// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #include #include "test_util/testharness.h" #include "util/coding.h" #include "util/hash.h" #include "util/ribbon_impl.h" #ifndef GFLAGS uint32_t FLAGS_thoroughness = 5; #else #include "util/gflags_compat.h" using GFLAGS_NAMESPACE::ParseCommandLineFlags; // Using 500 is a good test when you have time to be thorough. // Default is for general RocksDB regression test runs. DEFINE_uint32(thoroughness, 5, "iterations per configuration"); #endif // GFLAGS template class RibbonTypeParamTest : public ::testing::Test {}; class RibbonTest : public ::testing::Test {}; struct DefaultTypesAndSettings { using CoeffRow = ROCKSDB_NAMESPACE::Unsigned128; using ResultRow = uint8_t; using Index = uint32_t; using Hash = uint64_t; using Key = ROCKSDB_NAMESPACE::Slice; using Seed = uint32_t; static constexpr bool kIsFilter = true; static constexpr bool kFirstCoeffAlwaysOne = true; static constexpr bool kUseSmash = false; static Hash HashFn(const Key& key, Seed seed) { return ROCKSDB_NAMESPACE::Hash64(key.data(), key.size(), seed); } }; using TypesAndSettings_Coeff128 = DefaultTypesAndSettings; struct TypesAndSettings_Coeff128Smash : public DefaultTypesAndSettings { static constexpr bool kUseSmash = true; }; struct TypesAndSettings_Coeff64 : public DefaultTypesAndSettings { using CoeffRow = uint64_t; }; struct TypesAndSettings_Coeff64Smash : public DefaultTypesAndSettings { using CoeffRow = uint64_t; static constexpr bool kUseSmash = true; }; struct TypesAndSettings_Result16 : public DefaultTypesAndSettings { using ResultRow = uint16_t; }; struct TypesAndSettings_IndexSizeT : public DefaultTypesAndSettings { using Index = size_t; }; struct TypesAndSettings_Hash32 : public DefaultTypesAndSettings { using Hash = uint32_t; static Hash HashFn(const Key& key, Seed seed) { // NOTE: Using RockDB 32-bit Hash() here fails test below because of // insufficient mixing of seed (or generally insufficient mixing) return ROCKSDB_NAMESPACE::Upper32of64( ROCKSDB_NAMESPACE::Hash64(key.data(), key.size(), seed)); } }; struct TypesAndSettings_Hash32_Result16 : public TypesAndSettings_Hash32 { using ResultRow = uint16_t; }; struct TypesAndSettings_KeyString : public DefaultTypesAndSettings { using Key = std::string; }; struct TypesAndSettings_Seed8 : public DefaultTypesAndSettings { using Seed = uint8_t; }; struct TypesAndSettings_NoAlwaysOne : public DefaultTypesAndSettings { static constexpr bool kFirstCoeffAlwaysOne = false; }; struct TypesAndSettings_RehasherWrapped : public DefaultTypesAndSettings { // This doesn't directly use StandardRehasher as a whole, but simulates // its behavior with unseeded hash of key, then seeded hash-to-hash // tranform. static Hash HashFn(const Key& key, Seed seed) { Hash unseeded = DefaultTypesAndSettings::HashFn(key, /*seed*/ 0); using Rehasher = ROCKSDB_NAMESPACE::ribbon::StandardRehasherAdapter< DefaultTypesAndSettings>; return Rehasher::HashFn(unseeded, seed); } }; struct TypesAndSettings_Rehasher32Wrapped : public TypesAndSettings_Hash32 { // This doesn't directly use StandardRehasher as a whole, but simulates // its behavior with unseeded hash of key, then seeded hash-to-hash // tranform. static Hash HashFn(const Key& key, Seed seed) { Hash unseeded = TypesAndSettings_Hash32::HashFn(key, /*seed*/ 0); using Rehasher = ROCKSDB_NAMESPACE::ribbon::StandardRehasherAdapter< TypesAndSettings_Hash32>; return Rehasher::HashFn(unseeded, seed); } }; using TestTypesAndSettings = ::testing::Types; TYPED_TEST_CASE(RibbonTypeParamTest, TestTypesAndSettings); namespace { struct KeyGen { KeyGen(const std::string& prefix, uint64_t id) : id_(id), str_(prefix) { ROCKSDB_NAMESPACE::PutFixed64(&str_, id_); } // Prefix (only one required) KeyGen& operator++() { ++id_; return *this; } KeyGen& operator+=(uint64_t incr) { id_ += incr; return *this; } const std::string& operator*() { // Use multiplication to mix things up a little in the key ROCKSDB_NAMESPACE::EncodeFixed64(&str_[str_.size() - 8], id_ * uint64_t{0x1500000001}); return str_; } bool operator==(const KeyGen& other) { // Same prefix is assumed return id_ == other.id_; } bool operator!