// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/table_cache.h" #include "db/dbformat.h" #include "db/range_tombstone_fragmenter.h" #include "db/snapshot_impl.h" #include "db/version_edit.h" #include "file/file_util.h" #include "file/filename.h" #include "file/random_access_file_reader.h" #include "monitoring/perf_context_imp.h" #include "rocksdb/advanced_options.h" #include "rocksdb/statistics.h" #include "table/block_based/block_based_table_reader.h" #include "table/get_context.h" #include "table/internal_iterator.h" #include "table/iterator_wrapper.h" #include "table/multiget_context.h" #include "table/table_builder.h" #include "table/table_reader.h" #include "test_util/sync_point.h" #include "util/cast_util.h" #include "util/coding.h" #include "util/stop_watch.h" // Generate the regular and coroutine versions of some methods by // including table_cache_sync_and_async.h twice // Macros in the header will expand differently based on whether // WITH_COROUTINES or WITHOUT_COROUTINES is defined // clang-format off #define WITHOUT_COROUTINES #include "db/table_cache_sync_and_async.h" #undef WITHOUT_COROUTINES #define WITH_COROUTINES #include "db/table_cache_sync_and_async.h" #undef WITH_COROUTINES // clang-format on namespace ROCKSDB_NAMESPACE { namespace { static Slice GetSliceForFileNumber(const uint64_t* file_number) { return Slice(reinterpret_cast(file_number), sizeof(*file_number)); } void AppendVarint64(IterKey* key, uint64_t v) { char buf[10]; auto ptr = EncodeVarint64(buf, v); key->TrimAppend(key->Size(), buf, ptr - buf); } } // anonymous namespace const int kLoadConcurency = 128; TableCache::TableCache(const ImmutableOptions& ioptions, const FileOptions* file_options, Cache* const cache, BlockCacheTracer* const block_cache_tracer, const std::shared_ptr& io_tracer, const std::string& db_session_id) : ioptions_(ioptions), file_options_(*file_options), cache_(cache), immortal_tables_(false), block_cache_tracer_(block_cache_tracer), loader_mutex_(kLoadConcurency, kGetSliceNPHash64UnseededFnPtr), io_tracer_(io_tracer), db_session_id_(db_session_id) { if (ioptions_.row_cache) { // If the same cache is shared by multiple instances, we need to // disambiguate its entries. PutVarint64(&row_cache_id_, ioptions_.row_cache->NewId()); } } TableCache::~TableCache() {} Status TableCache::GetTableReader( const ReadOptions& ro, const FileOptions& file_options, const InternalKeyComparator& internal_comparator, const FileMetaData& file_meta, bool sequential_mode, bool record_read_stats, HistogramImpl* file_read_hist, std::unique_ptr* table_reader, const std::shared_ptr& prefix_extractor, bool skip_filters, int level, bool prefetch_index_and_filter_in_cache, size_t max_file_size_for_l0_meta_pin, Temperature file_temperature) { std::string fname = TableFileName( ioptions_.cf_paths, file_meta.fd.GetNumber(), file_meta.fd.GetPathId()); std::unique_ptr file; FileOptions fopts = file_options; fopts.temperature = file_temperature; Status s = PrepareIOFromReadOptions(ro, ioptions_.clock, fopts.io_options); TEST_SYNC_POINT_CALLBACK("TableCache::GetTableReader:BeforeOpenFile", const_cast(&s)); if (s.ok()) { s = ioptions_.fs->NewRandomAccessFile(fname, fopts, &file, nullptr); } if (s.ok()) { RecordTick(ioptions_.stats, NO_FILE_OPENS); } else if (s.IsPathNotFound()) { fname = Rocks2LevelTableFileName(fname); s = PrepareIOFromReadOptions(ro, ioptions_.clock, fopts.io_options); if (s.ok()) { s = ioptions_.fs->NewRandomAccessFile(fname, file_options, &file, nullptr); } if (s.ok()) { RecordTick(ioptions_.stats, NO_FILE_OPENS); } } if (s.ok()) { if (!sequential_mode && ioptions_.advise_random_on_open) { file->Hint(FSRandomAccessFile::kRandom); } StopWatch