Tag:
Branch:
Tree:
f286fb344b
main
oxigraph-8.1.1
oxigraph-8.3.2
oxigraph-main
${ noResults }
8 Commits (f286fb344be3702e927f35cc5d022a4e025f99a0)
Author | SHA1 | Message | Date |
---|---|---|---|
sdong | fdf882ded2 |
Replace namespace name "rocksdb" with ROCKSDB_NAMESPACE (#6433)
Summary: When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433 Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag. Differential Revision: D19977691 fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e |
5 years ago |
Peter Dillinger | 8aa99fc71e |
Warn on excessive keys for legacy Bloom filter with 32-bit hash (#6317)
Summary: With many millions of keys, the old Bloom filter implementation for the block-based table (format_version <= 4) would have excessive FP rate due to the limitations of feeding the Bloom filter with a 32-bit hash. This change computes an estimated inflated FP rate due to this effect and warns in the log whenever an SST filter is constructed (almost certainly a "full" not "partitioned" filter) that exceeds 1.5x FP rate due to this effect. The detailed condition is only checked if 3 million keys or more have been added to a filter, as this should be a lower bound for common bits/key settings (< 20). Recommended remedies include smaller SST file size, using format_version >= 5 (for new Bloom filter), or using partitioned filters. This does not change behavior other than generating warnings for some constructed filters using the old implementation. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6317 Test Plan: Example with warning, 15M keys @ 15 bits / key: (working_mem_size_mb is just to stop after building one filter if it's large) $ ./filter_bench -quick -impl=0 -working_mem_size_mb=1 -bits_per_key=15 -average_keys_per_filter=15000000 2>&1 | grep 'FP rate' [WARN] [/block_based/filter_policy.cc:292] Using legacy SST/BBT Bloom filter with excessive key count (15.0M @ 15bpk), causing estimated 1.8x higher filter FP rate. Consider using new Bloom with format_version>=5, smaller SST file size, or partitioned filters. Predicted FP rate %: 0.766702 Average FP rate %: 0.66846 Example without warning (150K keys): $ ./filter_bench -quick -impl=0 -working_mem_size_mb=1 -bits_per_key=15 -average_keys_per_filter=150000 2>&1 | grep 'FP rate' Predicted FP rate %: 0.422857 Average FP rate %: 0.379301 $ With more samples at 15 bits/key: 150K keys -> no warning; actual: 0.379% FP rate (baseline) 1M keys -> no warning; actual: 0.396% FP rate, 1.045x 9M keys -> no warning; actual: 0.563% FP rate, 1.485x 10M keys -> warning (1.5x); actual: 0.564% FP rate, 1.488x 15M keys -> warning (1.8x); actual: 0.668% FP rate, 1.76x 25M keys -> warning (2.4x); actual: 0.880% FP rate, 2.32x At 10 bits/key: 150K keys -> no warning; actual: 1.17% FP rate (baseline) 1M keys -> no warning; actual: 1.16% FP rate 10M keys -> no warning; actual: 1.32% FP rate, 1.13x 25M keys -> no warning; actual: 1.63% FP rate, 1.39x 35M keys -> warning (1.6x); actual: 1.81% FP rate, 1.55x At 5 bits/key: 150K keys -> no warning; actual: 9.32% FP rate (baseline) 25M keys -> no warning; actual: 9.62% FP rate, 1.03x 200M keys -> no warning; actual: 12.2% FP rate, 1.31x 250M keys -> warning (1.5x); actual: 12.8% FP rate, 1.37x 300M keys -> warning (1.6x); actual: 13.4% FP rate, 1.43x The reason for the modest inaccuracy at low bits/key is that the assumption of independence between a collision between 32-hash values feeding the filter and an FP in the filter is not quite true for implementations using "simple" logic to compute indices from the stock hash result. There's math on this in my dissertation, but I don't think it's worth the effort just for these extreme cases (> 100 million keys and low-ish bits/key). Differential Revision: D19471715 Pulled By: pdillinger fbshipit-source-id: f80c96893a09bf1152630ff0b964e5cdd7e35c68 |
5 years ago |
Peter Dillinger | 57f3032285 |
Allow fractional bits/key in BloomFilterPolicy (#6092)
