Tag:
Branch:
Tree:
fc74abb436
main
oxigraph-8.1.1
oxigraph-8.3.2
oxigraph-main
${ noResults }
49 Commits (fc74abb436c5807e967aecc892bb8fa127f2fa85)
Author | SHA1 | Message | Date |
---|---|---|---|
Peter Dillinger | 7555243bcf |
Refactor ShardedCache for more sharing, static polymorphism (#10801)
Summary: The motivations for this change include * Free up space in ClockHandle so that we can add data for secondary cache handling while still keeping within single cache line (64 byte) size. * This change frees up space by eliminating the need for the `hash` field by making the fixed-size key itself a hash, using a 128-bit bijective (lossless) hash. * Generally more customizability of ShardedCache (such as hashing) without worrying about virtual call overheads * ShardedCache now uses static polymorphism (template) instead of dynamic polymorphism (virtual overrides) for the CacheShard. No obvious performance benefit is seen from the change (as mostly expected; most calls to virtual functions in CacheShard could already be optimized to static calls), but offers more flexibility without incurring the runtime cost of adhering to a common interface (without type parameters or static callbacks). * You'll also notice less `reinterpret_cast`ing and other boilerplate in the Cache implementations, as this can go in ShardedCache. More detail: * Don't have LRUCacheShard maintain `std::shared_ptr<SecondaryCache>` copies (extra refcount) when LRUCache can be in charge of keeping a `shared_ptr`. * Renamed `capacity_mutex_` to `config_mutex_` to better represent the scope of what it guards. * Some preparation for 64-bit hash and indexing in LRUCache, but didn't include the full change because of slight performance regression. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10801 Test Plan: Unit test updates were non-trivial because of major changes to the ClockCacheShard interface in handling of key vs. hash. Performance: Create with `TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16` Test with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom[-X1000] -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=610000000 -duration 20 -threads=16 ``` Before: `readrandom [AVG 150 runs] : 321147 (± 253) ops/sec` After: `readrandom [AVG 150 runs] : 321530 (± 326) ops/sec` So possibly ~0.1% improvement. And with `-cache_type=hyper_clock_cache`: Before: `readrandom [AVG 30 runs] : 614126 (± 7978) ops/sec` After: `readrandom [AVG 30 runs] : 645349 (± 8087) ops/sec` So roughly 5% improvement! Reviewed By: anand1976 Differential Revision: D40252236 Pulled By: pdillinger fbshipit-source-id: ff8fc70ef569585edc95bcbaaa0386f61355ae5b |
2 years ago |
Peter Dillinger | 5f4391dda2 |
Some clean-up of secondary cache (#10730)
Summary: This is intended as a step toward possibly separating secondary cache integration from the Cache implementation as much as possible, to (hopefully) minimize code duplication in adding secondary cache support to HyperClockCache. * Major clarifications to API docs of secondary cache compatible parts of Cache. For example, previously the docs seemed to suggest that Wait() was not needed if IsReady()==true. And it wasn't clear what operations were actually supported on pending handles. * Add some assertions related to these requirements, such as that we don't Release() before Wait() (which would leak a secondary cache handle). * Fix a leaky abstraction with dummy handles, which are supposed to be internal to the Cache. Previously, these just used value=nullptr to indicate dummy handle, which meant that they could be confused with legitimate value=nullptr cases like cache reservations. Also fixed blob_source_test which was relying on this leaky abstraction. * Drop "incomplete" terminology, which was another name for "pending". * Split handle flags into "mutable" ones requiring mutex and "immutable" ones which do not. Because of single-threaded access to pending handles, the "Is Pending" flag can be in the "immutable" set. This allows removal of a TSAN work-around and removing a mutex acquire-release in IsReady(). * Remove some unnecessary handling of charges on handles of failed lookups. Keeping total_charge=0 means no special handling needed. (Removed one unnecessary mutex acquire/release.) * Simplify handling of dummy handle in Lookup(). There is no need to explicitly Ref & Release w/Erase if we generally overwrite the dummy anyway. (Removed one mutex acquire/release, a call to Release().) Intended follow-up: * Clarify APIs in secondary_cache.h * Doesn't SecondaryCacheResultHandle transfer ownership of the Value() on success (implementations should not release the value in destructor)? * Does Wait() need to be called if IsReady() == true? (This would be different from Cache.) * Do Value() and Size() have undefined behavior if IsReady() == false? * Why have a custom API for what is essentially a std::future<std::pair<void*, size_t>>? * Improve unit testing of standalone handle case * Apparent null `e` bug in `free_standalone_handle` case * Clean up secondary cache testing in lru_cache_test * Why does TestSecondaryCacheResultHandle hold on to a Cache::Handle? * Why does TestSecondaryCacheResultHandle::Wait() do nothing? Shouldn't it establish the post-condition IsReady() == true? * (Assuming that is sorted out...) Shouldn't TestSecondaryCache::WaitAll simply wait on each handle in order (no casting required)? How about making that the default implementation? * Why does TestSecondaryCacheResultHandle::Size() check Value() first? If the API is intended to be returning 0 before IsReady(), then that is weird but should at least be documented. Otherwise, if it's intended to be undefined behavior, we should assert IsReady(). * Consider replacing "standalone" and "dummy" entries with a single kind of "weak" entry that deletes its value when it reaches zero refs. Suppose you are using compressed secondary cache and have two iterators at similar places. It will probably common for one iterator to have standalone results pinned (out of cache) when the second iterator needs those same blocks and has to re-load them from secondary cache and duplicate the memory. Combining the dummy and the standalone should fix this. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10730 Test Plan: existing tests (minor update), and crash test with sanitizers and secondary cache Performance test for any regressions in LRUCache (primary only): Create DB with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16 ``` Test before & after (run at same time) with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom[-X100] -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=233000000 -duration 30 -threads=16 ``` Before: readrandom [AVG 100 runs] : 22234 (± 63) ops/sec; 1.6 (± 0.0) MB/sec After: readrandom [AVG 100 runs] : 22197 (± 64) ops/sec; 1.6 (± 0.0) MB/sec That's within 0.2%, which is not significant by the confidence intervals. Reviewed By: anand1976 Differential Revision: D39826010 Pulled By: anand1976 fbshipit-source-id: 3202b4a91f673231c97648ae070e502ae16b0f44 |