sw(ioptions_.clock, ioptions_.stats, TABLE_OPEN_IO_MICROS); std::unique_ptr file_reader( new RandomAccessFileReader( std::move(file), fname, ioptions_.clock, io_tracer_, record_read_stats ? ioptions_.stats : nullptr, SST_READ_MICROS, file_read_hist, ioptions_.rate_limiter.get(), ioptions_.listeners, file_temperature, level == ioptions_.num_levels - 1)); UniqueId64x2 expected_unique_id; if (ioptions_.verify_sst_unique_id_in_manifest) { expected_unique_id = file_meta.unique_id; } else { expected_unique_id = kNullUniqueId64x2; // null ID == no verification } s = ioptions_.table_factory->NewTableReader( ro, TableReaderOptions(ioptions_, prefix_extractor, file_options, internal_comparator, skip_filters, immortal_tables_, false /* force_direct_prefetch */, level, block_cache_tracer_, max_file_size_for_l0_meta_pin, db_session_id_, file_meta.fd.GetNumber(), expected_unique_id, file_meta.fd.largest_seqno), std::move(file_reader), file_meta.fd.GetFileSize(), table_reader, prefetch_index_and_filter_in_cache); TEST_SYNC_POINT("TableCache::GetTableReader:0"); } return s; } Status TableCache::FindTable( const ReadOptions& ro, const FileOptions& file_options, const InternalKeyComparator& internal_comparator, const FileMetaData& file_meta, TypedHandle** handle, const std::shared_ptr& prefix_extractor, const bool no_io, bool record_read_stats, HistogramImpl* file_read_hist, bool skip_filters, int level, bool prefetch_index_and_filter_in_cache, size_t max_file_size_for_l0_meta_pin, Temperature file_temperature) { PERF_TIMER_GUARD_WITH_CLOCK(find_table_nanos, ioptions_.clock); uint64_t number = file_meta.fd.GetNumber(); Slice key = GetSliceForFileNumber(&number); *handle = cache_.Lookup(key); TEST_SYNC_POINT_CALLBACK("TableCache::FindTable:0", const_cast(&no_io)); if (*handle == nullptr) { if (no_io) { return Status::Incomplete("Table not found in table_cache, no_io is set"); } MutexLock load_lock(loader_mutex_.get(key)); // We check the cache again under loading mutex *handle = cache_.Lookup(key); if (*handle != nullptr) { return Status::OK(); } std::unique_ptr table_reader; Status s = GetTableReader(ro, file_options, internal_comparator, file_meta, false /* sequential mode */, record_read_stats, file_read_hist, &table_reader, prefix_extractor, skip_filters, level, prefetch_index_and_filter_in_cache, max_file_size_for_l0_meta_pin, file_temperature); if (!s.ok()) { assert(table_reader == nullptr); RecordTick(ioptions_.stats, NO_FILE_ERRORS); // We do not cache error results so that if the error is transient, // or somebody repairs the file, we recover automatically. } else { s = cache_.Insert(key, table_reader.get(), 1, handle); if (s.ok()) { // Release ownership of table reader. table_reader.release(); } } return s; } return Status::OK(); } InternalIterator* TableCache::NewIterator( const ReadOptions& options, const FileOptions& file_options, const InternalKeyComparator& icomparator, const FileMetaData& file_meta, RangeDelAggregator* range_del_agg, const std::shared_ptr& prefix_extractor, TableReader** table_reader_ptr, HistogramImpl* file_read_hist, TableReaderCaller caller, Arena* arena, bool skip_filters, int level, size_t max_file_size_for_l0_meta_pin, const InternalKey* smallest_compaction_key, const InternalKey* largest_compaction_key, bool allow_unprepared_value, TruncatedRangeDelIterator** range_del_iter) { PERF_TIMER_GUARD(new_table_iterator_nanos); Status s; TableReader* table_reader = nullptr; TypedHandle* handle = nullptr; if (table_reader_ptr != nullptr) { *table_reader_ptr = nullptr; } bool for_compaction = caller == TableReaderCaller::kCompaction; auto& fd = file_meta.fd; table_reader = fd.table_reader; if (table_reader == nullptr) { s = FindTable( options, file_options, icomparator, file_meta, &handle, prefix_extractor, options.read_tier == kBlockCacheTier /* no_io */, !for_compaction /* record_read_stats */, file_read_hist, skip_filters, level, true /* prefetch_index_and_filter_in_cache */, max_file_size_for_l0_meta_pin, file_meta.temperature); if (s.ok()) { table_reader = cache_.Value(handle); } } InternalIterator* result = nullptr; if (s.ok()) { if (options.table_filter && !options.table_filter(*table_reader->GetTableProperties())) { result = NewEmptyInternalIterator(arena); } else { result = table_reader->NewIterator( options, prefix_extractor.get(), arena, skip_filters, caller, file_options.compaction_readahead_size, allow_unprepared_value); } if (handle != nullptr) { cache_.RegisterReleaseAsCleanup(handle, *result); handle = nullptr; // prevent from releasing below } if (for_compaction) { table_reader->SetupForCompaction(); } if (table_reader_ptr != nullptr) { *table_reader_ptr = table_reader; } } if (s.ok() && !options.ignore_range_deletions) { if (range_del_iter != nullptr) { auto new_range_del_iter = table_reader->NewRangeTombstoneIterator(options); if (new_range_del_iter == nullptr || new_range_del_iter->empty()) { delete new_range_del_iter; *range_del_iter = nullptr; } else { *range_del_iter = new TruncatedRangeDelIterator( std::unique_ptr( new_range_del_iter), &icomparator, &file_meta.smallest, &file_meta.largest); } } if (range_del_agg != nullptr) { if (range_del_agg->AddFile(fd.GetNumber())) { std::unique_ptr new_range_del_iter( static_cast( table_reader->NewRangeTombstoneIterator(options))); if (new_range_del_iter != nullptr) { s = new_range_del_iter->status(); } if (s.ok()) { const InternalKey* smallest = &file_meta.smallest; const InternalKey* largest = &file_meta.largest; if (smallest_compaction_key != nullptr) { smallest = smallest_compaction_key; } if (largest_compaction_key != nullptr) { largest = largest_compaction_key; } range_del_agg->AddTombstones(std::move(new_range_del_iter), smallest, largest); } } } } if (handle != nullptr) { cache_.Release(handle); } if (!s.ok()) { assert(result == nullptr); result = NewErrorInternalIterator(s, arena); } return result; } Status TableCache::GetRangeTombstoneIterator( const ReadOptions& options, const InternalKeyComparator& internal_comparator, const FileMetaData& file_meta, std::unique_ptr* out_iter) { assert(out_iter); const FileDescriptor& fd = file_meta.fd; Status s; TableReader* t = fd.table_reader; TypedHandle* handle = nullptr; if (t == nullptr) { s = FindTable(options, file_options_, internal_comparator, file_meta, &handle); if (s.ok()) { t = cache_.Value(handle); } } if (s.ok()) { // Note: NewRangeTombstoneIterator could return nullptr out_iter->reset(t->NewRangeTombstoneIterator(options)); } if (handle) { if (*out_iter) { cache_.RegisterReleaseAsCleanup(handle, **out_iter); } else { cache_.Release(handle); } } return s; } void TableCache::CreateRowCacheKeyPrefix(const ReadOptions& options, const FileDescriptor& fd, const Slice& internal_key, GetContext* get_context, IterKey& row_cache_key) { uint64_t fd_number = fd.GetNumber(); // We use the user key as cache key instead of the internal key, // otherwise the whole cache would be invalidated every time the // sequence key increases. However, to support caching snapshot // reads, we append the sequence number (incremented by 1 to // distinguish from 0) only in this case. // If the snapshot is larger than the largest seqno in the file, // all data should be exposed to the snapshot, so we treat it // the same as there is no snapshot. The exception is that if // a seq-checking callback is registered, some internal keys // may still be filtered out. uint64_t