// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. #include "util/options_helper.h" #include #include #include #include #include #include "rocksdb/cache.h" #include "rocksdb/compaction_filter.h" #include "rocksdb/convenience.h" #include "rocksdb/filter_policy.h" #include "rocksdb/memtablerep.h" #include "rocksdb/merge_operator.h" #include "rocksdb/options.h" #include "rocksdb/rate_limiter.h" #include "rocksdb/slice_transform.h" #include "rocksdb/table.h" #include "table/block_based_table_factory.h" #include "table/plain_table_factory.h" #include "util/logging.h" #include "util/string_util.h" namespace rocksdb { const std::string kNullptrString = "nullptr"; DBOptions BuildDBOptions(const ImmutableDBOptions& immutable_db_options, const MutableDBOptions& mutable_db_options) { DBOptions options; options.create_if_missing = immutable_db_options.create_if_missing; options.create_missing_column_families = immutable_db_options.create_missing_column_families; options.error_if_exists = immutable_db_options.error_if_exists; options.paranoid_checks = immutable_db_options.paranoid_checks; options.env = immutable_db_options.env; options.rate_limiter = immutable_db_options.rate_limiter; options.sst_file_manager = immutable_db_options.sst_file_manager; options.info_log = immutable_db_options.info_log; options.info_log_level = immutable_db_options.info_log_level; options.max_open_files = immutable_db_options.max_open_files; options.max_file_opening_threads = immutable_db_options.max_file_opening_threads; options.max_total_wal_size = mutable_db_options.max_total_wal_size; options.statistics = immutable_db_options.statistics; options.use_fsync = immutable_db_options.use_fsync; options.db_paths = immutable_db_options.db_paths; options.db_log_dir = immutable_db_options.db_log_dir; options.wal_dir = immutable_db_options.wal_dir; options.delete_obsolete_files_period_micros = mutable_db_options.delete_obsolete_files_period_micros; options.base_background_compactions = mutable_db_options.base_background_compactions; options.max_background_compactions = mutable_db_options.max_background_compactions; options.max_subcompactions = immutable_db_options.max_subcompactions; options.max_background_flushes = immutable_db_options.max_background_flushes; options.max_log_file_size = immutable_db_options.max_log_file_size; options.log_file_time_to_roll = immutable_db_options.log_file_time_to_roll; options.keep_log_file_num = immutable_db_options.keep_log_file_num; options.recycle_log_file_num = immutable_db_options.recycle_log_file_num; options.max_manifest_file_size = immutable_db_options.max_manifest_file_size; options.table_cache_numshardbits = immutable_db_options.table_cache_numshardbits; options.WAL_ttl_seconds = immutable_db_options.wal_ttl_seconds; options.WAL_size_limit_MB = immutable_db_options.wal_size_limit_mb; options.manifest_preallocation_size = immutable_db_options.manifest_preallocation_size; options.allow_mmap_reads = immutable_db_options.allow_mmap_reads; options.allow_mmap_writes = immutable_db_options.allow_mmap_writes; options.use_direct_reads = immutable_db_options.use_direct_reads; options.use_direct_writes = immutable_db_options.use_direct_writes; options.allow_fallocate = immutable_db_options.allow_fallocate; options.is_fd_close_on_exec = immutable_db_options.is_fd_close_on_exec; options.stats_dump_period_sec = mutable_db_options.stats_dump_period_sec; options.advise_random_on_open = immutable_db_options.advise_random_on_open; options.db_write_buffer_size = immutable_db_options.db_write_buffer_size; options.write_buffer_manager = immutable_db_options.write_buffer_manager; options.access_hint_on_compaction_start = immutable_db_options.access_hint_on_compaction_start; options.new_table_reader_for_compaction_inputs = immutable_db_options.new_table_reader_for_compaction_inputs; options.compaction_readahead_size = immutable_db_options.compaction_readahead_size; options.random_access_max_buffer_size = immutable_db_options.random_access_max_buffer_size; options.writable_file_max_buffer_size = immutable_db_options.writable_file_max_buffer_size; options.use_adaptive_mutex = immutable_db_options.use_adaptive_mutex; options.bytes_per_sync = immutable_db_options.bytes_per_sync; options.wal_bytes_per_sync = immutable_db_options.wal_bytes_per_sync; options.listeners = immutable_db_options.listeners; options.enable_thread_tracking = immutable_db_options.enable_thread_tracking; options.delayed_write_rate = mutable_db_options.delayed_write_rate; options.allow_concurrent_memtable_write = immutable_db_options.allow_concurrent_memtable_write; options.enable_write_thread_adaptive_yield = immutable_db_options.enable_write_thread_adaptive_yield; options.write_thread_max_yield_usec = immutable_db_options.write_thread_max_yield_usec; options.write_thread_slow_yield_usec = immutable_db_options.write_thread_slow_yield_usec; options.skip_stats_update_on_db_open = immutable_db_options.skip_stats_update_on_db_open; options.wal_recovery_mode = immutable_db_options.wal_recovery_mode; options.allow_2pc = immutable_db_options.allow_2pc; options.row_cache = immutable_db_options.row_cache; #ifndef ROCKSDB_LITE options.wal_filter = immutable_db_options.wal_filter; #endif // ROCKSDB_LITE options.fail_if_options_file_error = immutable_db_options.fail_if_options_file_error; options.dump_malloc_stats = immutable_db_options.dump_malloc_stats; options.avoid_flush_during_recovery = immutable_db_options.avoid_flush_during_recovery; options.avoid_flush_during_shutdown = mutable_db_options.avoid_flush_during_shutdown; return options; } ColumnFamilyOptions BuildColumnFamilyOptions( const ColumnFamilyOptions& options, const MutableCFOptions& mutable_cf_options) { ColumnFamilyOptions cf_opts(options); // Memtable related options cf_opts.write_buffer_size = mutable_cf_options.write_buffer_size; cf_opts.max_write_buffer_number = mutable_cf_options.max_write_buffer_number; cf_opts.arena_block_size = mutable_cf_options.arena_block_size; cf_opts.memtable_prefix_bloom_size_ratio = mutable_cf_options.memtable_prefix_bloom_size_ratio; cf_opts.memtable_huge_page_size = mutable_cf_options.memtable_huge_page_size; cf_opts.max_successive_merges = mutable_cf_options.max_successive_merges; cf_opts.inplace_update_num_locks = mutable_cf_options.inplace_update_num_locks; // Compaction related options cf_opts.disable_auto_compactions = mutable_cf_options.disable_auto_compactions; cf_opts.level0_file_num_compaction_trigger = mutable_cf_options.level0_file_num_compaction_trigger; cf_opts.level0_slowdown_writes_trigger = mutable_cf_options.level0_slowdown_writes_trigger; cf_opts.level0_stop_writes_trigger = mutable_cf_options.level0_stop_writes_trigger; cf_opts.max_compaction_bytes = mutable_cf_options.max_compaction_bytes; cf_opts.target_file_size_base = mutable_cf_options.target_file_size_base; cf_opts.target_file_size_multiplier = mutable_cf_options.target_file_size_multiplier; cf_opts.max_bytes_for_level_base = mutable_cf_options.max_bytes_for_level_base; cf_opts.max_bytes_for_level_multiplier = mutable_cf_options.max_bytes_for_level_multiplier; cf_opts.max_bytes_for_level_multiplier_additional.clear(); for (auto value : mutable_cf_options.max_bytes_for_level_multiplier_additional) { cf_opts.max_bytes_for_level_multiplier_additional.emplace_back(value); } // Misc options cf_opts.max_sequential_skip_in_iterations = mutable_cf_options.max_sequential_skip_in_iterations; cf_opts.paranoid_file_checks = mutable_cf_options.paranoid_file_checks; cf_opts.report_bg_io_stats = mutable_cf_options.report_bg_io_stats; cf_opts.compression = mutable_cf_options.compression; cf_opts.table_factory = options.table_factory; // TODO(yhchiang): find some way to handle the following derived options // * max_file_size return cf_opts; } #ifndef ROCKSDB_LITE bool isSpecialChar(const char c) { if (c == '\\' || c == '#' || c == ':' || c == '\r' || c == '\n') { return true; } return false; } namespace { using CharMap = std::pair; } char UnescapeChar(const char c) { static const CharMap convert_map[] = {{'r', '\r'}, {'n', '\n'}}; auto iter = std::find_if(std::begin(convert_map), std::end(convert_map), [c](const CharMap& p) { return p.first == c; }); if (iter == std::end(convert_map)) { return c; } return iter->second; } char EscapeChar(const char c) { static const CharMap convert_map[] = {{'\n', 'n'}, {'\r', 'r'}}; auto iter = std::find_if(std::begin(convert_map), std::end(convert_map), [c](const CharMap& p) { return p.first == c; }); if (iter == std::end(convert_map)) { return c; } return iter->second; } std::string EscapeOptionString(const std::string& raw_string) { std::string output; for (auto c : raw_string) { if (isSpecialChar(c)) { output += '\\'; output += EscapeChar(c); } else { output += c; } } return output; } std::string UnescapeOptionString(const std::string& escaped_string) { bool escaped = false; std::string output; for (auto c : escaped_string) { if (escaped) { output += UnescapeChar(c); escaped = false; } else { if (c == '\\') { escaped = true; continue; } output += c; } } return output; } uint64_t ParseUint64(const std::string& value) { size_t endchar; #ifndef CYGWIN uint64_t num = std::stoull(value.c_str(), &endchar); #else char* endptr; uint64_t num = std::strtoul(value.c_str(), &endptr, 0); endchar = endptr - value.c_str(); #endif if (endchar < value.length()) { char c = value[endchar]; if (c == 'k' || c == 'K') num <<= 10LL; else if (c == 'm' || c == 'M') num <<= 20LL; else if (c == 'g' || c == 'G') num <<= 30LL; else if (c == 't' || c == 'T') num <<= 40LL; } return num; } namespace { std::string trim(const std::string& str) { if (str.empty()) return std::string(); size_t start = 0; size_t end = str.size() - 1; while (isspace(str[start]) != 0 && start <= end) { ++start; } while (isspace(str[end]) != 0 && start <= end) { --end; } if (start <= end) { return str.substr(start, end - start + 1); } return std::string(); } bool SerializeIntVector(const std::vector& vec, std::string* value) { *value = ""; for (size_t i = 0; i < vec.size(); ++i) { if (i > 0) { *value += ":"; } *value += ToString(vec[i]); } return true; } template bool ParseEnum(const std::unordered_map& type_map, const std::string& type, T* value) { auto iter = type_map.find(type); if (iter != type_map.end()) { *value = iter->second; return true; } return false; } template bool SerializeEnum(const std::unordered_map& type_map, const T& type, std::string* value) { for (const auto& pair : type_map) { if (pair.second == type) { *value = pair.first; return true; } } return false; } bool SerializeVectorCompressionType(const std::vector& types, std::string* value) { std::stringstream ss; bool result; for (size_t i = 0; i < types.size(); ++i) { if (i > 0) { ss << ':'; } std::string string_type; result = SerializeEnum(compression_type_string_map, types[i], &string_type); if (result == false) { return result; } ss << string_type; } *value = ss.str(); return true; } bool ParseBoolean(const std::string& type, const std::string& value) { if (value == "true" || value == "1") { return true; } else if (value == "false" || value == "0") { return false; } throw std::invalid_argument(type); } size_t ParseSizeT(const std::string& value) { return static_cast(ParseUint64(value)); } uint32_t