// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/version_set.h" #include #include #include "db/filename.h" #include "db/log_reader.h" #include "db/log_writer.h" #include "db/memtable.h" #include "db/table_cache.h" #include "include/env.h" #include "include/table_builder.h" #include "table/merger.h" #include "table/two_level_iterator.h" #include "util/coding.h" #include "util/logging.h" namespace leveldb { // Maximum number of overlaps in grandparent (i.e., level+2) before we // stop building a single file in a level->level+1 compaction. static const int kMaxGrandParentFiles = 10; static double MaxBytesForLevel(int level) { if (level == 0) { return 4 * 1048576.0; } else { double result = 10 * 1048576.0; while (level > 1) { result *= 10; level--; } return result; } } static uint64_t MaxFileSizeForLevel(int level) { return 2 << 20; // We could vary per level to reduce number of files? } namespace { std::string IntSetToString(const std::set& s) { std::string result = "{"; for (std::set::const_iterator it = s.begin(); it != s.end(); ++it) { result += (result.size() > 1) ? "," : ""; result += NumberToString(*it); } result += "}"; return result; } } Version::~Version() { assert(refs_ == 0); for (int level = 0; level < config::kNumLevels; level++) { for (int i = 0; i < files_[level].size(); i++) { FileMetaData* f = files_[level][i]; assert(f->refs >= 0); f->refs--; if (f->refs <= 0) { delete f; } } } delete cleanup_mem_; } // An internal iterator. For a given version/level pair, yields // information about the files in the level. For a given entry, key() // is the largest key that occurs in the file, and value() is an // 8-byte value containing the file number of the file, encoding using // EncodeFixed64. class Version::LevelFileNumIterator : public Iterator { public: LevelFileNumIterator(const Version* version, const std::vector* flist) : icmp_(version->vset_->icmp_.user_comparator()), flist_(flist), index_(flist->size()) { // Marks as invalid } virtual bool Valid() const { return index_ < flist_->size(); } virtual void Seek(const Slice& target) { uint32_t left = 0; uint32_t right = flist_->size() - 1; while (left < right) { uint32_t mid = (left + right) / 2; int cmp = icmp_.Compare((*flist_)[mid]->largest.Encode(), target); if (cmp < 0) { // Key at "mid.largest" is < than "target". Therefore all // files at or before "mid" are uninteresting. left = mid + 1; } else { // Key at "mid.largest" is >= "target". Therefore all files // after "mid" are uninteresting. right = mid; } } index_ = left; } virtual void SeekToFirst() { index_ = 0; } virtual void SeekToLast() { index_ = flist_->empty() ? 0 : flist_->size() - 1; } virtual void Next() { assert(Valid()); index_++; } virtual void Prev() { assert(Valid()); if (index_ == 0) { index_ = flist_->size(); // Marks as invalid } else { index_--; } } Slice key() const { assert(Valid()); return (*flist_)[index_]->largest.Encode(); } Slice value() const { assert(Valid()); EncodeFixed64(value_buf_, (*flist_)[index_]->number); return Slice(value_buf_, sizeof(value_buf_)); } virtual Status status() const { return Status::OK(); } private: const InternalKeyComparator icmp_; const std::vector* const flist_; int index_; mutable char value_buf_[8]; // Used for encoding the file number for value() }; static Iterator* GetFileIterator(void* arg, const ReadOptions& options, const Slice& file_value) { TableCache* cache = reinterpret_cast(arg); if (file_value.size() != 8) { return NewErrorIterator( Status::Corruption("FileReader invoked with unexpected value")); } else { return cache->NewIterator(options, DecodeFixed64(file_value.data())); } } Iterator* Version::NewConcatenatingIterator(const ReadOptions& options, int level) const { return NewTwoLevelIterator( new LevelFileNumIterator(this, &files_[level]), &GetFileIterator, vset_->table_cache_, options); } void Version::AddIterators(const ReadOptions& options, std::vector* iters) { // Merge all level zero files together since they may overlap for (int i = 0; i < files_[0].size(); i++) { iters->push_back( vset_->table_cache_->NewIterator(options, files_[0][i]->number)); } // For levels > 0, we can use a concatenating iterator that sequentially // walks through the non-overlapping files in the level, opening them // lazily. for (int level = 1; level < config::kNumLevels; level++) { if (!files_[level].empty()) { iters->push_back(NewConcatenatingIterator(options, level)); } } } void Version::Ref() { ++refs_; } void Version::Unref() { assert(refs_ >= 1); --refs_; if (refs_ == 0) { vset_->MaybeDeleteOldVersions(); // TODO: try to delete obsolete files } } std::string Version::DebugString() const { std::string r; for (int level = 0; level < config::kNumLevels; level++) { // E.g., level 1: 17:123['a' .. 'd'] 20:43['e' .. 'g'] r.append("level "); AppendNumberTo(&r, level); r.push_back(':'); const std::vector& files = files_[level]; for (int i = 0; i < files.size(); i++) { r.push_back(' '); AppendNumberTo(&r, files[i]->number); r.push_back(':'); AppendNumberTo(&r, files[i]->file_size); r.append("['"); AppendEscapedStringTo(&r, files[i]->smallest.Encode()); r.append("' .. '"); AppendEscapedStringTo(&r, files[i]->largest.Encode()); r.append("']"); } r.push_back('\n'); } return r; } // A helper class so we can efficiently apply a whole sequence // of edits to a particular state without creating intermediate // Versions that contain full copies of the intermediate state. class VersionSet::Builder { private: typedef std::map FileMap; VersionSet* vset_; FileMap files_[config::kNumLevels]; public: // Initialize a builder with the files from *base and other info from *vset Builder(VersionSet* vset, Version* base) : vset_(vset) { for (int level = 0; level < config::kNumLevels; level++) { const std::vector& files = base->files_[level]; for (int i = 0; i < files.size(); i++) { FileMetaData* f = files[i]; f->refs++; files_[level].insert(std::make_pair(f->number, f)); } } } ~Builder() { for (int level = 0; level < config::kNumLevels; level++) { const FileMap& fmap = files_[level]; for (FileMap::const_iterator iter = fmap.begin(); iter != fmap.end(); ++iter) { FileMetaData* f = iter->second; f->refs--; if (f->refs <= 0) { delete f; } } } } // Apply all of the edits in *edit to the current state. void Apply(VersionEdit* edit) { // Update compaction pointers for (int i = 0; i < edit->compact_pointers_.size(); i++) { const int level = edit->compact_pointers_[i].first; vset_->compact_pointer_[level] = edit->compact_pointers_[i].second.Encode().ToString(); } // Delete files const VersionEdit::DeletedFileSet& del = edit->deleted_files_; for (VersionEdit::DeletedFileSet::const_iterator iter = del.begin(); iter != del.end(); ++iter) { const int level = iter->first; const uint64_t number = iter->second; FileMap::iterator fiter = files_[level].find(number); assert(fiter != files_[level].end()); // Sanity check for debug mode if (fiter != files_[level].end()) { FileMetaData* f = fiter->second; f->refs--; if (f->refs <= 0) { delete f; } files_[level].erase(fiter); } } // Add new files for (int i = 0; i < edit->new_files_.size(); i++) { const int level = edit->new_files_[i].first; FileMetaData* f = new FileMetaData(edit->new_files_[i].second); f->refs = 1; assert(files_[level].count(f->number) == 0); files_[level].insert(std::make_pair(f->number, f)); } // Add large value refs for (int i = 0; i < edit->large_refs_added_.size(); i++) { const VersionEdit::Large& l = edit->large_refs_added_[i]; vset_->RegisterLargeValueRef(l.large_ref, l.fnum, l.internal_key); } } // Save the current state in *v. void SaveTo(Version* v) { for (int level = 0; level < config::kNumLevels; level++) { const FileMap& fmap = files_[level]; for (FileMap::const_iterator iter = fmap.begin(); iter != fmap.end(); ++iter) { FileMetaData* f = iter->second; f->refs++; v->files_[level].push_back(f); } } } }; VersionSet::VersionSet(const std::string& dbname, const Options* options, TableCache* table_cache, const InternalKeyComparator* cmp) : env_(options->env), dbname_(dbname), options_(options), table_cache_(table_cache), icmp_(*cmp), next_file_number_(2), manifest_file_number_(0), // Filled