seq_no = 0; // Maybe we can include the whole file ifsnapshot == fd.largest_seqno. if (options.snapshot != nullptr && (get_context->has_callback() || static_cast_with_check(options.snapshot) ->GetSequenceNumber() <= fd.largest_seqno)) { // We should consider to use options.snapshot->GetSequenceNumber() // instead of GetInternalKeySeqno(k), which will make the code // easier to understand. seq_no = 1 + GetInternalKeySeqno(internal_key); } // Compute row cache key. row_cache_key.TrimAppend(row_cache_key.Size(), row_cache_id_.data(), row_cache_id_.size()); AppendVarint64(&row_cache_key, fd_number); AppendVarint64(&row_cache_key, seq_no); } bool TableCache::GetFromRowCache(const Slice& user_key, IterKey& row_cache_key, size_t prefix_size, GetContext* get_context) { bool found = false; row_cache_key.TrimAppend(prefix_size, user_key.data(), user_key.size()); RowCacheInterface row_cache{ioptions_.row_cache.get()}; if (auto row_handle = row_cache.Lookup(row_cache_key.GetUserKey())) { // Cleanable routine to release the cache entry Cleanable value_pinner; // If it comes here value is located on the cache. // found_row_cache_entry points to the value on cache, // and value_pinner has cleanup procedure for the cached entry. // After replayGetContextLog() returns, get_context.pinnable_slice_ // will point to cache entry buffer (or a copy based on that) and // cleanup routine under value_pinner will be delegated to // get_context.pinnable_slice_. Cache entry is released when // get_context.pinnable_slice_ is reset. row_cache.RegisterReleaseAsCleanup(row_handle, value_pinner); replayGetContextLog(*row_cache.Value(row_handle), user_key, get_context, &value_pinner); RecordTick(ioptions_.stats, ROW_CACHE_HIT); found = true; } else { RecordTick(ioptions_.stats, ROW_CACHE_MISS); } return found; } Status TableCache::Get( const ReadOptions& options, const InternalKeyComparator& internal_comparator, const FileMetaData& file_meta, const Slice& k, GetContext* get_context, const std::shared_ptr& prefix_extractor, HistogramImpl* file_read_hist, bool skip_filters, int level, size_t max_file_size_for_l0_meta_pin) { auto& fd = file_meta.fd; std::string* row_cache_entry = nullptr; bool done = false; IterKey row_cache_key; std::string row_cache_entry_buffer; // Check row cache if enabled. Since row cache does not currently store // sequence numbers, we cannot use it if we need to fetch the sequence. if (ioptions_.row_cache && !get_context->NeedToReadSequence()) { auto user_key = ExtractUserKey(k); CreateRowCacheKeyPrefix(options, fd, k, get_context, row_cache_key); done = GetFromRowCache(user_key, row_cache_key, row_cache_key.Size(), get_context); if (!done) { row_cache_entry = &row_cache_entry_buffer; } } Status s; TableReader* t = fd.table_reader; TypedHandle* handle = nullptr; if (!done) { assert(s.ok()); if (t == nullptr) { s = FindTable(options, file_options_, internal_comparator, file_meta, &handle, prefix_extractor, options.read_tier == kBlockCacheTier /* no_io */, true /* record_read_stats */, file_read_hist, skip_filters, level, true /* prefetch_index_and_filter_in_cache */, max_file_size_for_l0_meta_pin, file_meta.temperature); if (s.ok()) { t = cache_.Value(handle); } } SequenceNumber* max_covering_tombstone_seq = get_context->max_covering_tombstone_seq(); if (s.ok() && max_covering_tombstone_seq != nullptr && !options.ignore_range_deletions) { std::unique_ptr range_del_iter( t->NewRangeTombstoneIterator(options)); if (range_del_iter != nullptr) { SequenceNumber seq = range_del_iter->MaxCoveringTombstoneSeqnum(ExtractUserKey(k)); if (seq > *max_covering_tombstone_seq) { *max_covering_tombstone_seq = seq; if (get_context->NeedTimestamp()) { get_context->SetTimestampFromRangeTombstone( range_del_iter->timestamp()); } } } } if (s.ok()) { get_context->SetReplayLog(row_cache_entry); // nullptr if no cache. s = t->Get(options, k, get_context, prefix_extractor.get(), skip_filters); get_context->SetReplayLog(nullptr); } else if (options.read_tier == kBlockCacheTier && s.IsIncomplete()) { // Couldn't find Table in cache but treat as kFound if no_io set get_context->MarkKeyMayExist(); s = Status::OK(); done = true; } } // Put the replay log in row cache only if something was found. if (!done && s.ok() && row_cache_entry && !row_cache_entry->empty()) { RowCacheInterface row_cache{ioptions_.row_cache.get()}; size_t charge = row_cache_entry->capacity() + sizeof(std::string); auto row_ptr = new std::string(std::move(*row_cache_entry)); // If row cache is full, it's OK to continue. row_cache.Insert(row_cache_key.GetUserKey(), row_ptr, charge) .PermitUncheckedError(); } if (handle != nullptr) { cache_.Release(handle); } return s; } void TableCache::UpdateRangeTombstoneSeqnums( const ReadOptions& options, TableReader* t, MultiGetContext::Range& table_range) { std::unique_ptr range_del_iter( t->NewRangeTombstoneIterator(options)); if (range_del_iter != nullptr) { for (auto iter = table_range.begin(); iter != table_range.end(); ++iter) { SequenceNumber* max_covering_tombstone_seq = iter->get_context->max_covering_tombstone_seq(); SequenceNumber seq = range_del_iter->MaxCoveringTombstoneSeqnum(iter->ukey_with_ts); if (seq > *max_covering_tombstone_seq) { *max_covering_tombstone_seq = seq; if (iter->get_context->NeedTimestamp()) { iter->get_context->SetTimestampFromRangeTombstone( range_del_iter->timestamp()); } } } } } Status TableCache::MultiGetFilter( const ReadOptions& options, const InternalKeyComparator& internal_comparator, const FileMetaData& file_meta, const std::shared_ptr& prefix_extractor, HistogramImpl* file_read_hist, int level, MultiGetContext::Range* mget_range, TypedHandle** table_handle) { auto& fd = file_meta.fd; IterKey row_cache_key; std::string row_cache_entry_buffer; // Check if we need to use the row cache. If yes, then we cannot do the // filtering here, since the filtering needs to happen after the row cache // lookup. KeyContext& first_key = *mget_range->begin(); if (ioptions_.row_cache && !first_key.get_context->NeedToReadSequence()) { return Status::NotSupported(); } Status s; TableReader* t = fd.table_reader; TypedHandle* handle = nullptr; MultiGetContext::Range tombstone_range(*mget_range, mget_range->begin(), mget_range->end()); if (t == nullptr) { s = FindTable( options, file_options_, internal_comparator, file_meta, &handle, prefix_extractor, options.read_tier == kBlockCacheTier /* no_io */, true /* record_read_stats */, file_read_hist, /*skip_filters=*/false, level, true /* prefetch_index_and_filter_in_cache */, /*max_file_size_for_l0_meta_pin=*/0, file_meta.temperature); if (s.ok()) { t = cache_.Value(handle); } *table_handle = handle; } if (s.ok()) { s = t->MultiGetFilter(options, prefix_extractor.get(), mget_range); } if (s.ok() && !options.ignore_range_deletions) { // Update the range tombstone sequence numbers for the keys here // as TableCache::MultiGet may or may not be called, and even if it // is, it may be called with fewer keys in the rangedue to filtering. UpdateRangeTombstoneSeqnums(options, t, tombstone_range); } if (mget_range->empty() && handle) { cache_.Release(handle); *table_handle = nullptr; } return s; } Status TableCache::GetTableProperties( const FileOptions& file_options, const ReadOptions& read_options, const InternalKeyComparator& internal_comparator, const FileMetaData& file_meta, std::shared_ptr* properties, const std::shared_ptr& prefix_extractor, bool no_io) { auto table_reader = file_meta.fd.table_reader; // table already been pre-loaded? if (table_reader) { *properties = table_reader->GetTableProperties(); return Status::OK(); } TypedHandle* table_handle = nullptr; Status s = FindTable(read_options, file_options, internal_comparator, file_meta, &table_handle, prefix_extractor, no_io); if (!s.ok()) { return s; } assert(table_handle); auto table = cache_.Value(table_handle); *properties = table->GetTableProperties(); cache_.Release(table_handle); return s; } Status TableCache::ApproximateKeyAnchors( const ReadOptions& ro, const InternalKeyComparator& internal_comparator, const FileMetaData& file_meta, std::vector& anchors) { Status s; TableReader* t = file_meta.fd.table_reader; TypedHandle* handle = nullptr; if (t == nullptr) { s = FindTable(ro, file_options_, internal_comparator, file_meta, &handle); if (s.ok()) { t = cache_.Value(handle); } } if (s.ok() && t != nullptr) { s = t->ApproximateKeyAnchors(ro, anchors); } if (handle != nullptr) { cache_.Release(handle); } return s; } size_t TableCache::GetMemoryUsageByTableReader( const FileOptions& file_options, const ReadOptions& read_options, const InternalKeyComparator& internal_comparator, const FileMetaData& file_meta, const std::shared_ptr& prefix_extractor) { auto table_reader = file_meta.fd.table_reader; // table already been pre-loaded? if (table_reader) { return table_reader->ApproximateMemoryUsage(); } TypedHandle* table_handle = nullptr; Status s = FindTable(read_options, file_options, internal_comparator, file_meta, &table_handle, prefix_extractor, true); if (!s.ok()) { return 0; } assert(table_handle); auto table = cache_.Value(table_handle); auto ret = table->ApproximateMemoryUsage(); cache_.Release(table_handle); return ret; } void TableCache::Evict(Cache* cache, uint64_t file_number) { cache->Erase(GetSliceForFileNumber(&file_number)); } uint64_t TableCache::ApproximateOffsetOf( const ReadOptions& read_options, const Slice& key, const FileMetaData& file_meta, TableReaderCaller caller, const InternalKeyComparator& internal_comparator, const std::shared_ptr& prefix_extractor) { uint64_t result = 0; TableReader* table_reader = file_meta.fd.table_reader; TypedHandle* table_handle = nullptr; if (table_reader == nullptr) { const bool for_compaction = (caller == TableReaderCaller::kCompaction); Status s = FindTable(read_options, file_options_, internal_comparator, file_meta, &table_handle, prefix_extractor, false /* no_io */, !for_compaction /* record_read_stats */); if (s.ok()) { table_reader = cache_.Value(table_handle); } } if (table_reader != nullptr) { result = table_reader->ApproximateOffsetOf(read_options, key, caller); } if (table_handle != nullptr) { cache_.Release(table_handle); } return result; } uint64_t TableCache::ApproximateSize( const ReadOptions& read_options, const Slice& start, const Slice& end, const FileMetaData& file_meta, TableReaderCaller caller, const InternalKeyComparator& internal_comparator, const std::shared_ptr& prefix_extractor) { uint64_t result = 0; TableReader* table_reader = file_meta.fd.table_reader; TypedHandle* table_handle = nullptr; if (table_reader == nullptr) { const bool for_compaction = (caller == TableReaderCaller::kCompaction); Status s = FindTable(read_options, file_options_, internal_comparator, file_meta, &table_handle, prefix_extractor, false /* no_io */, !for_compaction /* record_read_stats */); if (s.ok()) { table_reader = cache_.Value(table_handle); } } if (table_reader != nullptr) { result = table_reader->ApproximateSize(read_options, start, end, caller); } if (table_handle != nullptr) { cache_.Release(table_handle); } return result; } } // namespace ROCKSDB_NAMESPACE