2 years ago |
Peter Dillinger | 5724348689 |
Revamp, optimize new experimental clock cache (#10626)
Summary: * Consolidates most metadata into a single word per slot so that more can be accomplished with a single atomic update. In the common case, Lookup was previously about 4 atomic updates, now just 1 atomic update. Common case Release was previously 1 atomic read + 1 atomic update, now just 1 atomic update. * Eliminate spins / waits / yields, which likely threaten some "lock free" benefits. Compare-exchange loops are only used in explicit Erase, and strict_capacity_limit=true Insert. Eviction uses opportunistic compare- exchange. * Relaxes some aggressiveness and guarantees. For example, * Duplicate Inserts will sometimes go undetected and the shadow duplicate will age out with eviction. * In many cases, the older Inserted value for a given cache key will be kept (i.e. Insert does not support overwrite). * Entries explicitly erased (rather than evicted) might not be freed immediately in some rare cases. * With strict_capacity_limit=false, capacity limit is not tracked/enforced as precisely as LRUCache, but is self-correcting and should only deviate by a very small number of extra or fewer entries. * Use smaller "computed default" number of cache shards in many cases, because benefits to larger usage tracking / eviction pools outweigh the small cost of more lock-free atomic contention. The improvement in CPU and I/O is dramatic in some limit-memory cases. * Even without the sharding change, the eviction algorithm is likely more effective than LRU overall because it's more stateful, even though the "hot path" state tracking for it is essentially free with ref counting. It is like a generalized CLOCK with aging (see code comments). I don't have performance numbers showing a specific improvement, but in theory, for a Poisson access pattern to each block, keeping some state allows better estimation of time to next access (Poisson interval) than strict LRU. The bounded randomness in CLOCK can also reduce "cliff" effect for repeated range scans approaching and exceeding cache size. ## Hot path algorithm comparison Rough descriptions, focusing on number and kind of atomic operations: * Old `Lookup()` (2-5 atomic updates per probe): ``` Loop: Increment internal ref count at slot If possible hit: Check flags atomic (and non-atomic fields) If cache hit: Three distinct updates to 'flags' atomic Increment refs for internal-to-external Return Decrement internal ref count while atomic read 'displacements' > 0 ``` * New `Lookup()` (1-2 atomic updates per probe): ``` Loop: Increment acquire counter in meta word (optimistic) If visible entry (already read meta word): If match (read non-atomic fields): Return Else: Decrement acquire counter in meta word Else if invisible entry (rare, already read meta word): Decrement acquire counter in meta word while atomic read 'displacements' > 0 ``` * Old `Release()` (1 atomic update, conditional on atomic read, rarely more): ``` Read atomic ref count If last reference and invisible (rare): Use CAS etc. to remove Return Else: Decrement ref count ``` * New `Release()` (1 unconditional atomic update, rarely more): ``` Increment release counter in meta word If last reference and invisible (rare): Use CAS etc. to remove Return ``` ## Performance test setup Build DB with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16 ``` Test with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics ``` Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations: base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6) folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry) gt_clock: experimental ClockCache before this change new_clock: experimental ClockCache with this change ## Performance test results First test "hot path" read performance, with block cache large enough for whole DB: 4181MB 1thread base -> kops/s: 47.761 4181MB 1thread folly -> kops/s: 45.877 4181MB 1thread gt_clock -> kops/s: 51.092 4181MB 1thread new_clock -> kops/s: 53.944 4181MB 16thread base -> kops/s: 284.567 4181MB 16thread folly -> kops/s: 249.015 4181MB 16thread gt_clock -> kops/s: 743.762 4181MB 16thread new_clock -> kops/s: 861.821 4181MB 24thread base -> kops/s: 303.415 4181MB 24thread folly -> kops/s: 266.548 4181MB 24thread gt_clock -> kops/s: 975.706 4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944) 4181MB 32thread base -> kops/s: 311.251 4181MB 32thread folly -> kops/s: 274.952 4181MB 32thread gt_clock -> kops/s: 1045.98 4181MB 32thread new_clock -> kops/s: 1370.38 4181MB 48thread base -> kops/s: 310.504 4181MB 48thread folly -> kops/s: 268.322 4181MB 48thread gt_clock -> kops/s: 1195.65 4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944) 4181MB 64thread base -> kops/s: 307.839 4181MB 64thread folly -> kops/s: 272.172 4181MB 64thread gt_clock -> kops/s: 1204.47 4181MB 64thread new_clock -> kops/s: 1615.37 4181MB 128thread base -> kops/s: 310.934 4181MB 128thread folly -> kops/s: 267.468 4181MB 128thread gt_clock -> kops/s: 1188.75 4181MB 128thread new_clock -> kops/s: 1595.46 Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x. Now test a large block cache with low miss ratio, but some eviction is required: 1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23 1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43 1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4 1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56 1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59 