by Recover() descriptor_file_(NULL), descriptor_log_(NULL), current_(new Version(this)), oldest_(current_) { } VersionSet::~VersionSet() { for (Version* v = oldest_; v != NULL; ) { Version* next = v->next_; assert(v->refs_ == 0); delete v; v = next; } delete descriptor_log_; delete descriptor_file_; } Status VersionSet::LogAndApply(VersionEdit* edit, MemTable* cleanup_mem) { edit->SetNextFile(next_file_number_); Version* v = new Version(this); { Builder builder(this, current_); builder.Apply(edit); builder.SaveTo(v); } std::string new_manifest_file; Status s = Finalize(v); // Initialize new descriptor log file if necessary by creating // a temporary file that contains a snapshot of the current version. if (s.ok()) { if (descriptor_log_ == NULL) { assert(descriptor_file_ == NULL); new_manifest_file = DescriptorFileName(dbname_, manifest_file_number_); edit->SetNextFile(next_file_number_); s = env_->NewWritableFile(new_manifest_file, &descriptor_file_); if (s.ok()) { descriptor_log_ = new log::Writer(descriptor_file_); s = WriteSnapshot(descriptor_log_); } } } // Write new record to log file if (s.ok()) { std::string record; edit->EncodeTo(&record); s = descriptor_log_->AddRecord(record); if (s.ok()) { s = descriptor_file_->Sync(); } } // If we just created a new descriptor file, install it by writing a // new CURRENT file that points to it. if (s.ok() && !new_manifest_file.empty()) { s = SetCurrentFile(env_, dbname_, manifest_file_number_); } // Install the new version if (s.ok()) { assert(current_->next_ == NULL); assert(current_->cleanup_mem_ == NULL); current_->cleanup_mem_ = cleanup_mem; v->next_ = NULL; current_->next_ = v; current_ = v; } else { delete v; if (!new_manifest_file.empty()) { delete descriptor_log_; delete descriptor_file_; descriptor_log_ = NULL; descriptor_file_ = NULL; env_->DeleteFile(new_manifest_file); } } //Log(env_, options_->info_log, "State\n%s", current_->DebugString().c_str()); return s; } Status VersionSet::Recover(uint64_t* log_number, SequenceNumber* last_sequence) { struct LogReporter : public log::Reader::Reporter { Status* status; virtual void Corruption(size_t bytes, const Status& s) { if (this->status->ok()) *this->status = s; } }; // Read "CURRENT" file, which contains a pointer to the current manifest file std::string current; Status s = ReadFileToString(env_, CurrentFileName(dbname_), ¤t); if (!s.ok()) { return s; } if (current.empty() || current[current.size()-1] != '\n') { return Status::Corruption("CURRENT file does not end with newline"); } current.resize(current.size() - 1); std::string dscname = dbname_ + "/" + current; SequentialFile* file; s = env_->NewSequentialFile(dscname, &file); if (!s.ok()) { return s; } bool have_log_number = false; bool have_next_file = false; bool have_last_sequence = false; uint64_t next_file = 0; Builder builder(this, current_); { LogReporter reporter; reporter.status = &s; log::Reader reader(file, &reporter, true/*checksum*/); Slice record; std::string scratch; while (reader.ReadRecord(&record, &scratch) && s.ok()) { VersionEdit edit; s = edit.DecodeFrom(record); if (s.ok()) { if (edit.has_comparator_ && edit.comparator_ != icmp_.user_comparator()->Name()) { s = Status::InvalidArgument( edit.comparator_ + "does not match existing comparator ", icmp_.user_comparator()->Name()); } } if (s.ok()) { builder.Apply(&edit); } if (edit.has_log_number_) { *log_number = edit.log_number_; have_log_number = true; } if (edit.has_next_file_number_) { next_file = edit.next_file_number_; have_next_file = true; } if (edit.has_last_sequence_) { *last_sequence = edit.last_sequence_; have_last_sequence = true; } } } delete file; file = NULL; if (s.ok()) { if (!have_next_file) { s = Status::Corruption("no meta-nextfile entry in descriptor"); } else if (!have_log_number) { s = Status::Corruption("no meta-lognumber entry in descriptor"); } else if (!have_last_sequence) { s = Status::Corruption("no last-sequence-number entry in descriptor"); } } if (s.ok()) { Version* v = new Version(this); builder.SaveTo(v); s = Finalize(v); if (!s.ok()) { delete v; } else { // Install recovered version v->next_ = NULL; current_->next_ = v; current_ = v; manifest_file_number_ = next_file; next_file_number_ = next_file + 1; } } return s; } Status VersionSet::Finalize(Version* v) { // Precomputed best level for next compaction int best_level = -1; double best_score = -1; Status s; for (int level = 0; s.ok() && level < config::kNumLevels-1; level++) { s = SortLevel(v, level); // Compute the ratio of current size to size limit. uint64_t level_bytes = 0; for (int i = 0; i < v->files_[level].size(); i++) { level_bytes += v->files_[level][i]->file_size; } double score = static_cast(level_bytes) / MaxBytesForLevel(level); if (level == 0) { // Level-0 file sizes are going to be often much smaller than // MaxBytesForLevel(0) since we do not account for compression // when producing a level-0 file; and too many level-0 files // increase merging costs. So use a file-count limit for // level-0 in addition to the byte-count limit. double count_score = v->files_[level].size() / 4.0; if (count_score > score) { score = count_score; } } if (score > best_score) { best_level = level; best_score = score; } } v->compaction_level_ = best_level; v->compaction_score_ = best_score; return s; } Status VersionSet::WriteSnapshot(log::Writer* log) { // TODO: Break up into multiple records to reduce memory usage on recovery? // Save metadata VersionEdit edit; edit.SetComparatorName(icmp_.user_comparator()->Name()); // Save compaction pointers for (int level = 0; level < config::kNumLevels; level++) { if (!compact_pointer_[level].empty()) { InternalKey key; key.DecodeFrom(compact_pointer_[level]); edit.SetCompactPointer(level, key); } } // Save files for (int level = 0; level < config::kNumLevels; level++) { const std::vector& files = current_->files_[level]; for (int i = 0; i < files.size(); i++) { const FileMetaData* f = files[i]; edit.AddFile(level, f->number, f->file_size, f->smallest, f->largest); } } // Save large value refs for (LargeValueMap::const_iterator it = large_value_refs_.begin(); it != large_value_refs_.end(); ++it) { const LargeValueRef& ref = it->first; const LargeReferencesSet& pointers = it->second; for (LargeReferencesSet::const_iterator j = pointers.begin(); j != pointers.end(); ++j) { edit.AddLargeValueRef(ref, j->first, j->second); } } std::string record; edit.EncodeTo(&record); return log->AddRecord(record); } // Helper to sort by tables_[file_number].smallest struct VersionSet::BySmallestKey { const InternalKeyComparator* internal_comparator; bool operator()(FileMetaData* f1, FileMetaData* f2) const { return internal_comparator->Compare(f1->smallest, f2->smallest) < 0; } }; Status VersionSet::SortLevel(Version* v, uint64_t level) { Status result; BySmallestKey cmp; cmp.internal_comparator = &icmp_; std::sort(v->files_[level].begin(), v->files_[level].end(), cmp); if (result.ok() && level > 0) { // There should be no overlap for (int i = 1; i < v->files_[level].size(); i++) { const InternalKey& prev_end = v->files_[level][i-1]->largest; const InternalKey& this_begin = v->files_[level][i]->smallest; if (icmp_.Compare(prev_end, this_begin) >= 0) { result = Status::Corruption( "overlapping ranges in same level", (EscapeString(prev_end.Encode()) + " vs. " + EscapeString(this_begin.Encode()))); break; } } } return result; } int VersionSet::NumLevelFiles(int level) const { assert(level >= 0); assert(level < config::kNumLevels); return current_->files_[level].size(); } uint64_t VersionSet::ApproximateOffsetOf(Version* v, const InternalKey& ikey) { uint64_t result = 0; for (int level = 0; level < config::kNumLevels; level++) { const std::vector& files = v->files_[level]; for (int i = 0; i < files.size(); i++) { if (icmp_.Compare(files[i]->largest, ikey) <= 0) { // Entire file is before "ikey", so just add the file size result += files[i]->file_size; } else if (icmp_.Compare(files[i]->smallest, ikey) > 0) { // Entire file is after "ikey", so ignore if (level > 0) { // Files