=(const KeyGen& other) { // Same prefix is assumed return id_ != other.id_; } uint64_t id_; std::string str_; }; // For testing Poisson-distributed (or similar) statistics, get value for // `stddevs_allowed` standard deviations above expected mean // `expected_count`. // (Poisson approximates Binomial only if probability of a trial being // in the count is low.) uint64_t PoissonUpperBound(double expected_count, double stddevs_allowed) { return static_cast( expected_count + stddevs_allowed * std::sqrt(expected_count) + 1.0); } uint64_t PoissonLowerBound(double expected_count, double stddevs_allowed) { return static_cast(std::max( 0.0, expected_count - stddevs_allowed * std::sqrt(expected_count))); } uint64_t FrequentPoissonUpperBound(double expected_count) { // Allow up to 5.0 standard deviations for frequently checked statistics return PoissonUpperBound(expected_count, 5.0); } uint64_t FrequentPoissonLowerBound(double expected_count) { return PoissonLowerBound(expected_count, 5.0); } uint64_t InfrequentPoissonUpperBound(double expected_count) { // Allow up to 3 standard deviations for infrequently checked statistics return PoissonUpperBound(expected_count, 3.0); } uint64_t InfrequentPoissonLowerBound(double expected_count) { return PoissonLowerBound(expected_count, 3.0); } } // namespace TYPED_TEST(RibbonTypeParamTest, CompactnessAndBacktrackAndFpRate) { IMPORT_RIBBON_TYPES_AND_SETTINGS(TypeParam); IMPORT_RIBBON_IMPL_TYPES(TypeParam); // For testing FP rate etc. constexpr Index kNumToCheck = 100000; constexpr size_t kNumSolutionColumns = 8U * sizeof(ResultRow); const double expected_fp_count = kNumToCheck * std::pow(0.5, kNumSolutionColumns); const auto log2_thoroughness = static_cast(ROCKSDB_NAMESPACE::FloorLog2(FLAGS_thoroughness)); // FIXME: This upper bound seems excessive const Seed max_seed = 12 + log2_thoroughness; // With overhead of just 2%, expect ~50% encoding success per // seed with ~5k keys on 64-bit ribbon, or ~150k keys on 128-bit ribbon. const double kFactor = 1.02; uint64_t total_reseeds = 0; uint64_t total_single_failures = 0; uint64_t total_batch_successes = 0; uint64_t total_fp_count = 0; uint64_t total_added = 0; for (uint32_t i = 0; i < FLAGS_thoroughness; ++i) { Index numToAdd = sizeof(CoeffRow) == 16 ? 130000 : TypeParam::kUseSmash ? 5000 : 2500; // Use different values between that number and 50% of that number numToAdd -= (i * 15485863) % (numToAdd / 2); total_added += numToAdd; const Index kNumSlots = static_cast(numToAdd * kFactor); std::string prefix; // Take different samples if you change thoroughness ROCKSDB_NAMESPACE::PutFixed32(&prefix, i + (FLAGS_thoroughness * 123456789U)); // Batch that must be added std::string added_str = prefix + "added"; KeyGen keys_begin(added_str, 0); KeyGen keys_end(added_str, numToAdd); // Batch that may or may not be added const Index kBatchSize = sizeof(CoeffRow) == 16 ? 300 : TypeParam::kUseSmash ? 20 : 10; std::string batch_str = prefix + "batch"; KeyGen batch_begin(batch_str, 0); KeyGen batch_end(batch_str, kBatchSize); // Batch never (successfully) added, but used for querying FP rate std::string not_str = prefix + "not"; KeyGen other_keys_begin(not_str, 0); KeyGen other_keys_end(not_str, kNumToCheck); SimpleSoln soln; Hasher hasher; bool first_single; bool second_single; bool batch_success; { Banding banding; // Traditional solve for a fixed set. ASSERT_TRUE(banding.ResetAndFindSeedToSolve(kNumSlots, keys_begin, keys_end, max_seed)); // Now to test backtracking, starting with guaranteed fail Index occupied_count = banding.GetOccupiedCount(); banding.EnsureBacktrackSize(kNumToCheck); ASSERT_FALSE( banding.AddRangeOrRollBack(other_keys_begin, other_keys_end)); ASSERT_EQ(occupied_count, banding.GetOccupiedCount()); // Check that we still have a good chance of adding a couple more // individually first_single = banding.Add("one_more"); second_single = banding.Add("two_more"); Index more_added = (first_single ? 1 : 0) + (second_single ? 