// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // The representation of a DBImpl consists of a set of Versions. The // newest version is called "current". Older versions may be kept // around to provide a consistent view to live iterators. // // Each Version keeps track of a set of Table files per level. The // entire set of versions is maintained in a VersionSet. // // Version,VersionSet are thread-compatible, but require external // synchronization on all accesses. #ifndef STORAGE_LEVELDB_DB_VERSION_SET_H_ #define STORAGE_LEVELDB_DB_VERSION_SET_H_ #include #include #include #include #include "db/dbformat.h" #include "db/version_edit.h" #include "port/port.h" #include "db/table_cache.h" namespace leveldb { namespace log { class Writer; } class Compaction; class Iterator; class MemTable; class TableBuilder; class TableCache; class Version; class VersionSet; class WritableFile; // Return the smallest index i such that files[i]->largest >= key. // Return files.size() if there is no such file. // REQUIRES: "files" contains a sorted list of non-overlapping files. extern int FindFile(const InternalKeyComparator& icmp, const std::vector& files, const Slice& key); // Returns true iff some file in "files" overlaps the user key range // [*smallest,*largest]. // smallest==NULL represents a key smaller than all keys in the DB. // largest==NULL represents a key largest than all keys in the DB. // REQUIRES: If disjoint_sorted_files, files[] contains disjoint ranges // in sorted order. extern bool SomeFileOverlapsRange( const InternalKeyComparator& icmp, bool disjoint_sorted_files, const std::vector& files, const Slice* smallest_user_key, const Slice* largest_user_key); class Version { public: // Append to *iters a sequence of iterators that will // yield the contents of this Version when merged together. // REQUIRES: This version has been saved (see VersionSet::SaveTo) void AddIterators(const ReadOptions&, std::vector* iters); // Lookup the value for key. If found, store it in *val and // return OK. Else return a non-OK status. Fills *stats. // REQUIRES: lock is not held struct GetStats { FileMetaData* seek_file; int seek_file_level; }; Status Get(const ReadOptions&, const LookupKey& key, std::string* val, GetStats* stats); // Adds "stats" into the current state. Returns true if a new // compaction may need to be triggered, false otherwise. // REQUIRES: lock is held bool UpdateStats(const GetStats& stats); // Reference count management (so Versions do not disappear out from // under live iterators) void Ref(); void Unref(); void GetOverlappingInputs( int level, const InternalKey* begin, // NULL means before all keys const InternalKey* end, // NULL means after all keys std::vector* inputs, int hint_index = -1, // index of overlap file int* file_index = NULL); // return index of overlap file void GetOverlappingInputsBinarySearch( int level, const Slice& begin, // NULL means before all keys const Slice& end, // NULL means after all keys std::vector* inputs, int hint_index, // index of overlap file int* file_index); // return index of overlap file void ExtendOverlappingInputs( int level, const Slice& begin, // NULL means before all keys const Slice& end, // NULL means after all keys std::vector* inputs, int index); // start extending from this index // Returns true iff some file in the specified level overlaps // some part of [*smallest_user_key,*largest_user_key]. // smallest_user_key==NULL represents a key smaller than all keys in the DB. // largest_user_key==NULL represents a key largest than all keys in the DB. bool OverlapInLevel(int level, const Slice* smallest_user_key, const Slice* largest_user_key); // Return the level at which we should place a new memtable compaction // result that covers the range [smallest_user_key,largest_user_key]. int PickLevelForMemTableOutput(const Slice& smallest_user_key, const Slice& largest_user_key); int NumFiles(int level) const { return files_[level].size(); } // Return a human readable string that describes this version's contents. std::string DebugString(bool hex = false) const; // Returns the version nuber of this version uint64_t GetVersionNumber() { return version_number_; } private: friend class Compaction; friend class VersionSet; class LevelFileNumIterator; Iterator* NewConcatenatingIterator(const ReadOptions&, int level) const; VersionSet* vset_; // VersionSet to which this Version belongs Version* next_; // Next version in linked list Version* prev_; // Previous version in linked list int refs_; // Number of live refs to this version // List of files per level, files in each level are arranged // in increasing order of keys std::vector* files_; // A list for the same set of files that are stored in files_, // but files in each level are now sorted based on file // size. The file with the largest size is at the front. // This vector stores the index of the file from files_. std::vector< std::vector > files_by_size_; // An index into files_by_size_ that specifies the first // file that is not yet compacted std::vector next_file_to_compact_by_size_; // Only the first few entries of files_by_size_ are sorted. // There is no need to sort all the files because it is likely // that on a running system, we need to look at only the first // few largest files because a new version is created every few // seconds/minutes (because of concurrent compactions). static const int number_of_files_to_sort_ = 50; // Next file to compact based on seek stats. FileMetaData* file_to_compact_; int file_to_compact_level_; // Level that should be compacted next and its compaction score. // Score < 1 means compaction is not strictly needed. These fields // are initialized by Finalize(). // The most critical level to be compacted is listed first // These are used to pick the best compaction level std::vector compaction_score_; std::vector compaction_level_; double max_compaction_score_; // max score in l1 to ln-1 // The offset in the manifest file where this version is stored. uint64_t offset_manifest_file_; // A version number that uniquely represents this version. This is // used for debugging and logging purposes only. uint64_t version_number_; explicit Version(VersionSet* vset, uint64_t version_number = 0); ~Version(); // re-initializes the index that is used to offset into files_by_size_ // to find the next compaction candidate file. void ResetNextCompactionIndex(int level) { next_file_to_compact_by_size_[level] = 0; } // No copying allowed Version(const Version&); void operator=(const Version&); }; class VersionSet { public: VersionSet(const std::string& dbname, const Options* options, TableCache* table_cache, const InternalKeyComparator*); ~VersionSet(); // Apply *edit to the current version to form a new descriptor that // is both saved to persistent state and installed as the new // current version. Will release *mu while actually writing to the file. // REQUIRES: *mu is held on entry. // REQUIRES: no other thread concurrently calls LogAndApply() Status LogAndApply(VersionEdit* edit, port::Mutex* mu, bool new_descriptor_log = false); // Recover the last saved descriptor from persistent storage. Status Recover(); // Try to reduce the number of levels. This call is valid when // only one level from the new max level to the old // max level containing files. // For example, a db currently has 7 levels [0-6], and a call to // to reduce to 5 [0-4] can only be executed when only one level // among [4-6] contains files. Status ReduceNumberOfLevels(int new_levels, port::Mutex* mu); // Return the current version. Version* current() const { return current_; } // Return the current manifest file number uint64_t ManifestFileNumber() const { return manifest_file_number_; } // Allocate and return a new file number uint64_t NewFileNumber() { return next_file_number_++; } // Arrange to reuse "file_number" unless a newer file number has // already been allocated. // REQUIRES: "file_number" was returned by a call to NewFileNumber(). void ReuseFileNumber(uint64_t file_number) { if (next_file_number_ == file_number + 1) { next_file_number_ = file_number; } } // Return the number of Table files at the specified level. int NumLevelFiles(int level) const; // Return the combined file size of all files at the specified level. int64_t NumLevelBytes(int level) const; // Return the last sequence number. uint64_t LastSequence() const { return last_sequence_; } // Set the last sequence number to s. void SetLastSequence(uint64_t s) { assert(s >= last_sequence_); last_sequence_ = s; } // Mark the specified file number as used. void MarkFileNumberUsed(uint64_t number); // Return the current log file number. uint64_t LogNumber() const { return log_number_; } // Return the log file number for the log file that is currently // being compacted, or zero if there is no such log file. uint64_t PrevLogNumber() const { return prev_log_number_; } int NumberLevels() const { return num_levels_; } // Pick level and inputs for a new compaction. // Returns NULL if there is no compaction to be done. // Otherwise returns a pointer to a heap-allocated object that // describes the