other than level 0 are sorted by meta->smallest, so // no further files in this level will contain data for // "ikey". break; } } else { // "ikey" falls in the range for this table. Add the // approximate offset of "ikey" within the table. Table* tableptr; Iterator* iter = table_cache_->NewIterator( ReadOptions(), files[i]->number, &tableptr); if (tableptr != NULL) { result += tableptr->ApproximateOffsetOf(ikey.Encode()); } delete iter; } } } // Add in large value files which are references from internal keys // stored in the table files // // TODO(opt): this is O(# large values in db). If this becomes too slow, // we could store an auxiliary data structure indexed by internal key for (LargeValueMap::const_iterator it = large_value_refs_.begin(); it != large_value_refs_.end(); ++it) { const LargeValueRef& lref = it->first; for (LargeReferencesSet::const_iterator it2 = it->second.begin(); it2 != it->second.end(); ++it2) { if (icmp_.Compare(it2->second, ikey.Encode()) <= 0) { // Internal key for large value is before our key of interest result += lref.ValueSize(); } } } return result; } bool VersionSet::RegisterLargeValueRef(const LargeValueRef& large_ref, uint64_t fnum, const InternalKey& internal_key) { LargeReferencesSet* refs = &large_value_refs_[large_ref]; bool is_first = refs->empty(); refs->insert(make_pair(fnum, internal_key.Encode().ToString())); return is_first; } void VersionSet::CleanupLargeValueRefs(const std::set& live_tables, uint64_t log_file_num) { for (LargeValueMap::iterator it = large_value_refs_.begin(); it != large_value_refs_.end(); ) { LargeReferencesSet* refs = &it->second; for (LargeReferencesSet::iterator ref_it = refs->begin(); ref_it != refs->end(); ) { if (ref_it->first != log_file_num && // Not in log file live_tables.count(ref_it->first) == 0) { // Not in a live table // No longer live: erase LargeReferencesSet::iterator to_erase = ref_it; ++ref_it; refs->erase(to_erase); } else { // Still live: leave this reference alone ++ref_it; } } if (refs->empty()) { // No longer any live references to this large value: remove from // large_value_refs Log(env_, options_->info_log, "large value is dead: '%s'", LargeValueRefToFilenameString(it->first).c_str()); LargeValueMap::iterator to_erase = it; ++it; large_value_refs_.erase(to_erase); } else { ++it; } } } bool VersionSet::LargeValueIsLive(const LargeValueRef& large_ref) { LargeValueMap::iterator it = large_value_refs_.find(large_ref); if (it == large_value_refs_.end()) { return false; } else { assert(!it->second.empty()); return true; } } void VersionSet::MaybeDeleteOldVersions() { // Note: it is important to delete versions in order since a newer // version with zero refs may be holding a pointer to a memtable // that is used by somebody who has a ref on an older version. while (oldest_ != current_ && oldest_->refs_ == 0) { Version* next = oldest_->next_; delete oldest_; oldest_ = next; } } void VersionSet::AddLiveFiles(std::set* live) { for (Version* v = oldest_; v != NULL; v = v->next_) { for (int level = 0; level < config::kNumLevels; level++) { const std::vector& files = v->files_[level]; for (int i = 0; i < files.size(); i++) { live->insert(files[i]->number); } } } } int64 VersionSet::MaxNextLevelOverlappingBytes() { int64 result = 0; std::vector overlaps; for (int level = 0; level < config::kNumLevels - 1; level++) { for (int i = 0; i < current_->files_[level].size(); i++) { const FileMetaData* f = current_->files_[level][i]; GetOverlappingInputs(level+1, f->smallest, f->largest, &overlaps); int64 sum = 0; for (int j = 0; j < overlaps.size(); j++) { sum += overlaps[j]->file_size; } if (sum > result) { result = sum; } } } return result; } // Store in "*inputs" all files in "level" that overlap [begin,end] void VersionSet::GetOverlappingInputs( int level, const InternalKey& begin, const InternalKey& end, std::vector* inputs) { inputs->clear(); Slice user_begin = begin.user_key(); Slice user_end = end.user_key(); const Comparator* user_cmp = icmp_.user_comparator(); for (int i = 0; i < current_->files_[level].size(); i++) { FileMetaData* f = current_->files_[level][i]; if (user_cmp->Compare(f->largest.user_key(), user_begin) < 0 || user_cmp->Compare(f->smallest.user_key(), user_end) > 0) { // Either completely before or after range; skip it } else { inputs->push_back(f); } } } // Stores the minimal range that covers all entries in inputs in // *smallest, *largest. // REQUIRES: inputs is not empty void VersionSet::GetRange(const std::vector& inputs, InternalKey* smallest, InternalKey* largest) { assert(!inputs.empty()); smallest->Clear(); largest->Clear(); for (int i = 0; i < inputs.size(); i++) { FileMetaData* f = inputs[i]; if (i == 0) { *smallest = f->smallest; *largest = f->largest; } else { if (icmp_.Compare(f->smallest, *smallest) < 0) { *smallest = f->smallest; } if (icmp_.Compare(f->largest, *largest) > 0) { *largest = f->largest; } } } } // Stores the minimal range that covers all entries in inputs1 and inputs2 // in *smallest, *largest. // REQUIRES: inputs is not empty void VersionSet::GetRange2(const std::vector& inputs1, const std::vector& inputs2, InternalKey* smallest, InternalKey* largest) { std::vector all = inputs1; all.insert(all.end(), inputs2.begin(), inputs2.end()); GetRange(all, smallest, largest); } Iterator* VersionSet::MakeInputIterator(Compaction* c) { ReadOptions options; options.verify_checksums = options_->paranoid_checks; options.fill_cache = false; // Level-0 files have to be merged together. For other levels, // we will make a concatenating iterator per level. // TODO(opt): use concatenating iterator for level-0 if there is no overlap const int space = (c->level() == 0 ? c->inputs_[0].size() + 1 : 2); Iterator** list = new Iterator*[space]; int num = 0; for (int which = 0; which < 2; which++) { if (!c->inputs_[which].empty()) { if (c->level() + which == 0) { const std::vector& files = c->inputs_[which]; for (int i = 0; i < files.size(); i++) { list[num++] = table_cache_->NewIterator(options, files[i]->number); } } else { // Create concatenating iterator for the files from this level list[num++] = NewTwoLevelIterator( new Version::LevelFileNumIterator( c->input_version_, &c->inputs_[which]), &GetFileIterator, table_cache_, options); } } } assert(num <= space); Iterator* result = NewMergingIterator(&icmp_, list, num); delete[] list; return result; } Compaction* VersionSet::PickCompaction() { if (!NeedsCompaction()) { return NULL; } const int level = current_->compaction_level_; assert(level >= 0); assert(level+1 < config::kNumLevels); Compaction* c = new Compaction(level); c->input_version_ = current_; c->input_version_->Ref(); // Pick the first file that comes after compact_pointer_[level] for (int i = 0; i < current_->files_[level].size(); i++) { FileMetaData* f = current_->files_[level][i]; if (compact_pointer_[level].empty() || icmp_.Compare(f->largest.Encode(), compact_pointer_[level]) > 0) { c->inputs_[0].push_back(f); break; } } if (c->inputs_[0].empty()) { // Wrap-around to the beginning of the key space c->inputs_[0].push_back(current_->files_[level][0]); } // Files in level 0 may overlap each other, so pick up all overlapping ones if (level == 0) { InternalKey smallest, largest; GetRange(c->inputs_[0], &smallest, &largest); // Note that the next call will discard the file we placed in // c->inputs_[0] earlier and replace it with an overlapping set // which will include the picked file. GetOverlappingInputs(0, smallest, largest, &c->inputs_[0]); assert(!c->inputs_[0].empty()); } SetupOtherInputs(c); return c; } void VersionSet::SetupOtherInputs(Compaction* c) { const int level = c->level(); InternalKey smallest, largest; GetRange(c->inputs_[0], &smallest, &largest); GetOverlappingInputs(level+1, smallest, largest, &c->inputs_[1]); // Get entire range covered by compaction InternalKey all_start, all_limit; GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit); // See if we can grow the number of inputs in "level" without // changing the number of "level+1" files we pick up. if (!c->inputs_[1].empty()) { std::vector