1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8 1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89 1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45 1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98 1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91 1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26 1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63 610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137 610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996 610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934 610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5 610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402 610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742 610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062 610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453 610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457 610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426 610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273 610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812 The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.) Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc. 233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371 233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293 233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844 233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461 233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227 233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738 233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688 233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402 233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84 233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785 233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94 233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016 89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086 89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984 89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441 89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754 89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812 89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418 89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422 89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293 89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43 89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824 89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32 89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223 ^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.) Even smaller cache size: 34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914 34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281 34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523 34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125 34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48 34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531 34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465 34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793 34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484 34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457 34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41 34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52 As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn: 13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328 13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633 13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684 13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383 13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492 13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863 13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121 13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758 13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539 13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098 13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77 13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27 gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention: 13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852 13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516 13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688 13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707 13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57 13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219 13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871 13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626 Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN Reviewed By: anand1976 Differential Revision: D39368406 Pulled By: pdillinger fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9 |
2 years ago |
Bo Wang | d490bfcdb6 |
Avoid recompressing cold block in CompressedSecondaryCache (#10527)
Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca |
2 years ago |
Gang Liao | 275cd80cdb |
Add a blob-specific cache priority (#10461)
Summary: RocksDB's `Cache` abstraction currently supports two priority levels for items: high (used for frequently accessed/highly valuable SST metablocks like index/filter blocks) and low (used for SST data blocks). Blobs are typically lower-value targets for caching than data blocks, since 1) with BlobDB, data blocks containing blob references conceptually form an index structure which has to be consulted before we can read the blob value, and 2) cached blobs represent only a single key-value, while cached data blocks generally contain multiple KVs. Since we would like to make it possible to use the same backing cache for the block cache and the blob cache, it would make sense to add a new, lower-than-low cache priority level (bottom level) for blobs so data blocks are prioritized over them. This task is a part of https://github.com/facebook/rocksdb/issues/10156 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10461 Reviewed By: siying Differential Revision: D38672823 Pulled By: ltamasi fbshipit-source-id: 90cf7362036563d79891f47be2cc24b827482743 |
2 years ago |
Peter Dillinger | 65036e4217 |
