// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #include "util/rate_limiter.h" #include #include #include #include "db/db_test_util.h" #include "rocksdb/env.h" #include "test_util/sync_point.h" #include "test_util/testharness.h" #include "util/random.h" namespace rocksdb { // TODO(yhchiang): the rate will not be accurate when we run test in parallel. class RateLimiterTest : public testing::Test {}; TEST_F(RateLimiterTest, OverflowRate) { GenericRateLimiter limiter(port::kMaxInt64, 1000, 10, RateLimiter::Mode::kWritesOnly, Env::Default(), false /* auto_tuned */); ASSERT_GT(limiter.GetSingleBurstBytes(), 1000000000ll); } TEST_F(RateLimiterTest, StartStop) { std::unique_ptr limiter(NewGenericRateLimiter(100, 100, 10)); } TEST_F(RateLimiterTest, Modes) { for (auto mode : {RateLimiter::Mode::kWritesOnly, RateLimiter::Mode::kReadsOnly, RateLimiter::Mode::kAllIo}) { GenericRateLimiter limiter( 2000 /* rate_bytes_per_sec */, 1000 * 1000 /* refill_period_us */, 10 /* fairness */, mode, Env::Default(), false /* auto_tuned */); limiter.Request(1000 /* bytes */, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead); if (mode == RateLimiter::Mode::kWritesOnly) { ASSERT_EQ(0, limiter.GetTotalBytesThrough(Env::IO_HIGH)); } else { ASSERT_EQ(1000, limiter.GetTotalBytesThrough(Env::IO_HIGH)); } limiter.Request(1000 /* bytes */, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kWrite); if (mode == RateLimiter::Mode::kAllIo) { ASSERT_EQ(2000, limiter.GetTotalBytesThrough(Env::IO_HIGH)); } else { ASSERT_EQ(1000, limiter.GetTotalBytesThrough(Env::IO_HIGH)); } } } #if !(defined(TRAVIS) && defined(OS_MACOSX)) TEST_F(RateLimiterTest, Rate) { auto* env = Env::Default(); struct Arg { Arg(int32_t _target_rate, int _burst) : limiter(NewGenericRateLimiter(_target_rate, 100 * 1000, 10)), request_size(_target_rate / 10), burst(_burst) {} std::unique_ptr limiter; int32_t request_size; int burst; }; auto writer = [](void* p) { auto* thread_env = Env::Default(); auto* arg = static_cast(p); // Test for 2 seconds auto until = thread_env->NowMicros() + 2 * 1000000; Random r((uint32_t)(thread_env->NowNanos() % std::numeric_limits::max())); while (thread_env->NowMicros() < until) { for (int i = 0; i < static_cast(r.Skewed(arg->burst) + 1); ++i) { arg->limiter->Request(r.Uniform(arg->request_size - 1) + 1, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kWrite); } arg->limiter->Request(r.Uniform(arg->request_size - 1) + 1, Env::IO_LOW, nullptr /* stats */, RateLimiter::OpType::kWrite); } }; for (int i = 1; i <= 16; i *= 2) { int32_t target = i * 1024 * 10; Arg arg(target, i / 4 + 1); int64_t old_total_bytes_through = 0; for (int iter = 1; iter <= 2; ++iter) { // second iteration changes the target dynamically if (iter == 2) { target *= 2; arg.limiter->SetBytesPerSecond(target); } auto start = env->NowMicros(); for (int t = 0; t < i; ++t) { env->StartThread(writer, &arg); } env->WaitForJoin(); auto elapsed = env->NowMicros() - start; double rate = (arg.limiter->GetTotalBytesThrough() - old_total_bytes_through) * 1000000.0 / elapsed; old_total_bytes_through = arg.limiter->GetTotalBytesThrough(); fprintf(stderr, "request size [1 - %" PRIi32 "], limit %" PRIi32 " KB/sec, actual rate: %lf KB/sec, elapsed %.2lf seconds\n", arg.request_size - 1, target / 1024, rate / 1024, elapsed / 1000000.0); ASSERT_GE(rate / target, 0.80); ASSERT_LE(rate / target, 1.25); } } } #endif TEST_F(RateLimiterTest, LimitChangeTest) { // starvation test when limit changes to a smaller value int64_t refill_period = 1000 * 1000; auto* env = Env::Default(); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); struct Arg { Arg(int32_t _request_size, Env::IOPriority _pri, std::shared_ptr _limiter) : request_size(_request_size), pri(_pri), limiter(_limiter) {} int32_t