compaction. Caller should delete the result. Compaction* PickCompaction(); // Return a compaction object for compacting the range [begin,end] in // the specified level. Returns NULL if there is nothing in that // level that overlaps the specified range. Caller should delete // the result. Compaction* CompactRange( int level, const InternalKey* begin, const InternalKey* end); // Return the maximum overlapping data (in bytes) at next level for any // file at a level >= 1. int64_t MaxNextLevelOverlappingBytes(); // Create an iterator that reads over the compaction inputs for "*c". // The caller should delete the iterator when no longer needed. Iterator* MakeInputIterator(Compaction* c); // Returns true iff some level needs a compaction because it has // exceeded its target size. bool NeedsSizeCompaction() const { for (int i = 0; i < NumberLevels()-1; i++) { if (current_->compaction_score_[i] >= 1) { return true; } } return false; } // Returns true iff some level needs a compaction. bool NeedsCompaction() const { return ((current_->file_to_compact_ != NULL) || NeedsSizeCompaction()); } // Returns the maxmimum compaction score for levels 1 to max double MaxCompactionScore() const { return current_->max_compaction_score_; } // Add all files listed in any live version to *live. // May also mutate some internal state. void AddLiveFiles(std::set* live); // Add all files listed in the current version to *live. void AddLiveFilesCurrentVersion(std::set* live); // Return the approximate offset in the database of the data for // "key" as of version "v". uint64_t ApproximateOffsetOf(Version* v, const InternalKey& key); // Return a human-readable short (single-line) summary of the number // of files per level. Uses *scratch as backing store. struct LevelSummaryStorage { char buffer[100]; }; const char* LevelSummary(LevelSummaryStorage* scratch) const; // printf contents (for debugging) Status DumpManifest(Options& options, std::string& manifestFileName, bool verbose, bool hex = false); // Return a human-readable short (single-line) summary of the data size // of files per level. Uses *scratch as backing store. const char* LevelDataSizeSummary(LevelSummaryStorage* scratch) const; // Return the size of the current manifest file const uint64_t ManifestFileSize() { return current_->offset_manifest_file_; } // For the specfied level, pick a compaction. // Returns NULL if there is no compaction to be done. // If level is 0 and there is already a compaction on that level, this // function will return NULL. Compaction* PickCompactionBySize(int level, double score); // Free up the files that were participated in a compaction void ReleaseCompactionFiles(Compaction* c, Status status); // verify that the files that we started with for a compaction // still exist in the current version and in the same original level. // This ensures that a concurrent compaction did not erroneously // pick the same files to compact. bool VerifyCompactionFileConsistency(Compaction* c); // used to sort files by size typedef struct fsize { int index; FileMetaData* file; } Fsize; // Sort all files for this version based on their file size and // record results in files_by_size_. The largest files are listed first. void UpdateFilesBySize(Version *v); private: class Builder; struct ManifestWriter; friend class Compaction; friend class Version; void Init(int num_levels); void Finalize(Version* v); void GetRange(const std::vector& inputs, InternalKey* smallest, InternalKey* largest); void GetRange2(const std::vector& inputs1, const std::vector& inputs2, InternalKey* smallest, InternalKey* largest); void SetupOtherInputs(Compaction* c); // Save current contents to *log Status WriteSnapshot(log::Writer* log); void AppendVersion(Version* v); bool ManifestContains(const std::string& record) const; double MaxBytesForLevel(int level); uint64_t MaxFileSizeForLevel(int level); int64_t ExpandedCompactionByteSizeLimit(int level); int64_t MaxGrandParentOverlapBytes(int level); Env* const env_; const std::string dbname_; const Options* const options_; TableCache* const table_cache_; const InternalKeyComparator icmp_; uint64_t next_file_number_; uint64_t manifest_file_number_; uint64_t last_sequence_; uint64_t log_number_; uint64_t prev_log_number_; // 0 or backing store for memtable being compacted int num_levels_; // Opened lazily WritableFile* descriptor_file_; log::Writer* descriptor_log_; Version dummy_versions_; // Head of circular doubly-linked list of versions. Version* current_; // == dummy_versions_.prev_ // Per-level key at which the