Revert "Add a blob-specific cache priority (#10309)" (#10434)
Summary:
This reverts commit
|
2 years ago |
Gang Liao | 8d178090be |
Add a blob-specific cache priority (#10309)
Summary: RocksDB's `Cache` abstraction currently supports two priority levels for items: high (used for frequently accessed/highly valuable SST metablocks like index/filter blocks) and low (used for SST data blocks). Blobs are typically lower-value targets for caching than data blocks, since 1) with BlobDB, data blocks containing blob references conceptually form an index structure which has to be consulted before we can read the blob value, and 2) cached blobs represent only a single key-value, while cached data blocks generally contain multiple KVs. Since we would like to make it possible to use the same backing cache for the block cache and the blob cache, it would make sense to add a new, lower-than-low cache priority level (bottom level) for blobs so data blocks are prioritized over them. This task is a part of https://github.com/facebook/rocksdb/issues/10156 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10309 Reviewed By: ltamasi Differential Revision: D38211655 Pulled By: gangliao fbshipit-source-id: 65ef33337db4d85277cc6f9782d67c421ad71dd5 |
2 years ago |
Gang Liao | 0b6bc101ba |
Charge blob cache usage against the global memory limit (#10321)
Summary: To help service owners to manage their memory budget effectively, we have been working towards counting all major memory users inside RocksDB towards a single global memory limit (see e.g. https://github.com/facebook/rocksdb/wiki/Write-Buffer-Manager#cost-memory-used-in-memtable-to-block-cache). The global limit is specified by the capacity of the block-based table's block cache, and is technically implemented by inserting dummy entries ("reservations") into the block cache. The goal of this task is to support charging the memory usage of the new blob cache against this global memory limit when the backing cache of the blob cache and the block cache are different. This PR is a part of https://github.com/facebook/rocksdb/issues/10156 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10321 Reviewed By: ltamasi Differential Revision: D37913590 Pulled By: gangliao fbshipit-source-id: eaacf23907f82dc7d18964a3f24d7039a2937a72 |
2 years ago |
Bo Wang | 86c2d0a95d |
Add the secondary cache information into LRUCache:: GetPrintableOptions (#10346)
Summary: If the primary cache is LRU cache and there is a secondary cache, add Secondary Cache printable options into LRUCache::GetPrintableOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10346 Test Plan: 1. Current Unit Tests should pass. 2. Use db_bench (with compressed_secondary_cache ) and the LOG should includes the new printable options from Seoncdary Cache. Reviewed By: jay-zhuang Differential Revision: D37779310 Pulled By: gitbw95 fbshipit-source-id: 88ce1f7df6b5f25740e598d9e7fa91e4c414cb8f |
3 years ago |
Peter Dillinger | 1aac814578 |
Use optimized folly DistributedMutex in LRUCache when available (#10179)
Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1 |
3 years ago |
sdong | c78a87cd71 |
Avoid malloc_usable_size() call inside LRU Cache mutex (#10026)
Summary: In LRU Cache mutex, we sometimes call malloc_usable_size() to calculate memory used by the metadata object. We prevent it by saving the charge + metadata size, rather than charge, inside the metadata itself. Within the mutex, usually only total charge is needed so we don't need to repeat. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10026 Test Plan: Run existing tests. Reviewed By: pdillinger Differential Revision: D36556253 fbshipit-source-id: f60c96d13cde3af77732e5548e4eac4182fa9801 |
3 years ago |
Peter Dillinger | bb87164db3 |
Fork and simplify LRUCache for developing enhancements (#9917)
Summary: To support a project to prototype and evaluate algorithmic enhancments and alternatives to LRUCache, here I have separated out LRUCache into internal-only "FastLRUCache" and cut it down to essentials, so that details like secondary cache handling and priorities do not interfere with prototyping. These can be re-integrated later as needed, along with refactoring to minimize code duplication (which would slow down prototyping for now). Pull Request resolved: https://github.com/facebook/rocksdb/pull/9917 Test Plan: unit tests updated to ensure basic functionality has (likely) been preserved Reviewed By: anand1976 Differential Revision: D35995554 Pulled By: pdillinger fbshipit-source-id: d67b20b7ada3b5d3bfe56d897a73885894a1d9db |
3 years ago |
gitbw95 | f241d082b6 |
Prevent double caching in the compressed secondary cache (#9747)
Summary: ### **Summary:** When both LRU Cache and CompressedSecondaryCache are configured together, there possibly are some data blocks double cached. **Changes include:** 1. Update IS_PROMOTED to IS_IN_SECONDARY_CACHE to prevent confusions. 2. This PR updates SecondaryCacheResultHandle and use IsErasedFromSecondaryCache to determine whether the handle is erased in the secondary cache. Then, the caller can determine whether to SetIsInSecondaryCache(). 3. Rename LRUSecondaryCache to CompressedSecondaryCache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9747 Test Plan: **Test Scripts:** 1. Populate a DB. The on disk footprint is 482 MB. The data is set to be 50% compressible, so the total decompressed size is expected to be 964 MB. ./db_bench --benchmarks=fillrandom --num=10000000 -db=/db_bench_1 2. overwrite it to a stable state: ./db_bench --benchmarks=overwrite,stats --num=10000000 -use_existing_db -duration=10 --benchmark_write_rate_limit=2000000 -db=/db_bench_1 4. Run read tests with diffeernt cache setting: T1: ./db_bench --benchmarks=seekrandom,stats --threads=16 --num=10000000 -use_existing_db -duration=120 --benchmark_write_rate_limit=52000000 -use_direct_reads --cache_size=520000000 --statistics -db=/db_bench_1 T2: ./db_bench --benchmarks=seekrandom,stats --threads=16 --num=10000000 -use_existing_db -duration=120 --benchmark_write_rate_limit=52000000 -use_direct_reads --cache_size=320000000 -compressed_secondary_cache_size=400000000 --statistics -use_compressed_secondary_cache -db=/db_bench_1 T3: ./db_bench --benchmarks=seekrandom,stats --threads=16 --num=10000000 -use_existing_db -duration=120 --benchmark_write_rate_limit=52000000 -use_direct_reads --cache_size=520000000 -compressed_secondary_cache_size=400000000 --statistics -use_compressed_secondary_cache -db=/db_bench_1 T4: ./db_bench --benchmarks=seekrandom,stats --threads=16 --num=10000000 -use_existing_db -duration=120 --benchmark_write_rate_limit=52000000 -use_direct_reads --cache_size=20000000 -compressed_secondary_cache_size=500000000 --statistics -use_compressed_secondary_cache -db=/db_bench_1 **Before this PR** | Cache Size | Compressed Secondary Cache Size | Cache Hit Rate | |------------|-------------------------------------|----------------| |520 MB | 0 MB | 85.5% | |320 MB | 400 MB | 96.2% | |520 MB | 400 MB | 98.3% | |20 MB | 500 MB | 98.8% | **Before this PR** | Cache Size | Compressed Secondary Cache Size | Cache Hit Rate | |------------|-------------------------------------|----------------| |520 MB | 0 MB | 85.5% | |320 MB | 400 MB | 99.9% | |520 MB | 400 MB | 99.9% | |20 MB | 500 MB | 99.2% | Reviewed By: anand1976 Differential Revision: D35117499 Pulled By: gitbw95 fbshipit-source-id: ea2657749fc13efebe91a8a1b56bc61d6a224a12 |
3 years ago |
Bo Wang | bcabee737f |
Improve comments for some files (#9793)
Summary: Update the comments, e.g. fixing typo, formatting, etc. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9793 Reviewed By: jay-zhuang Differential Revision: D35323989 Pulled By: gitbw95 fbshipit-source-id: 4a72fc02b67abaae8be0d1439b68f9967a68052d |
3 years ago |
gitbw95 | 8102690a52 |
Update Cache::Release param from force_erase to erase_if_last_ref (#9728)
Summary: The param name force_erase may be misleading, since the handle is erased only if it has last reference even if the param is set true. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9728 Reviewed By: pdillinger Differential Revision: D35038673 Pulled By: gitbw95 fbshipit-source-id: 0d16d1e8fed17b97eba7fb53207119332f659a5f |
3 years ago |
anand76 | add68bd28a |
Add a stat to count secondary cache hits (#8666)
Summary: Add a stat for secondary cache hits. The ```Cache::Lookup``` API had an unused ```stats``` parameter. This PR uses that to pass the pointer to a ```Statistics``` object that ```LRUCache``` uses to record the stat. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8666 Test Plan: Update a unit test in lru_cache_test Reviewed By: zhichao-cao Differential Revision: D30353816 Pulled By: anand1976 fbshipit-source-id: 2046f78b460428877a26ffdd2bb914ae47dfbe77 |
3 years ago |
Peter Dillinger | df5dc73bec |
Don't hold DB mutex for block cache entry stat scans (#8538)
Summary: I previously didn't notice the DB mutex was being held during block cache entry stat scans, probably because I primarily checked for read performance regressions, because they require the block cache and are traditionally latency-sensitive. This change does some refactoring to avoid holding DB mutex and to avoid triggering and waiting for a scan in GetProperty("rocksdb.cfstats"). Some tests have to be updated because now the stats collector is populated in the Cache aggressively on DB startup rather than lazily. (I hope to clean up some of this added complexity in the future.) This change also ensures proper treatment of need_out_of_mutex for non-int DB properties. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8538 Test Plan: Added unit test logic that uses sync points to fail if the DB mutex is held during a scan, covering the various ways that a scan might be triggered. Performance test - the known impact to holding the DB mutex is on TransactionDB, and the easiest way to see the impact is to hack the scan code to almost always miss and take an artificially long time scanning. Here I've injected an unconditional 5s sleep at the call to ApplyToAllEntries. Before (hacked): $ TEST_TMPDIR=/dev/shm ./db_bench.base_xxx -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 433.219 micros/op 2308 ops/sec; 0.1 MB/s ( transactions:78999 aborts:0) rocksdb.db.write.micros P50 : 16.135883 P95 : 36.622503 P99 : 66.036115 P100 : 5000614.000000 COUNT : 149677 SUM : 8364856 $ TEST_TMPDIR=/dev/shm ./db_bench.base_xxx -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 448.802 micros/op 2228 ops/sec; 0.1 MB/s ( transactions:75999 aborts:0) rocksdb.db.write.micros P50 : 16.629221 P95 : 37.320607 P99 : 72.144341 P100 : 5000871.000000 COUNT : 143995 SUM : 13472323 Notice the 5s P100 write time. After (hacked): $ TEST_TMPDIR=/dev/shm ./db_bench.new_xxx -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 303.645 micros/op 3293 ops/sec; 0.1 MB/s ( transactions:98999 aborts:0) rocksdb.db.write.micros P50 : 16.061871 P95 : 33.978834 P99 : 60.018017 P100 : 616315.000000 COUNT : 187619 SUM : 4097407 $ TEST_TMPDIR=/dev/shm ./db_bench.new_xxx -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 310.383 micros/op 3221 ops/sec; 0.1 MB/s ( transactions:96999 aborts:0) rocksdb.db.write.micros P50 : 16.270026 P95 : 35.786844 P99 : 64.302878 P100 : 603088.000000 COUNT : 183819 SUM : 4095918 P100 write is now ~0.6s. Not good, but it's the same even if I completely bypass all the scanning code: $ TEST_TMPDIR=/dev/shm ./db_bench.new_skip -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 311.365 micros/op 3211 ops/sec; 0.1 MB/s ( transactions:96999 aborts:0) rocksdb.db.write.micros P50 : 16.274362 P95 : 36.221184 P99 : 68.809783 P100 : 649808.000000 COUNT : 183819 SUM : 4156767 $ TEST_TMPDIR=/dev/shm ./db_bench.new_skip -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 308.395 micros/op 3242 ops/sec; 0.1 MB/s ( transactions:97999 aborts:0) rocksdb.db.write.micros P50 : 16.106222 P95 : 37.202403 P99 : 67.081875 P100 : 598091.000000 COUNT : 185714 SUM : 4098832 No substantial difference. Reviewed By: siying Differential Revision: D29738847 Pulled By: pdillinger fbshipit-source-id: 1c5c155f5a1b62e4fea0fd4eeb515a8b7474027b |
4 years ago |
Peter Dillinger | 5ad3227650 |
Work around falsely reported data race on LRUHandle::flags (#8539)