request_size; Env::IOPriority pri; std::shared_ptr limiter; }; auto writer = [](void* p) { auto* arg = static_cast(p); arg->limiter->Request(arg->request_size, arg->pri, nullptr /* stats */, RateLimiter::OpType::kWrite); }; for (uint32_t i = 1; i <= 16; i <<= 1) { int32_t target = i * 1024 * 10; // refill per second for (int iter = 0; iter < 2; iter++) { std::shared_ptr limiter = std::make_shared( target, refill_period, 10, RateLimiter::Mode::kWritesOnly, Env::Default(), false /* auto_tuned */); rocksdb::SyncPoint::GetInstance()->LoadDependency( {{"GenericRateLimiter::Request", "RateLimiterTest::LimitChangeTest:changeLimitStart"}, {"RateLimiterTest::LimitChangeTest:changeLimitEnd", "GenericRateLimiter::Refill"}}); Arg arg(target, Env::IO_HIGH, limiter); // The idea behind is to start a request first, then before it refills, // update limit to a different value (2X/0.5X). No starvation should // be guaranteed under any situation // TODO(lightmark): more test cases are welcome. env->StartThread(writer, &arg); int32_t new_limit = (target << 1) >> (iter << 1); TEST_SYNC_POINT("RateLimiterTest::LimitChangeTest:changeLimitStart"); arg.limiter->SetBytesPerSecond(new_limit); TEST_SYNC_POINT("RateLimiterTest::LimitChangeTest:changeLimitEnd"); env->WaitForJoin(); fprintf(stderr, "[COMPLETE] request size %" PRIi32 " KB, new limit %" PRIi32 "KB/sec, refill period %" PRIi64 " ms\n", target / 1024, new_limit / 1024, refill_period / 1000); } } } TEST_F(RateLimiterTest, AutoTuneIncreaseWhenFull) { const std::chrono::seconds kTimePerRefill(1); const int kRefillsPerTune = 100; // needs to match util/rate_limiter.cc SpecialEnv special_env(Env::Default()); special_env.no_slowdown_ = true; special_env.time_elapse_only_sleep_ = true; auto stats = CreateDBStatistics(); std::unique_ptr rate_limiter(new GenericRateLimiter( 1000 /* rate_bytes_per_sec */, std::chrono::microseconds(kTimePerRefill).count(), 10 /* fairness */, RateLimiter::Mode::kWritesOnly, &special_env, true /* auto_tuned */)); // Use callback to advance time because we need to advance (1) after Request() // has determined the bytes are not available; and (2) before Refill() // computes the next refill time (ensuring refill time in the future allows // the next request to drain the rate limiter). rocksdb::SyncPoint::GetInstance()->SetCallBack( "GenericRateLimiter::Refill", [&](void* /*arg*/) { special_env.SleepForMicroseconds(static_cast( std::chrono::microseconds(kTimePerRefill).count())); }); rocksdb::SyncPoint::GetInstance()->EnableProcessing(); // verify rate limit increases after a sequence of periods where rate limiter // is always drained int64_t orig_bytes_per_sec = rate_limiter->GetSingleBurstBytes(); rate_limiter->Request(orig_bytes_per_sec, Env::IO_HIGH, stats.get(), RateLimiter::OpType::kWrite); while (std::chrono::microseconds(special_env.NowMicros()) <= kRefillsPerTune * kTimePerRefill) { rate_limiter->Request(orig_bytes_per_sec, Env::IO_HIGH, stats.get(), RateLimiter::OpType::kWrite); } int64_t new_bytes_per_sec = rate_limiter->GetSingleBurstBytes(); ASSERT_GT(new_bytes_per_sec, orig_bytes_per_sec); rocksdb::SyncPoint::GetInstance()->DisableProcessing(); // decreases after a sequence of periods where rate limiter is not drained orig_bytes_per_sec = new_bytes_per_sec; special_env.SleepForMicroseconds(static_cast( kRefillsPerTune * std::chrono::microseconds(kTimePerRefill).count())); // make a request so tuner can be triggered rate_limiter->Request(1 /* bytes */, Env::IO_HIGH, stats.get(), RateLimiter::OpType::kWrite); new_bytes_per_sec = rate_limiter->GetSingleBurstBytes(); ASSERT_LT(new_bytes_per_sec, orig_bytes_per_sec); } } // namespace rocksdb int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }