// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/coding.h" #include "util/testharness.h" namespace leveldb { class Coding { }; TEST(Coding, Fixed32) { std::string s; for (uint32_t v = 0; v < 100000; v++) { PutFixed32(&s, v); } const char* p = s.data(); for (uint32_t v = 0; v < 100000; v++) { uint32_t actual = DecodeFixed32(p); ASSERT_EQ(v, actual); p += sizeof(uint32_t); } } TEST(Coding, Fixed64) { std::string s; for (int power = 0; power <= 63; power++) { uint64_t v = static_cast<uint64_t>(1) << power; PutFixed64(&s, v - 1); PutFixed64(&s, v + 0); PutFixed64(&s, v + 1); } const char* p = s.data(); for (int power = 0; power <= 63; power++) { uint64_t v = static_cast<uint64_t>(1) << power; uint64_t actual; actual = DecodeFixed64(p); ASSERT_EQ(v-1, actual); p += sizeof(uint64_t); actual = DecodeFixed64(p); ASSERT_EQ(v+0, actual); p += sizeof(uint64_t); actual = DecodeFixed64(p); ASSERT_EQ(v+1, actual); p += sizeof(uint64_t); } } // Test that encoding routines generate little-endian encodings TEST(Coding, EncodingOutput) { std::string dst; PutFixed32(&dst, 0x04030201); ASSERT_EQ(4U, dst.size()); ASSERT_EQ(0x01, static_cast<int>(dst[0])); ASSERT_EQ(0x02, static_cast<int>(dst[1])); ASSERT_EQ(0x03, static_cast<int>(dst[2])); ASSERT_EQ(0x04, static_cast<int>(dst[3])); dst.clear(); PutFixed64(&dst, 0x0807060504030201ull); ASSERT_EQ(8U, dst.size()); ASSERT_EQ(0x01, static_cast<int>(dst[0])); ASSERT_EQ(0x02, static_cast<int>(dst[1])); ASSERT_EQ(0x03, static_cast<int>(dst[2])); ASSERT_EQ(0x04, static_cast<int>(dst[3])); ASSERT_EQ(0x05, static_cast<int>(dst[4])); ASSERT_EQ(0x06, static_cast<int>(dst[5])); ASSERT_EQ(0x07, static_cast<int>(dst[6])); ASSERT_EQ(0x08, static_cast<int>(dst[7])); } TEST(Coding, Varint32) { std::string s; for (uint32_t i = 0; i < (32 * 32); i++) { uint32_t v = (i / 32) << (i % 32); PutVarint32(&s, v); } const char* p = s.data(); const char* limit = p + s.size(); for (uint32_t i = 0; i < (32 * 32); i++) { uint32_t expected = (i / 32) << (i % 32); uint32_t actual; const char* start = p; p = GetVarint32Ptr(p, limit, &actual); ASSERT_TRUE(p != nullptr); ASSERT_EQ(expected, actual); ASSERT_EQ(VarintLength(actual), p - start); } ASSERT_EQ(p, s.data() + s.size()); } TEST(Coding, Varint64) { // Construct the list of values to check std::vector<uint64_t> values; // Some special values values.push_back(0); values.push_back(100); values.push_back(~static_cast<uint64_t>(0)); values.push_back(~static_cast<uint64_t>(0) - 1); for (uint32_t k = 0; k < 64; k++) { // Test values near powers of two const uint64_t power = 1ull << k; values.push_back(power); values.push_back(power-1); values.push_back(power+1); }; std::string s; for (unsigned int i = 0; i < values.size(); i++) { PutVarint64(&s, values[i]); } const char* p = s.data(); const char* limit = p + s.size(); for (unsigned int i = 0; i < values.size(); i++) { ASSERT_TRUE(p < limit); uint64_t actual; const char* start = p; p = GetVarint64Ptr(p, limit, &actual); ASSERT_TRUE(p != nullptr); ASSERT_EQ(values[i], actual); ASSERT_EQ(VarintLength(actual), p - start); } ASSERT_EQ(p, limit); } TEST(Coding, Varint32Overflow) { uint32_t result; std::string input("\x81\x82\x83\x84\x85\x11"); ASSERT_TRUE(GetVarint32Ptr(input.data(), input.data() + input.size(), &result) == nullptr); } TEST(Coding, Varint32Truncation) { uint32_t large_value = (1u << 31) + 100; std::string s; PutVarint32(&s, large_value); uint32_t result; for (unsigned int len = 0; len < s.size() - 1; len++) { ASSERT_TRUE(GetVarint32Ptr(s.data(), s.data() + len, &result) == nullptr); } ASSERT_TRUE( GetVarint32Ptr(s.data(), s.data() + s.size(), &result) != nullptr); ASSERT_EQ(large_value, result); } TEST(Coding, Varint64Overflow) { uint64_t result; std::string input("\x81\x82\x83\x84\x85\x81\x82\x83\x84\x85\x11"); ASSERT_TRUE(GetVarint64Ptr(input.data(), input.data() + input.size(), &result) == nullptr); } TEST(Coding, Varint64Truncation) { uint64_t large_value = (1ull << 63) + 100ull; std::string s; PutVarint64(&s, large_value); uint64_t result; for (unsigned int len = 0; len < s.size() - 1; len++) { ASSERT_TRUE(GetVarint64Ptr(s.data(), s.data() + len, &result) == nullptr); } ASSERT_TRUE( GetVarint64Ptr(s.data(), s.data() + s.size(), &result) != nullptr); ASSERT_EQ(large_value, result); } TEST(Coding, Strings) { std::string s; PutLengthPrefixedSlice(&s, Slice("")); PutLengthPrefixedSlice(&s, Slice("foo")); PutLengthPrefixedSlice(&s, Slice("bar")); PutLengthPrefixedSlice(&s, Slice(std::string(200, 'x'))); Slice input(s); Slice v; ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v)); ASSERT_EQ("", v.ToString()); ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v)); ASSERT_EQ("foo", v.ToString()); ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v)); ASSERT_EQ("bar", v.ToString()); ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v)); ASSERT_EQ(std::string(200, 'x'), v.ToString()); ASSERT_EQ("", input.ToString()); } TEST(Coding, BitStream) { const int kNumBytes = 10; char bytes[kNumBytes+1]; for (int i = 0; i < kNumBytes + 1; ++i) { bytes[i] = '\0'; } // Simple byte aligned test. for (int i = 0; i < kNumBytes; ++i) { BitStreamPutInt(bytes, kNumBytes, i*8, 8, 255-i); ASSERT_EQ((unsigned char)bytes[i], (unsigned char)(255-i)); } for (int i = 0; i < kNumBytes; ++i) { ASSERT_EQ(BitStreamGetInt(bytes, kNumBytes, i*8, 8), (uint32_t)(255-i)); } ASSERT_EQ(bytes[kNumBytes], '\0'); // Write and read back at strange offsets for (int i = 0; i < kNumBytes + 1; ++i) { bytes[i] = '\0'; } for (int i = 0; i < kNumBytes; ++i) { BitStreamPutInt(bytes, kNumBytes, i*5+1, 4, (i * 7) % (1 << 4)); } for (int i = 0; i < kNumBytes; ++i) { ASSERT_EQ(BitStreamGetInt(bytes, kNumBytes, i*5+1, 4), (uint32_t)((i * 7) % (1 << 4))); } ASSERT_EQ(bytes[kNumBytes], '\0'); // Create 11011011 as a bit pattern for (int i = 0; i < kNumBytes + 1; ++i) { bytes[i] = '\0'; } for (int i = 0; i < kNumBytes; ++i) { BitStreamPutInt(bytes, kNumBytes, i*8, 2, 3); BitStreamPutInt(bytes, kNumBytes, i*8+3, 2, 3); BitStreamPutInt(bytes, kNumBytes, i*8+6, 2, 3); ASSERT_EQ((unsigned char)bytes[i], (unsigned char)(3 + (3 << 3) + (3 << 6))); } ASSERT_EQ(bytes[kNumBytes], '\0'); // Test large values for (int i = 0; i < kNumBytes + 1; ++i) { bytes[i] = '\0'; } BitStreamPutInt(bytes, kNumBytes, 0, 64, (uint64_t)(-1)); for (int i = 0; i < 64/8; ++i) { ASSERT_EQ((unsigned char)bytes[i], (unsigned char)(255)); } ASSERT_EQ(bytes[64/8], '\0'); } TEST(Coding, BitStreamConvenienceFuncs) { std::string bytes(1, '\0'); // Check that independent changes to byte are preserved. BitStreamPutInt(&bytes, 0, 2, 3); BitStreamPutInt(&bytes, 3, 2, 3); BitStreamPutInt(&bytes, 6, 2, 3); ASSERT_EQ((unsigned char)bytes[0], (unsigned char)(3 + (3 << 3) + (3 << 6))); ASSERT_EQ(BitStreamGetInt(&bytes, 0, 2), 3u); ASSERT_EQ(BitStreamGetInt(&bytes, 3, 2), 3u); ASSERT_EQ(BitStreamGetInt(&bytes, 6, 2), 3u); Slice slice(bytes); ASSERT_EQ(BitStreamGetInt(&slice, 0, 2), 3u); ASSERT_EQ(BitStreamGetInt(&slice, 3, 2), 3u); ASSERT_EQ(BitStreamGetInt(&slice, 6, 2), 3u); // Test overlapping crossing over byte boundaries bytes = std::string(2, '\0'); BitStreamPutInt(&bytes, 6, 4, 15); ASSERT_EQ((unsigned char)bytes[0], 3 << 6); ASSERT_EQ((unsigned char)bytes[1], 3); ASSERT_EQ(BitStreamGetInt(&bytes, 6, 4), 15u); slice = Slice(bytes); ASSERT_EQ(BitStreamGetInt(&slice, 6, 4), 15u); // Test 64-bit number bytes = std::string(64/8, '\0'); BitStreamPutInt(&bytes, 0, 64, (uint64_t)(-1)); ASSERT_EQ(BitStreamGetInt(&bytes, 0, 64), (uint64_t)(-1)); slice = Slice(bytes); ASSERT_EQ(BitStreamGetInt(&slice, 0, 64), (uint64_t)(-1)); } } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }