// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "table/format.h" #include #include #include "rocksdb/env.h" #include "table/block.h" #include "util/coding.h" #include "util/compression.h" #include "util/crc32c.h" #include "util/perf_context_imp.h" #include "util/xxhash.h" namespace rocksdb { extern const uint64_t kLegacyBlockBasedTableMagicNumber; extern const uint64_t kBlockBasedTableMagicNumber; #ifndef ROCKSDB_LITE extern const uint64_t kLegacyPlainTableMagicNumber; extern const uint64_t kPlainTableMagicNumber; #else // ROCKSDB_LITE doesn't have plain table const uint64_t kLegacyPlainTableMagicNumber = 0; const uint64_t kPlainTableMagicNumber = 0; #endif const uint32_t DefaultStackBufferSize = 5000; void BlockHandle::EncodeTo(std::string* dst) const { // Sanity check that all fields have been set assert(offset_ != ~static_cast(0)); assert(size_ != ~static_cast(0)); PutVarint64(dst, offset_); PutVarint64(dst, size_); } Status BlockHandle::DecodeFrom(Slice* input) { if (GetVarint64(input, &offset_) && GetVarint64(input, &size_)) { return Status::OK(); } else { return Status::Corruption("bad block handle"); } } // Return a string that contains the copy of handle. std::string BlockHandle::ToString(bool hex) const { std::string handle_str; EncodeTo(&handle_str); if (hex) { std::string result; char buf[10]; for (size_t i = 0; i < handle_str.size(); i++) { snprintf(buf, sizeof(buf), "%02X", static_cast(handle_str[i])); result += buf; } return result; } else { return handle_str; } } const BlockHandle BlockHandle::kNullBlockHandle(0, 0); // legacy footer format: // metaindex handle (varint64 offset, varint64 size) // index handle (varint64 offset, varint64 size) // to make the total size 2 * BlockHandle::kMaxEncodedLength // table_magic_number (8 bytes) // new footer format: // checksum (char, 1 byte) // metaindex handle (varint64 offset, varint64 size) // index handle (varint64 offset, varint64 size) // to make the total size 2 * BlockHandle::kMaxEncodedLength + 1 // footer version (4 bytes) // table_magic_number (8 bytes) void Footer::EncodeTo(std::string* dst) const { if (version() == kLegacyFooter) { // has to be default checksum with legacy footer assert(checksum_ == kCRC32c); const size_t original_size = dst->size(); metaindex_handle_.EncodeTo(dst); index_handle_.EncodeTo(dst); dst->resize(original_size + 2 * BlockHandle::kMaxEncodedLength); // Padding PutFixed32(dst, static_cast(table_magic_number() & 0xffffffffu)); PutFixed32(dst, static_cast(table_magic_number() >> 32)); assert(dst->size() == original_size + kVersion0EncodedLength); } else { const size_t original_size = dst->size(); dst->push_back(static_cast(checksum_)); metaindex_handle_.EncodeTo(dst); index_handle_.EncodeTo(dst); dst->resize(original_size + kVersion1EncodedLength - 12); // Padding PutFixed32(dst, kFooterVersion); PutFixed32(dst, static_cast(table_magic_number() & 0xffffffffu)); PutFixed32(dst, static_cast(table_magic_number() >> 32)); assert(dst->size() == original_size + kVersion1EncodedLength); } } namespace { inline bool IsLegacyFooterFormat(uint64_t magic_number) { return magic_number == kLegacyBlockBasedTableMagicNumber || magic_number == kLegacyPlainTableMagicNumber; } inline uint64_t UpconvertLegacyFooterFormat(uint64_t magic_number) { if (magic_number == kLegacyBlockBasedTableMagicNumber) { return kBlockBasedTableMagicNumber; } if (magic_number == kLegacyPlainTableMagicNumber) { return kPlainTableMagicNumber; } assert(false); return 0; } } // namespace Footer::Footer(uint64_t _table_magic_number) : version_(IsLegacyFooterFormat(_table_magic_number) ? kLegacyFooter : kFooterVersion), checksum_(kCRC32c), table_magic_number_(_table_magic_number) {} Status Footer::DecodeFrom(Slice* input) { assert(input != nullptr); assert(input->size() >= kMinEncodedLength); const char *magic_ptr = input->data() + input->size() - kMagicNumberLengthByte; const uint32_t magic_lo = DecodeFixed32(magic_ptr); const uint32_t magic_hi = DecodeFixed32(magic_ptr + 4); uint64_t magic = ((static_cast(magic_hi) << 32) | (static_cast(magic_lo))); // We check for legacy formats here and silently upconvert them bool legacy = IsLegacyFooterFormat(magic); if (legacy) { magic = UpconvertLegacyFooterFormat(magic); } if (HasInitializedTableMagicNumber()) { if (magic != table_magic_number()) { char buffer[80]; snprintf(buffer, sizeof(buffer) - 1, "not an sstable (bad magic number --- %lx)", (long)magic); return Status::Corruption(buffer); } } else { set_table_magic_number(magic); } if (legacy) { // The size is already asserted to be at least kMinEncodedLength // at the beginning of the function input->remove_prefix(input->size() - kVersion0EncodedLength); version_ = kLegacyFooter; checksum_ = kCRC32c; } else { version_ = DecodeFixed32(magic_ptr - 4); if (version_ != kFooterVersion) { return Status::Corruption("bad footer version"); } // Footer version 1 will always occupy exactly this many bytes. // It consists of the checksum type, two block handles, padding, // a version number, and a magic number if (input->size() < kVersion1EncodedLength) { return Status::Corruption("input is too short to be an sstable"); } else { input->remove_prefix(input->size() - kVersion1EncodedLength); } uint32_t chksum; if (!GetVarint32(input, &chksum)) { return Status::Corruption("bad checksum type"); } checksum_ = static_cast(chksum); } Status result = metaindex_handle_.DecodeFrom(input); if (result.ok()) { result = index_handle_.DecodeFrom(input); } if (result.ok()) { // We skip over any leftover data (just padding for now) in "input" const char* end = magic_ptr + kMagicNumberLengthByte; *input = Slice(end, input->data() + input->size() - end); } return result; } std::string Footer::ToString() const { std::string result, handle_; result.reserve(1024); bool legacy = IsLegacyFooterFormat(table_magic_number_); if (legacy) { result.append("metaindex handle: " + metaindex_handle_.ToString() + "\n "); result.append("index handle: " + index_handle_.ToString() + "\n "); result.append("table_magic_number: " + std::to_string(table_magic_number_) + "\n "); } else { result.append("checksum: " + std::to_string(checksum_) + "\n "); result.append("metaindex handle: " + metaindex_handle_.ToString() + "\n "); result.append("index handle: " + index_handle_.ToString() + "\n "); result.append("footer version: " + std::to_string(version_) + "\n "); result.append("table_magic_number: " + std::to_string(table_magic_number_) + "\n "); } return result; } Status ReadFooterFromFile(RandomAccessFile* file, uint64_t file_size, Footer* footer) { if (file_size < Footer::kMinEncodedLength) { return Status::Corruption("file is too short to be an sstable"); } char footer_space[Footer::kMaxEncodedLength]; Slice footer_input; size_t read_offset = (file_size > Footer::kMaxEncodedLength) ? static_cast(file_size - Footer::kMaxEncodedLength) : 0; Status s = file->Read(read_offset, Footer::kMaxEncodedLength, &footer_input, footer_space); if (!s.ok()) return s; // Check that we actually read the whole footer from the file. It may be // that size isn't correct. if (footer_input.size() < Footer::kMinEncodedLength) { return Status::Corruption("file is too short to be an sstable"); } return footer->DecodeFrom(&footer_input); } // Without anonymous namespace here, we fail the warning -Wmissing-prototypes namespace { // Read a block and check its CRC // contents is the result of reading. // According to the implementation of file->Read, contents may not point to buf Status ReadBlock(RandomAccessFile* file, const Footer& footer, const ReadOptions& options, const BlockHandle& handle, Slice* contents, /* result of reading */ char* buf) { size_t n = static_cast(handle.size()); Status s; { PERF_TIMER_GUARD(block_read_time); s = file->Read(handle.offset(), n + kBlockTrailerSize, contents, buf); } PERF_COUNTER_ADD(block_read_count, 1); PERF_COUNTER_ADD(block_read_byte, n + kBlockTrailerSize); if (!s.ok()) { return s; } if (contents->size() != n + kBlockTrailerSize) { return Status::Corruption("truncated block read"); } // Check the crc of the type and the block contents const char* data = contents->data(); // Pointer to where Read put the data if (options.verify_checksums) { PERF_TIMER_GUARD(block_checksum_time); uint32_t value = DecodeFixed32(data + n + 1); uint32_t actual = 0; switch (footer.checksum()) { case kCRC32c: value = crc32c::Unmask(value); actual = crc32c::Value(data, n + 1); break; case kxxHash: actual = XXH32(data, static_cast(n) + 1, 0); break; default: s = Status::Corruption("unknown checksum type"); } if (s.ok() && actual != value) { s = Status::Corruption("block checksum mismatch"); } if (!s.ok()) { return s; } } return s; } } // namespace Status ReadBlockContents(RandomAccessFile* file, const Footer& footer, const ReadOptions& options, const BlockHandle& handle, BlockContents* contents, Env* env, bool decompression_requested) { Status status; Slice slice; size_t n = static_cast(handle.size()); std::unique_ptr heap_buf; char stack_buf[DefaultStackBufferSize]; char* used_buf = nullptr; rocksdb::CompressionType compression_type; if (decompression_requested && n + kBlockTrailerSize < DefaultStackBufferSize) { // If we've got a small enough hunk of data, read it in to the // trivially allocated stack buffer instead of needing a full malloc() used_buf = &stack_buf[0]; } else { heap_buf = std::unique_ptr(new char[n + kBlockTrailerSize]); used_buf = heap_buf.get(); } status = ReadBlock(file, footer, options, handle, &slice, used_buf); if (!status.ok()) { return status; } PERF_TIMER_GUARD(block_decompress_time); compression_type = static_cast(slice.data()[n]); if (decompression_requested && compression_type != kNoCompression) { return UncompressBlockContents(slice.data(), n, contents); } if (slice.data() != used_buf) { *contents = BlockContents(Slice(slice.data(), n), false, compression_type); return status; } if (used_buf == &stack_buf[0]) { heap_buf = std::unique_ptr(new char[n]); memcpy(heap_buf.get(), stack_buf, n); } *contents = BlockContents(std::move(heap_buf), n, true, compression_type); return status; } // // The 'data' points to the raw block contents that was read in from file. // This method allocates a new heap buffer and the raw block // contents are uncompresed into this buffer. This // buffer is returned via 'result' and it is upto the caller to // free this buffer. Status UncompressBlockContents(const char* data, size_t n, BlockContents* contents) { std::unique_ptr ubuf; int decompress_size = 0; assert(data[n] != kNoCompression); switch (data[n]) { case kSnappyCompression: { size_t ulength = 0; static char snappy_corrupt_msg[] = "Snappy not supported or corrupted Snappy compressed block contents"; if (!Snappy_GetUncompressedLength(data, n, &ulength)) { return Status::Corruption(snappy_corrupt_msg); } ubuf = std::unique_ptr(new char[ulength]); if (!Snappy_Uncompress(data, n, ubuf.get())) { return Status::Corruption(snappy_corrupt_msg); } *contents = BlockContents(std::move(ubuf), ulength, true, kNoCompression); break; } case kZlibCompression: ubuf = std::unique_ptr(Zlib_Uncompress(data, n, &decompress_size)); if (!ubuf) { static char zlib_corrupt_msg[] = "Zlib not supported or corrupted Zlib compressed block contents"; return Status::Corruption(zlib_corrupt_msg); } *contents = BlockContents(std::move(ubuf), decompress_size, true, kNoCompression); break; case kBZip2Compression: ubuf = std::unique_ptr(BZip2_Uncompress(data, n, &decompress_size)); if (!ubuf) { static char bzip2_corrupt_msg[] = "Bzip2 not supported or corrupted Bzip2 compressed block contents"; return Status::Corruption(bzip2_corrupt_msg); } *contents = BlockContents(std::move(ubuf), decompress_size, true, kNoCompression); break; case kLZ4Compression: ubuf = std::unique_ptr(LZ4_Uncompress(data, n, &decompress_size)); if (!ubuf) { static char lz4_corrupt_msg[] = "LZ4 not supported or corrupted LZ4 compressed block contents"; return Status::Corruption(lz4_corrupt_msg); } *contents = BlockContents(std::move(ubuf), decompress_size, true, kNoCompression); break; case kLZ4HCCompression: ubuf = std::unique_ptr(LZ4_Uncompress(data, n, &decompress_size)); if (!ubuf) { static char lz4hc_corrupt_msg[] = "LZ4HC not supported or corrupted LZ4HC compressed block contents"; return Status::Corruption(lz4hc_corrupt_msg); } *contents = BlockContents(std::move(ubuf), decompress_size, true, kNoCompression); break; default: return Status::Corruption("bad block type"); } return Status::OK(); } } // namespace rocksdb