next compaction at that level should start. // Either an empty string, or a valid InternalKey. std::string* compact_pointer_; // Per-level target file size. uint64_t* max_file_size_; // Per-level max bytes uint64_t* level_max_bytes_; // record all the ongoing compactions for all levels std::vector > compactions_in_progress_; // generates a increasing version number for every new version uint64_t current_version_number_; // Queue of writers to the manifest file std::deque manifest_writers_; // Store the manifest file size when it is checked. // Save us the cost of checking file size twice in LogAndApply uint64_t last_observed_manifest_size_; // No copying allowed VersionSet(const VersionSet&); void operator=(const VersionSet&); // Return the total amount of data that is undergoing // compactions at this level uint64_t SizeBeingCompacted(int level); // Returns true if any one of the parent files are being compacted bool ParentRangeInCompaction(const InternalKey* smallest, const InternalKey* largest, int level, int* index); // Returns true if any one of the specified files are being compacted bool FilesInCompaction(std::vector& files); void LogAndApplyHelper(Builder*b, Version* v, VersionEdit* edit, port::Mutex* mu); }; // A Compaction encapsulates information about a compaction. class Compaction { public: ~Compaction(); // Return the level that is being compacted. Inputs from "level" // and "level+1" will be merged to produce a set of "level+1" files. int level() const { return level_; } // Return the object that holds the edits to the descriptor done // by this compaction. VersionEdit* edit() { return edit_; } // "which" must be either 0 or 1 int num_input_files(int which) const { return inputs_[which].size(); } // Return the ith input file at "level()+which" ("which" must be 0 or 1). FileMetaData* input(int which, int i) const { return inputs_[which][i]; } // Maximum size of files to build during this compaction. uint64_t MaxOutputFileSize() const { return max_output_file_size_; } // Is this a trivial compaction that can be implemented by just // moving a single input file to the next level (no merging or splitting) bool IsTrivialMove() const; // Add all inputs to this compaction as delete operations to *edit. void AddInputDeletions(VersionEdit* edit); // Returns true if the information we have available guarantees that // the compaction is producing data in "level+1" for which no data exists // in levels greater than "level+1". bool IsBaseLevelForKey(const Slice& user_key); // Returns true iff we should stop building the current output // before processing "internal_key". bool ShouldStopBefore(const Slice& internal_key); // Release the input version for the compaction, once the compaction // is successful. void ReleaseInputs(); void Summary(char* output, int len); // Return the score that was used to pick this compaction run. double score() const { return score_; } private: friend class Version; friend class VersionSet; explicit Compaction(int level, uint64_t target_file_size, uint64_t max_grandparent_overlap_bytes, int number_levels, bool seek_compaction = false); int level_; uint64_t max_output_file_size_; int64_t maxGrandParentOverlapBytes_; Version* input_version_; VersionEdit* edit_; int number_levels_; bool seek_compaction_; // Each compaction reads inputs from "level_" and "level_+1" std::vector inputs_[2]; // The two sets of inputs // State used to check for number of of overlapping grandparent files // (parent == level_ + 1, grandparent == level_ + 2) std::vector grandparents_; size_t grandparent_index_; // Index in grandparent_starts_ bool seen_key_; // Some output key has been seen int64_t overlapped_bytes_; // Bytes of overlap between current output // and grandparent files int base_index_; // index of the file in files_[level_] int parent_index_; // index of some file with same range in files_[level_+1] double score_; // score that was used to pick this compaction. // State for implementing IsBaseLevelForKey // level_ptrs_ holds indices into input_version_->levels_: our state // is that we are positioned at one of the file ranges for each // higher level than the ones involved in this compaction (i.e. for // all L >= level_ + 2). size_t* level_ptrs_; // mark (or clear) all files that are being compacted void MarkFilesBeingCompacted(bool); // In case of compaction error, reset the nextIndex that is used // to pick up the next file to be compacted from files_by_size_ void ResetNextCompactionIndex(); }; } // namespace leveldb #endif // STORAGE_LEVELDB_DB_VERSION_SET_H_