Summary: Some bits are mutated and read while holding a lock, other immutable bits (esp. secondary cache compatibility) can be read by arbitrary threads without holding a lock. AFAIK, this doesn't cause an issue on any architecture we care about, because you will get some legitimate version of the value that includes the initialization, as long as synchronization guarantees the initialization happens before the read. I've only seen this in https://github.com/facebook/rocksdb/issues/8538 so far, but it should be fixed regardless. Otherwise, we'll surely get these false reports again some time. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8539 Test Plan: some local TSAN test runs and in CircleCI Reviewed By: zhichao-cao Differential Revision: D29720262 Pulled By: pdillinger fbshipit-source-id: 365fd7e565577c648815161f71b339bcb5ce12d5 |
4 years ago |
anand76 | 8ea0a2c1bd |
Parallelize secondary cache lookup in MultiGet (#8405)
Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0 |
4 years ago |
Peter Dillinger | 311a544c2a |
Use deleters to label cache entries and collect stats (#8297)
Summary: This change gathers and publishes statistics about the kinds of items in block cache. This is especially important for profiling relative usage of cache by index vs. filter vs. data blocks. It works by iterating over the cache during periodic stats dump (InternalStats, stats_dump_period_sec) or on demand when DB::Get(Map)Property(kBlockCacheEntryStats), except that for efficiency and sharing among column families, saved data from the last scan is used when the data is not considered too old. The new information can be seen in info LOG, for example: Block cache LRUCache@0x7fca62229330 capacity: 95.37 MB collections: 8 last_copies: 0 last_secs: 0.00178 secs_since: 0 Block cache entry stats(count,size,portion): DataBlock(7092,28.24 MB,29.6136%) FilterBlock(215,867.90 KB,0.888728%) FilterMetaBlock(2,5.31 KB,0.00544%) IndexBlock(217,180.11 KB,0.184432%) WriteBuffer(1,256.00 KB,0.262144%) Misc(1,0.00 KB,0%) And also through DB::GetProperty and GetMapProperty (here using ldb just for demonstration): $ ./ldb --db=/dev/shm/dbbench/ get_property rocksdb.block-cache-entry-stats rocksdb.block-cache-entry-stats.bytes.data-block: 0 rocksdb.block-cache-entry-stats.bytes.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-meta-block: 0 rocksdb.block-cache-entry-stats.bytes.index-block: 178992 rocksdb.block-cache-entry-stats.bytes.misc: 0 rocksdb.block-cache-entry-stats.bytes.other-block: 0 rocksdb.block-cache-entry-stats.bytes.write-buffer: 0 rocksdb.block-cache-entry-stats.capacity: 8388608 rocksdb.block-cache-entry-stats.count.data-block: 0 rocksdb.block-cache-entry-stats.count.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-meta-block: 0 rocksdb.block-cache-entry-stats.count.index-block: 215 rocksdb.block-cache-entry-stats.count.misc: 1 rocksdb.block-cache-entry-stats.count.other-block: 0 rocksdb.block-cache-entry-stats.count.write-buffer: 0 rocksdb.block-cache-entry-stats.id: LRUCache@0x7f3636661290 rocksdb.block-cache-entry-stats.percent.data-block: 0.000000 rocksdb.block-cache-entry-stats.percent.deprecated-filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-meta-block: 0.000000 rocksdb.block-cache-entry-stats.percent.index-block: 2.133751 rocksdb.block-cache-entry-stats.percent.misc: 0.000000 rocksdb.block-cache-entry-stats.percent.other-block: 0.000000 rocksdb.block-cache-entry-stats.percent.write-buffer: 0.000000 rocksdb.block-cache-entry-stats.secs_for_last_collection: 0.000052 rocksdb.block-cache-entry-stats.secs_since_last_collection: 0 Solution detail - We need some way to flag what kind of blocks each entry belongs to, preferably without changing the Cache API. One of the complications is that Cache is a general interface that could have other users that don't adhere to whichever convention we decide on for keys and values. Or we would pay for an extra field in the Handle that would only be used for this purpose. This change uses a back-door approach, the deleter, to indicate the "role" of a Cache entry (in addition to the value type, implicitly). This has the added benefit of ensuring proper code origin whenever we recognize a particular role for a cache entry; if the entry came from some other part of the code, it will use an unrecognized deleter, which we simply attribute to the "Misc" role. An internal API makes for simple instantiation and automatic registration of Cache deleters for a given value type and "role". Another internal API, CacheEntryStatsCollector, solves the problem of caching the results of a scan and sharing them, to ensure scans are neither excessive nor redundant so as not to harm Cache performance. Because code is added to BlocklikeTraits, it is pulled out of block_based_table_reader.cc into its own file. This is a reformulation of https://github.com/facebook/rocksdb/issues/8276, without the type checking option (could still be added), and with actual stat gathering. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8297 Test Plan: manual testing with db_bench, and a couple of basic unit tests Reviewed By: ltamasi Differential Revision: D28488721 Pulled By: pdillinger fbshipit-source-id: 472f524a9691b5afb107934be2d41d84f2b129fb |
4 years ago |
anand76 | feb06e83b2 |
Initial support for secondary cache in LRUCache (#8271)
Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2 |
4 years ago |
Peter Dillinger | 78a309bf86 |
New Cache API for gathering statistics (#8225)
Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95 |
4 years ago |
storagezhang | 711881bc25 |
Fix some typos in comments (#8066)
Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/8066 Reviewed By: jay-zhuang Differential Revision: D27280799 Pulled By: mrambacher fbshipit-source-id: 68f91f5af4ffe0a84be581961bf9366887f47702 |
4 years ago |
Dylan Wen | a65e905bbb |
Fix typos in comments (#7687)
Summary: Hi there, This PR fixes a few typos in comments in `cache/lru_cache.h`. Thanks Pull Request resolved: https://github.com/facebook/rocksdb/pull/7687 Reviewed By: ajkr Differential Revision: D25064674 Pulled By: jay-zhuang fbshipit-source-id: fe633369d5b82c5aac42d4ee8d551b9d657237d1 |
4 years ago |
Levi Tamasi | e6f86cfb36 |
Revert the recent cache deleter change (#6620)
Summary: Revert "Use function objects as deleters in the block cache (https://github.com/facebook/rocksdb/issues/6545)" This reverts commit |
5 years ago |
Levi Tamasi | 6301dbe7a7 |
Use function objects as deleters in the block cache (#6545)
