache. (#10430)
Summary: This fixes two issues: - [T127355728](https://www.internalfb.com/intern/tasks/?t=127355728): In the stress tests, when the ClockCache is operating close to full capacity and a burst of inserts are concurrently executed, every slot in the hash table may become occupied. This contradicts an assertion in the code, which is no longer valid in the lock-free setting. We are removing that assertion and handling the case of an insertion into a full table. - [T127427659](https://www.internalfb.com/intern/tasks/?t=127427659): There was a memory leak when an insertion is performed over capacity, but no handle is provided. In that case, a handle was dynamically allocated, but the pointer wasn't stored anywhere. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10430 Test Plan: - ``make -j24 check`` - ``make -j24 USE_CLANG=1 COMPILE_WITH_ASAN=1 COMPILE_WITH_UBSAN=1 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache" blackbox_crash_test_with_atomic_flush`` - ``make -j24 USE_CLANG=1 COMPILE_WITH_TSAN=1 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache" blackbox_crash_test_with_atomic_flush`` Reviewed By: pdillinger Differential Revision: D38226114 Pulled By: guidotag fbshipit-source-id: 18f6ab7e6214e11e9721d5ff289db1bf795d0008 |
2 years ago |
Guido Tagliavini Ponce | 9d7de6517c |
Towards a production-quality ClockCache (#10418)
Summary: In this PR we bring ClockCache closer to production quality. We implement the following changes: 1. Fixed a few bugs in ClockCache. 2. ClockCache now fully supports ``strict_capacity_limit == false``: When an insertion over capacity is commanded, we allocate a handle separately from the hash table. 3. ClockCache now runs on almost every test in cache_test. The only exceptions are a test where either the LRU policy is required, and a test that dynamically increases the table capacity. 4. ClockCache now supports dynamically decreasing capacity via SetCapacity. (This is easy: we shrink the capacity upper bound and run the clock algorithm.) 5. Old FastLRUCache tests in lru_cache_test.cc are now also used on ClockCache. As a byproduct of 1. and 2. we are able to turn on ClockCache in the stress tests. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10418 Test Plan: - ``make -j24 USE_CLANG=1 COMPILE_WITH_ASAN=1 COMPILE_WITH_UBSAN=1 check`` - ``make -j24 USE_CLANG=1 COMPILE_WITH_TSAN=1 check`` - ``make -j24 USE_CLANG=1 COMPILE_WITH_ASAN=1 COMPILE_WITH_UBSAN=1 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache" blackbox_crash_test_with_atomic_flush`` - ``make -j24 USE_CLANG=1 COMPILE_WITH_TSAN=1 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache" blackbox_crash_test_with_atomic_flush`` Reviewed By: pdillinger Differential Revision: D38170673 Pulled By: guidotag fbshipit-source-id: 508987b9dc9d9d68f1a03eefac769820b680340a |
2 years ago |
Guido Tagliavini Ponce | 6a160e1fec |
Lock-free ClockCache (#10390)
Summary: ClockCache completely free of locks. As part of this PR we have also pushed clock algorithm functionality out of ClockCacheShard into ClockHandleTable, so that ClockCacheShard acts more as an interface and less as an actual data structure. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10390 Test Plan: - ``make -j24 check`` - ``make -j24 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache --cache_size=1073741824 --block_size=16384" blackbox_crash_test_with_atomic_flush`` Reviewed By: pdillinger Differential Revision: D38106945 Pulled By: guidotag fbshipit-source-id: 6cbf6bd2397dc9f582809ccff5118a8a33ea6cb1 |
2 years ago |
Guido Tagliavini Ponce | efdb428edc |
Lock-free Lookup and Release in ClockCache (#10347)
Summary: This is a prototype of a partially lock-free version of ClockCache. Roughly speaking, reads are lock-free and writes are lock-based: - Lookup is lock-free. - Release is lock-free, unless (i) no references to the element are left and (ii) it was marked for deletion or ``erase_if_last_ref`` is set. - Insert and Erase still use a per-shard lock. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10347 Test Plan: - ``make -j24 check`` - ``make -j24 CRASH_TEST_EXT_ARGS="--duration=960 --cache_type=clock_cache --cache_size=1073741824 --block_size=16384" blackbox_crash_test_with_atomic_flush`` Reviewed By: pdillinger Differential Revision: D37898776 Pulled By: guidotag fbshipit-source-id: 6418fd980f786d69b871bf2fe959398e44cd3d80 |
2 years ago |
Guido Tagliavini Ponce | 9645e66fc9 |
Temporarily return a LRUCache from NewClockCache (#10351)
Summary: ClockCache is still in experimental stage, and currently fails some pre-release fbcode tests. See https://www.internalfb.com/diff/D37772011. API calls to construct ClockCache are done via the function NewClockCache. For now, NewClockCache calls will return an LRUCache (with appropriate arguments), which is stable. The idea that NewClockCache returns nullptr was also floated, but this would be interpreted as unsupported cache, and a default LRUCache would be constructed instead, potentially causing a performance regression that is harder to identify. A new version of the NewClockCache function was created for our internal tests. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10351 Test Plan: ``make -j24 check`` and re-run the pre-release tests. Reviewed By: pdillinger Differential Revision: D37802685 Pulled By: guidotag fbshipit-source-id: 0a8d10612ff21e576f7360cb13e20bc36e244972 |