expanded0; GetOverlappingInputs(level, all_start, all_limit, &expanded0); if (expanded0.size() > c->inputs_[0].size()) { InternalKey new_start, new_limit; GetRange(expanded0, &new_start, &new_limit); std::vector expanded1; GetOverlappingInputs(level+1, new_start, new_limit, &expanded1); if (expanded1.size() == c->inputs_[1].size()) { Log(env_, options_->info_log, "Expanding@%d %d+%d to %d+%d\n", level, int(c->inputs_[0].size()), int(c->inputs_[1].size()), int(expanded0.size()), int(expanded1.size())); smallest = new_start; largest = new_limit; c->inputs_[0] = expanded0; c->inputs_[1] = expanded1; GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit); } } } // Compute the set of grandparent files that overlap this compaction // (parent == level+1; grandparent == level+2) if (level + 2 < config::kNumLevels) { GetOverlappingInputs(level + 2, all_start, all_limit, &c->grandparents_); } if (false) { Log(env_, options_->info_log, "Compacting %d '%s' .. '%s'", level, EscapeString(smallest.Encode()).c_str(), EscapeString(largest.Encode()).c_str()); } // Update the place where we will do the next compaction for this level. // We update this immediately instead of waiting for the VersionEdit // to be applied so that if the compaction fails, we will try a different // key range next time. compact_pointer_[level] = largest.Encode().ToString(); c->edit_.SetCompactPointer(level, largest); } Compaction* VersionSet::CompactRange( int level, const InternalKey& begin, const InternalKey& end) { std::vector inputs; GetOverlappingInputs(level, begin, end, &inputs); if (inputs.empty()) { return NULL; } Compaction* c = new Compaction(level); c->input_version_ = current_; c->input_version_->Ref(); c->inputs_[0] = inputs; SetupOtherInputs(c); return c; } Compaction::Compaction(int level) : level_(level), max_output_file_size_(MaxFileSizeForLevel(level)), input_version_(NULL), grandparent_index_(0), output_start_(-1) { for (int i = 0; i < config::kNumLevels; i++) { level_ptrs_[i] = 0; } } Compaction::~Compaction() { if (input_version_ != NULL) { input_version_->Unref(); } } bool Compaction::IsTrivialMove() const { // Avoid a move if there are lots of overlapping grandparent files. // Otherwise, the move could create a parent file that will require // a very expensive merge later on. return (num_input_files(0) == 1 && num_input_files(1) == 0 && grandparents_.size() <= kMaxGrandParentFiles); } void Compaction::AddInputDeletions(VersionEdit* edit) { for (int which = 0; which < 2; which++) { for (int i = 0; i < inputs_[which].size(); i++) { edit->DeleteFile(level_ + which, inputs_[which][i]->number); } } } bool Compaction::IsBaseLevelForKey(const Slice& user_key) { // Maybe use binary search to find right entry instead of linear search? const Comparator* user_cmp = input_version_->vset_->icmp_.user_comparator(); for (int lvl = level_ + 2; lvl < config::kNumLevels; lvl++) { const std::vector& files = input_version_->files_[lvl]; for (; level_ptrs_[lvl] < files.size(); ) { FileMetaData* f = files[level_ptrs_[lvl]]; if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) { // We've advanced far enough if (user_cmp->Compare(user_key, f->smallest.user_key()) >= 0) { // Key falls in this file's range, so definitely not base level return false; } break; } level_ptrs_[lvl]++; } } return true; } bool Compaction::ShouldStopBefore(const InternalKey& key) { // Scan to find earliest grandparent file that contains key. const InternalKeyComparator* icmp = &input_version_->vset_->icmp_; while (grandparent_index_ < grandparents_.size() && icmp->Compare(key, grandparents_[grandparent_index_]->largest) > 0) { grandparent_index_++; } // First call? if (output_start_ < 0) { output_start_ = grandparent_index_; } if (grandparent_index_ - output_start_ + 1 > kMaxGrandParentFiles) { // Too many overlaps for current output; start new output output_start_ = grandparent_index_; return true; } else { return false; } } void Compaction::ReleaseInputs() { if (input_version_ != NULL) { input_version_->Unref(); input_version_ = NULL; } } }