Summary: There's no technological impediment to allowing the Bloom filter bits/key to be non-integer (fractional/decimal) values, and it provides finer control over the memory vs. accuracy trade-off. This is especially handy in using the format_version=5 Bloom filter in place of the old one, because bits_per_key=9.55 provides the same accuracy as the old bits_per_key=10. This change not only requires refining the logic for choosing the best num_probes for a given bits/key setting, it revealed a flaw in that logic. As bits/key gets higher, the best num_probes for a cache-local Bloom filter is closer to bpk / 2 than to bpk * 0.69, the best choice for a standard Bloom filter. For example, at 16 bits per key, the best num_probes is 9 (FP rate = 0.0843%) not 11 (FP rate = 0.0884%). This change fixes and refines that logic (for the format_version=5 Bloom filter only, just in case) based on empirical tests to find accuracy inflection points between each num_probes. Although bits_per_key is now specified as a double, the new Bloom filter converts/rounds this to "millibits / key" for predictable/precise internal computations. Just in case of unforeseen compatibility issues, we round to the nearest whole number bits / key for the legacy Bloom filter, so as not to unlock new behaviors for it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6092 Test Plan: unit tests included Differential Revision: D18711313 Pulled By: pdillinger fbshipit-source-id: 1aa73295f152a995328cb846ef9157ae8a05522a |
5 years ago |
Peter Dillinger | f059c7d9b9 |
New Bloom filter implementation for full and partitioned filters (#6007)
Summary: Adds an improved, replacement Bloom filter implementation (FastLocalBloom) for full and partitioned filters in the block-based table. This replacement is faster and more accurate, especially for high bits per key or millions of keys in a single filter. Speed The improved speed, at least on recent x86_64, comes from * Using fastrange instead of modulo (%) * Using our new hash function (XXH3 preview, added in a previous commit), which is much faster for large keys and only *slightly* slower on keys around 12 bytes if hashing the same size many thousands of times in a row. * Optimizing the Bloom filter queries with AVX2 SIMD operations. (Added AVX2 to the USE_SSE=1 build.) Careful design was required to support (a) SIMD-optimized queries, (b) compatible non-SIMD code that's simple and efficient, (c) flexible choice of number of probes, and (d) essentially maximized accuracy for a cache-local Bloom filter. Probes are made eight at a time, so any number of probes up to 8 is the same speed, then up to 16, etc. * Prefetching cache lines when building the filter. Although this optimization could be applied to the old structure as well, it seems to balance out the small added cost of accumulating 64 bit hashes for adding to the filter rather than 32 bit hashes. Here's nominal speed data from filter_bench (200MB in filters, about 10k keys each, 10 bits filter data / key, 6 probes, avg key size 24 bytes, includes hashing time) on Skylake DE (relatively low clock speed): $ ./filter_bench -quick -impl=2 -net_includes_hashing # New Bloom filter Build avg ns/key: 47.7135 Mixed inside/outside queries... Single filter net ns/op: 26.2825 Random filter net ns/op: 150.459 Average FP rate %: 0.954651 $ ./filter_bench -quick -impl=0 -net_includes_hashing # Old Bloom filter Build avg ns/key: 47.2245 Mixed inside/outside queries... Single filter net ns/op: 63.2978 Random filter net ns/op: 188.038 Average FP rate %: 1.13823 Similar build time but dramatically faster query times on hot data (63 ns to 26 ns), and somewhat faster on stale data (188 ns to 150 ns). Performance differences on batched and skewed query loads are between these extremes as expected. The only other interesting thing about speed is "inside" (query key was added to filter) vs. "outside" (query key was not added to filter) query times. The non-SIMD implementations are substantially slower when most queries are "outside" vs. "inside". This goes against what one might expect or would have observed years ago, as "outside" queries only need about two probes on average, due to short-circuiting, while "inside" always have num_probes (say 6). The problem is probably the nastily unpredictable branch. The SIMD implementation has few branches (very predictable) and has pretty consistent running time regardless of query outcome. Accuracy The generally improved accuracy (re: Issue https://github.com/facebook/rocksdb/issues/5857) comes from a better design for probing indices within a cache line (re: Issue https://github.com/facebook/rocksdb/issues/4120) and improved accuracy for millions of keys in a single filter from using a 64-bit hash function (XXH3p). Design details in code comments. Accuracy data (generalizes, except old impl gets worse with millions of keys): Memory bits per key: FP rate percent old impl -> FP rate percent new impl 6: 5.70953 -> 5.69888 8: 2.45766 -> 2.29709 10: 1.13977 -> 0.959254 12: 0.662498 -> 0.411593 16: 0.353023 -> 0.0873754 24: 0.261552 -> 0.0060971 50: 0.225453 -> ~0.00003 (less than 1 in a million queries are FP) Fixes https://github.com/facebook/rocksdb/issues/5857 Fixes https://github.com/facebook/rocksdb/issues/4120 Unlike the old implementation, this implementation has a fixed cache line size (64 bytes). At 10 bits per key, the accuracy of this new implementation is very close to the old implementation with 128-byte cache line size. If there's sufficient demand, this implementation could be generalized. Compatibility Although old releases would see the new structure as corrupt filter data and read the table as if there's no filter, we've decided only to enable the new Bloom filter with new format_version=5. This provides a smooth path for automatic adoption over time, with an option for early opt-in. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6007 Test Plan: filter_bench has been used thoroughly to validate speed, accuracy, and correctness. Unit tests have been carefully updated to exercise new and old implementations, as well as the logic to select an implementation based on context (format_version). Differential Revision: D18294749 Pulled By: pdillinger fbshipit-source-id: d44c9db3696e4d0a17caaec47075b7755c262c5f |
5 years ago |
sdong | c06b54d0c6 |
Apply formatter on recent 45 commits. (#5827)
Summary: Some recent commits might not have passed through the formatter. I formatted recent 45 commits. The script hangs for more commits so I stopped there. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5827 Test Plan: Run all existing tests. Differential Revision: D17483727 fbshipit-source-id: af23113ee63015d8a43d89a3bc2c1056189afe8f |
5 years ago |
Peter Dillinger | 68626249c3 |
Refactor/consolidate legacy Bloom implementation details (#5784)
Summary: Refactoring to consolidate implementation details of legacy Bloom filters. This helps to organize and document some related, obscure code. Also added make/cpp var TEST_CACHE_LINE_SIZE so that it's easy to compile and run unit tests for non-native cache line size. (Fixed a related test failure in db_properties_test.) Pull Request resolved: https://github.com/facebook/rocksdb/pull/5784 Test Plan: make check, including Recently added Bloom schema unit tests (in ./plain_table_db_test && ./bloom_test), and including with TEST_CACHE_LINE_SIZE=128U and TEST_CACHE_LINE_SIZE=256U. Tested the schema tests with temporary fault injection into new implementations. Some performance testing with modified unit tests suggest a small to moderate improvement in speed. Differential Revision: D17381384 Pulled By: pdillinger fbshipit-source-id: ee42586da996798910fc45ac0b6289147f16d8df |
5 years ago |
Peter Dillinger | d3a6726f02 |
Revert changes from PR#5784 accidentally in PR#5780 (#5810)
Summary: This will allow us to fix history by having the code changes for PR#5784 properly attributed to it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5810 Differential Revision: D17400231 Pulled By: pdillinger fbshipit-source-id: 2da8b1cdf2533cfedb35b5526eadefb38c291f09 |
5 years ago |
Peter Dillinger | aa2486b23c |
Refactor some confusing logic in PlainTableReader
Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/5780 Test Plan: existing plain table unit test Differential Revision: D17368629 Pulled By: pdillinger fbshipit-source-id: f25409cdc2f39ebe8d5cbb599cf820270e6b5d26 |
5 years ago |