1 : 0); total_single_failures += 2U - more_added; // Or as a batch batch_success = banding.AddRangeOrRollBack(batch_begin, batch_end); if (batch_success) { more_added += kBatchSize; ++total_batch_successes; } ASSERT_LE(banding.GetOccupiedCount(), occupied_count + more_added); // Now back-substitution soln.BackSubstFrom(banding); Seed seed = banding.GetSeed(); total_reseeds += seed; if (seed > log2_thoroughness + 1) { fprintf(stderr, "%s high reseeds at %u, %u: %u\n", seed > log2_thoroughness + 8 ? "FIXME Extremely" : "Somewhat", static_cast(i), static_cast(numToAdd), static_cast(seed)); } hasher.ResetSeed(seed); } // soln and hasher now independent of Banding object // Verify keys added KeyGen cur = keys_begin; while (cur != keys_end) { EXPECT_TRUE(soln.FilterQuery(*cur, hasher)); ++cur; } // We (maybe) snuck these in! if (first_single) { EXPECT_TRUE(soln.FilterQuery("one_more", hasher)); } if (second_single) { EXPECT_TRUE(soln.FilterQuery("two_more", hasher)); } if (batch_success) { cur = batch_begin; while (cur != batch_end) { EXPECT_TRUE(soln.FilterQuery(*cur, hasher)); ++cur; } } // Check FP rate (depends only on number of result bits == solution columns) Index fp_count = 0; cur = other_keys_begin; while (cur != other_keys_end) { fp_count += soln.FilterQuery(*cur, hasher) ? 1 : 0; ++cur; } // For expected FP rate, also include false positives due to collisions // in Hash value. (Negligible for 64-bit, can matter for 32-bit.) double correction = 1.0 * kNumToCheck * numToAdd / std::pow(256.0, sizeof(Hash)); EXPECT_LE(fp_count, FrequentPoissonUpperBound(expected_fp_count + correction)); EXPECT_GE(fp_count, FrequentPoissonLowerBound(expected_fp_count + correction)); total_fp_count += fp_count; } { double average_reseeds = 1.0 * total_reseeds / FLAGS_thoroughness; fprintf(stderr, "Average re-seeds: %g\n", average_reseeds); // Values above were chosen to target around 50% chance of encoding success // rate (average of 1.0 re-seeds) or slightly better. But 1.1 is also close // enough. EXPECT_LE(total_reseeds, InfrequentPoissonUpperBound(1.1 * FLAGS_thoroughness)); EXPECT_GE(total_reseeds, InfrequentPoissonLowerBound(0.9 * FLAGS_thoroughness)); } { uint64_t total_singles = 2 * FLAGS_thoroughness; double single_failure_rate = 1.0 * total_single_failures / total_singles; fprintf(stderr, "Add'l single, failure rate: %g\n", single_failure_rate); // A rough bound (one sided) based on nothing in particular double expected_single_failures = 1.0 * total_singles / (sizeof(CoeffRow) == 16 ? 128 : TypeParam::kUseSmash ? 64 : 32); EXPECT_LE(total_single_failures, InfrequentPoissonUpperBound(expected_single_failures)); } { // Counting successes here for Poisson to approximate the Binomial // distribution. // A rough bound (one sided) based on nothing in particular. double expected_batch_successes = 1.0 * FLAGS_thoroughness / 2; uint64_t lower_bound = InfrequentPoissonLowerBound(expected_batch_successes); fprintf(stderr, "Add'l batch, success rate: %g (>= %g)\n", 1.0 * total_batch_successes / FLAGS_thoroughness, 1.0 * lower_bound / FLAGS_thoroughness); EXPECT_GE(total_batch_successes, lower_bound); } { uint64_t total_checked = uint64_t{kNumToCheck} * FLAGS_thoroughness; double expected_total_fp_count = total_checked * std::pow(0.5, kNumSolutionColumns); // For expected FP rate, also include false positives due to collisions // in Hash value. (Negligible for 64-bit, can matter for 32-bit.) expected_total_fp_count += 1.0 * total_checked * total_added / FLAGS_thoroughness / std::pow(256.0, sizeof(Hash)); uint64_t upper_bound = InfrequentPoissonUpperBound(expected_total_fp_count); uint64_t lower_bound = InfrequentPoissonLowerBound(expected_total_fp_count); fprintf(stderr, "Average FP rate: %g (~= %g, <= %g, >= %g)\n", 1.0 * total_fp_count / total_checked, expected_total_fp_count / total_checked, 1.0 * upper_bound / total_checked, 1.0 * lower_bound / total_checked); // FIXME: this can fail for Result16, e.g. --thoroughness=100 // Seems due to inexpensive hashing in StandardHasher::GetCoeffRow and // GetResultRowFromHash as replacing those with different Hash64 instances // fixes it, at least mostly. EXPECT_LE(total_fp_count, upper_bound); EXPECT_GE(total_fp_count, lower_bound); } } TEST(RibbonTest, Another) { IMPORT_RIBBON_TYPES_AND_SETTINGS(DefaultTypesAndSettings); IMPORT_RIBBON_IMPL_TYPES(DefaultTypesAndSettings); // TODO } int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); #ifdef GFLAGS ParseCommandLineFlags(&argc, &argv, true); #endif // GFLAGS return RUN_ALL_TESTS(); }