Summary: As the first step of reintroducing eviction statistics for the block cache, the patch switches from using simple function pointers as deleters to function objects implementing an interface. This will enable using deleters that have state, like a smart pointer to the statistics object that is to be updated when an entry is removed from the cache. For now, the patch adds a deleter template class `SimpleDeleter`, which simply casts the `value` pointer to its original type and calls `delete` or `delete[]` on it as appropriate. Note: to prevent object lifecycle issues, deleters must outlive the cache entries referring to them; `SimpleDeleter` ensures this by using the ("leaky") Meyers singleton pattern. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6545 Test Plan: `make asan_check` Reviewed By: siying Differential Revision: D20475823 Pulled By: ltamasi fbshipit-source-id: fe354c33dd96d9bafc094605462352305449a22a |
5 years ago |
sdong | fdf882ded2 |
Replace namespace name "rocksdb" with ROCKSDB_NAMESPACE (#6433)
Summary: When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433 Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag. Differential Revision: D19977691 fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e |
5 years ago |
anand76 | 16fa6fd2a6 |
Remove key length assertion LRUHandle::CalcTotalCharge (#6115)
Summary: Inserting an entry in the block cache with 0 length key is a valid use case. Remove the assertion in ```LRUHandle::CalcTotalCharge```. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6115 Differential Revision: D18769693 Pulled By: anand1976 fbshipit-source-id: 34cc159650300dda6d7273480640478f28392cda |
5 years ago |
Maysam Yabandeh | 638d239507 |
Charge block cache for cache internal usage (#5797)
Summary: For our default block cache, each additional entry has extra memory overhead. It include LRUHandle (72 bytes currently) and the cache key (two varint64, file id and offset). The usage is not negligible. For example for block_size=4k, the overhead accounts for an extra 2% memory usage for the cache. The patch charging the cache for the extra usage, reducing untracked memory usage outside block cache. The feature is enabled by default and can be disabled by passing kDontChargeCacheMetadata to the cache constructor. This PR builds up on https://github.com/facebook/rocksdb/issues/4258 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5797 Test Plan: - Existing tests are updated to either disable the feature when the test has too much dependency on the old way of accounting the usage or increasing the cache capacity to account for the additional charge of metadata. - The Usage tests in cache_test.cc are augmented to test the cache usage under kFullChargeCacheMetadata. Differential Revision: D17396833 Pulled By: maysamyabandeh fbshipit-source-id: 7684ccb9f8a40ca595e4f5efcdb03623afea0c6f |
5 years ago |
Eli Pozniansky | 74fb7f0ba5 |
Cleaned up and simplified LRU cache implementation (#5579)
Summary: The 'refs' field in LRUHandle now counts only external references, since anyway we already have the IN_CACHE flag. This simplifies reference accounting logic a bit. Also cleaned up few asserts code as well as the comments - to be more readable. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5579 Differential Revision: D16286747 Pulled By: elipoz fbshipit-source-id: 7186d88f80f512ce584d0a303437494b5cbefd7f |
6 years ago |
Siying Dong | 479c566771 |
Add final annotations to some cache functions (#5156)
Summary: cache functions heavily use virtual functions. Add some "final" annotations to give compilers more information to optimize. The compiler doesn't seem to take advantage of it though. But it doesn't hurt. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5156 Differential Revision: D14814837 Pulled By: siying fbshipit-source-id: 4423f58eafc93f7dd3c5f04b02b5c993dba2ea94 |
6 years ago |
Levi Tamasi | 34f8ac0c99 |
Make adaptivity of LRU cache mutexes configurable (#5054)
Summary: The patch adds a new config option to LRUCacheOptions that enables users to choose whether to use an adaptive mutex for the LRU block cache (on platforms where adaptive mutexes are supported). The default is true if RocksDB is compiled with -DROCKSDB_DEFAULT_TO_ADAPTIVE_MUTEX, false otherwise. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5054 Differential Revision: D14542749 Pulled By: ltamasi fbshipit-source-id: 0065715ab6cf91f10444b737fed8c8aee6a8a0d2 |
6 years ago |
Levi Tamasi | f83eecff99 |
Introduce an enum for flag types in LRUHandle (#5024)
Summary: Replace the integers used for setting and querying the various flags in LRUHandle with enum values to improve readability. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5024 Differential Revision: D14263429 Pulled By: ltamasi fbshipit-source-id: b1b9ba95635265f122c2b40da73850eaac18227a |
6 years ago |
Yi Wu | 05d9d82181 |
Revert "Move MemoryAllocator option from Cache to BlockBasedTableOpti… (#4697)
Summary:
…ons (#4676)"
This reverts commit
|
6 years ago |
Yi Wu | b32d087dbb |
Move MemoryAllocator option from Cache to BlockBasedTableOptions (#4676)
Summary: Per offline discussion with siying, `MemoryAllocator` and `Cache` should be decouple. The idea is that memory allocator handles memory allocation, while cache handle cache policy. It is normal that external cache libraries pack couple the two components for better optimization. If we want to integrate with such library in the future, we can make a wrapper of the library implementing both `Cache` and `MemoryAllocator` interface. Pull Request resolved: https://github.com/facebook/rocksdb/pull/4676 Differential Revision: D13047662 Pulled By: yiwu-arbug fbshipit-source-id: cd42e246d80ab600b4de47d073f7d2db308ce6dd |
6 years ago |
Yi Wu | f560c8f5c8 |
s/CacheAllocator/MemoryAllocator/g (#4590)
Summary: Rename the interface, as it is mean to be a generic interface for memory allocation. Pull Request resolved: https://github.com/facebook/rocksdb/pull/4590 Differential Revision: D10866340 Pulled By: yiwu-arbug fbshipit-source-id: 85cb753351a40cb856c046aeaa3f3b369eef3d16 |
6 years ago |
Igor Canadi | 1cf5deb8fd |
Introduce CacheAllocator, a custom allocator for cache blocks (#4437)
Summary:
This is a conceptually simple change, but it touches many files to
pass the allocator through function calls.
We introduce CacheAllocator, which can be used by clients to configure
custom allocator for cache blocks. Our motivation is to hook this up
with folly's `JemallocNodumpAllocator`
(
|
6 years ago |
Yi Wu | 724855c7da |
Fix LRUCache missing null check on destruct
Summary: Fix LRUCache missing null check on destruct. The check is needed if LRUCache::DisownData is called. Closes https://github.com/facebook/rocksdb/pull/3920 Differential Revision: D8191631 Pulled By: yiwu-arbug fbshipit-source-id: d5014f6e49b51692c18a25fb55ece935f5a023c4 |
7 years ago |
Yi Wu | bc7e8d472e |
LRUCache midpoint insertion
Summary: Implement midpoint insertion strategy where new blocks will be insert to the middle of LRU list, then move the head on the first hit in cache. Closes https://github.com/facebook/rocksdb/pull/3877 Differential Revision: D8100895 Pulled By: yiwu-arbug fbshipit-source-id: f4bd83cb8be469e5d02072cfc8bd66011391f3da |
7 years ago |
Yi Wu | 7a99c04311 |
refactor constructor of LRUCacheShard
Summary: Update LRUCacheShard constructor so that adding new params to it don't need to add extra SetXXX() methods. Closes https://github.com/facebook/rocksdb/pull/3896 Differential Revision: D8128618 Pulled By: yiwu-arbug fbshipit-source-id: 6afa715de1493a50de413678761a765e3af9b83b |
7 years ago |
Agam Brahma | c3401846ef |
Minor typo in comment (s/pro/pri)
Summary: Closes https://github.com/facebook/rocksdb/pull/3460 Differential Revision: D6895365 Pulled By: miasantreble fbshipit-source-id: 04f633d1971b1f542ac28118b738ceb0242a0228 |
7 years ago |
Phani Shekhar Mantripragada | 4b65cfc723 |
Support for block_cache num_shards and other config via option string.
Summary: Problem: Option string accepts only cache_size as parameter for block_cache which is specified as "block_cache=1M". It doesn't accept other parameters like num_shards etc. Changes : 1) ParseBlockBasedTableOption in block_based_table_factory is edited to accept cache options in the format "block_cache=<cache_size>:<num_shard_bits>:<strict_capacity_limit>:<high_pri_pool_ratio>". Options other than cache_size are optional to maintain backward compatibility. The changes are valid for block_cache_compressed as well. For example, "block_cache=1M:6:true:0.5", "block_cache=1M:6:true", "block_cache=1M:6" and "block_cache=1M" are all valid option strings. 2) Corresponding unit tests are added. Closes https://github.com/facebook/rocksdb/pull/3108 Differential Revision: D6420997 Pulled By: sagar0 fbshipit-source-id: cdea8b785688d2802907974af27225ccc1c0cd43 |
7 years ago |
yiwu-arbug | e367774d19 |
Overload new[] to properly align LRUCacheShard
Summary: Also verify it fixes gcc7 compile failure #2672 (see also #2699) Closes https://github.com/facebook/rocksdb/pull/2732 Differential Revision: D5620348 Pulled By: yiwu-arbug fbshipit-source-id: 87db657ab734f23b1bfaaa9db9b9956d10eaef59 |
7 years ago |
Daniel Black | 16e0388205 |
LRUCacheShard cache line size alignment
Summary: combining #2568 and #2612. Closes https://github.com/facebook/rocksdb/pull/2620 Differential Revision: D5464394 Pulled By: IslamAbdelRahman fbshipit-source-id: 9f71d3058dd6adaf02ce3b2de3a81a1228009778 |
8 years ago |
Sushma Devendrappa | 0655b58582 |
enable PinnableSlice for RowCache
Summary: This patch enables using PinnableSlice for RowCache, changes include not releasing the cache handle immediately after lookup in TableCache::Get, instead pass a Cleanble function which does Cache::RleaseHandle. Closes https://github.com/facebook/rocksdb/pull/2492 Differential Revision: D5316216 Pulled By: maysamyabandeh fbshipit-source-id: d2a684bd7e4ba73772f762e58a82b5f4fbd5d362 |
8 years ago |
Siying Dong | 3c327ac2d0 |
Change RocksDB License
Summary: Closes https://github.com/facebook/rocksdb/pull/2589 Differential Revision: D5431502 Pulled By: siying fbshipit-source-id: 8ebf8c87883daa9daa54b2303d11ce01ab1f6f75 |
8 years ago |
Siying Dong | d616ebea23 |
Add GPLv2 as an alternative license.
Summary: Closes https://github.com/facebook/rocksdb/pull/2226 Differential Revision: D4967547 Pulled By: siying fbshipit-source-id: dd3b58ae1e7a106ab6bb6f37ab5c88575b125ab4 |
8 years ago |
Maysam Yabandeh | 4c9447d889 |
Add erase option to release cache
Summary: This is useful when we put the entries in the block cache for accounting purposes and do not expect it to be used after it is released. If the cache does not erase the item in such cases not only the performance of cache is negatively affected but the item's destructor not being called at the time of release might violate the assumptions about the lifetime of the object. The new change adds a force_erase option to the Release method and returns a boolean to indicate whehter the item is successfully deleted. Closes https://github.com/facebook/rocksdb/pull/2180 Differential Revision: D4916032 Pulled By: maysamyabandeh fbshipit-source-id: 94409a346069923cac9de8e57adc313b4ed46f28 |
8 years ago |
Siying Dong | d2dce5611a |
Move some files under util/ to separate dirs
Summary: Move some files under util/ to new directories env/, monitoring/ options/ and cache/ Closes https://github.com/facebook/rocksdb/pull/2090 Differential Revision: D4833681 Pulled By: siying fbshipit-source-id: 2fd8bef |
8 years ago |
Andrew Kryczka | fe395fb63d |
Allow incrementing refcount on cache handles
Summary: Previously the only way to increment a handle's refcount was to invoke Lookup(), which (1) did hash table lookup to get cache handle, (2) incremented that handle's refcount. For a future DeleteRange optimization, I added a function, Ref(), for when the caller already has a cache handle and only needs to do (2). Closes https://github.com/facebook/rocksdb/pull/1761 Differential Revision: D4397114 Pulled By: ajkr fbshipit-source-id: 9addbe5 |
8 years ago |