2 years ago |
Guido Tagliavini Ponce | c277aeb42c |
Midpoint insertions in ClockCache (#10305)
Summary: When an element is first inserted into the ClockCache, it is now assigned either medium or high clock priority, depending on whether its cache priority is low or high, respectively. This is a variant of LRUCache's midpoint insertions. The main difference is that LRUCache can specify the allocated capacity for high-priority elements via the ``high_pri_pool_ratio`` parameter. Contrarily, in ClockCache, low- and high-priority elements compete for all cache slots, and one group can take over the other (of course, it takes more low-priority insertions to push out high-priority elements). However, just as LRUCache, ClockCache provides the following guarantee: a high-priority element will not be evicted before a low-priority element that was inserted earlier in time. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10305 Test Plan: ``make -j24 check`` Reviewed By: pdillinger Differential Revision: D37607787 Pulled By: guidotag fbshipit-source-id: 24d9f2523d2f4e6415e7f0029cc061fa275c2040 |
2 years ago |
Guido Tagliavini Ponce | 57a0e2f304 |
Clock cache (#10273)
Summary: This is the initial step in the development of a lock-free clock cache. This PR includes the base hash table design (which we mostly ported over from FastLRUCache) and the clock eviction algorithm. Importantly, it's still _not_ lock-free---all operations use a shard lock. Besides the locking, there are other features left as future work: - Remove keys from the handles. Instead, use 128-bit bijective hashes of them for handle comparisons, probing (we need two 32-bit hashes of the key for double hashing) and sharding (we need one 6-bit hash). - Remove the clock_usage_ field, which is updated on every lookup. Even if it were atomically updated, it could cause memory invalidations across cores. - Middle insertions into the clock list. - A test that exercises the clock eviction policy. - Update the Java API of ClockCache and Java calls to C++. Along the way, we improved the code and comments quality of FastLRUCache. These changes are relatively minor. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10273 Test Plan: ``make -j24 check`` Reviewed By: pdillinger Differential Revision: D37522461 Pulled By: guidotag fbshipit-source-id: 3d70b737dbb70dcf662f00cef8c609750f083943 |
2 years ago |
Siying Dong | 3c327ac2d0 |
Change RocksDB License
Summary: Closes https://github.com/facebook/rocksdb/pull/2589 Differential Revision: D5431502 Pulled By: siying fbshipit-source-id: 8ebf8c87883daa9daa54b2303d11ce01ab1f6f75 |
7 years ago |
Siying Dong | d2dce5611a |
Move some files under util/ to separate dirs
Summary: Move some files under util/ to new directories env/, monitoring/ options/ and cache/ Closes https://github.com/facebook/rocksdb/pull/2090 Differential Revision: D4833681 Pulled By: siying fbshipit-source-id: 2fd8bef |
8 years ago |
Yi Wu | 4cc37f59e5 |
Introduce ClockCache
Summary: Clock-based cache implemenetation aim to have better concurreny than default LRU cache. See inline comments for implementation details. Test Plan: Update cache_test to run on both LRUCache and ClockCache. Adding some new tests to catch some of the bugs that I fixed while implementing the cache. Reviewers: kradhakrishnan, sdong Reviewed By: sdong Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D61647 |
8 years ago |
Baraa Hamodi | 21e95811d1 |
Updated all copyright headers to the new format.
|
9 years ago |
sdong | 35ad531be3 |
Seperate InternalIterator from Iterator
Summary: Separate a new class InternalIterator from class Iterator, when the look-up is done internally, which also means they operate on key with sequence ID and type. This change will enable potential future optimizations but for now InternalIterator's functions are still the same as Iterator's. At the same time, separate the cleanup function to a separate class and let both of InternalIterator and Iterator inherit from it. Test Plan: Run all existing tests. Reviewers: igor, yhchiang, anthony, kradhakrishnan, IslamAbdelRahman, rven Reviewed By: rven Subscribers: leveldb, dhruba Differential Revision: https://reviews.facebook.net/D48549 |
9 years ago |
Stanislau Hlebik | 45a5e3ede0 |
Remove path with arena==nullptr from NewInternalIterator
Summary: Simply code by removing code path which does not use Arena from NewInternalIterator Test Plan: make all check make valgrind_check Reviewers: sdong Reviewed By: sdong Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D22395 |
10 years ago |