ParseUint32(const std::string& value) { uint64_t num = ParseUint64(value); if ((num >> 32LL) == 0) { return static_cast(num); } else { throw std::out_of_range(value); } } int ParseInt(const std::string& value) { size_t endchar; #ifndef CYGWIN int num = std::stoi(value.c_str(), &endchar); #else char* endptr; int num = std::strtoul(value.c_str(), &endptr, 0); endchar = endptr - value.c_str(); #endif if (endchar < value.length()) { char c = value[endchar]; if (c == 'k' || c == 'K') num <<= 10; else if (c == 'm' || c == 'M') num <<= 20; else if (c == 'g' || c == 'G') num <<= 30; } return num; } std::vector ParseVectorInt(const std::string& value) { std::vector result; size_t start = 0; while (start < value.size()) { size_t end = value.find(':', start); if (end == std::string::npos) { result.push_back(ParseInt(value.substr(start))); break; } else { result.push_back(ParseInt(value.substr(start, end - start))); start = end + 1; } } return result; } double ParseDouble(const std::string& value) { #ifndef CYGWIN return std::stod(value); #else return std::strtod(value.c_str(), 0); #endif } bool ParseVectorCompressionType( const std::string& value, std::vector* compression_per_level) { compression_per_level->clear(); size_t start = 0; while (start < value.size()) { size_t end = value.find(':', start); bool is_ok; CompressionType type; if (end == std::string::npos) { is_ok = ParseEnum(compression_type_string_map, value.substr(start), &type); if (!is_ok) { return false; } compression_per_level->emplace_back(type); break; } else { is_ok = ParseEnum( compression_type_string_map, value.substr(start, end - start), &type); if (!is_ok) { return false; } compression_per_level->emplace_back(type); start = end + 1; } } return true; } bool ParseSliceTransformHelper( const std::string& kFixedPrefixName, const std::string& kCappedPrefixName, const std::string& value, std::shared_ptr* slice_transform) { auto& pe_value = value; if (pe_value.size() > kFixedPrefixName.size() && pe_value.compare(0, kFixedPrefixName.size(), kFixedPrefixName) == 0) { int prefix_length = ParseInt(trim(value.substr(kFixedPrefixName.size()))); slice_transform->reset(NewFixedPrefixTransform(prefix_length)); } else if (pe_value.size() > kCappedPrefixName.size() && pe_value.compare(0, kCappedPrefixName.size(), kCappedPrefixName) == 0) { int prefix_length = ParseInt(trim(pe_value.substr(kCappedPrefixName.size()))); slice_transform->reset(NewCappedPrefixTransform(prefix_length)); } else if (value == kNullptrString) { slice_transform->reset(); } else { return false; } return true; } bool ParseSliceTransform( const std::string& value, std::shared_ptr* slice_transform) { // While we normally don't convert the string representation of a // pointer-typed option into its instance, here we do so for backward // compatibility as we allow this action in SetOption(). // TODO(yhchiang): A possible better place for these serialization / // deserialization is inside the class definition of pointer-typed // option itself, but this requires a bigger change of public API. bool result = ParseSliceTransformHelper("fixed:", "capped:", value, slice_transform); if (result) { return result; } result = ParseSliceTransformHelper( "rocksdb.FixedPrefix.", "rocksdb.CappedPrefix.", value, slice_transform); if (result) { return result; } // TODO(yhchiang): we can further support other default // SliceTransforms here. return false; } bool ParseOptionHelper(char* opt_address, const OptionType& opt_type, const std::string& value) { switch (opt_type) { case OptionType::kBoolean: *reinterpret_cast(opt_address) = ParseBoolean("", value); break; case OptionType::kInt: *reinterpret_cast(opt_address) = ParseInt(value); break; case OptionType::kVectorInt: *reinterpret_cast*>(opt_address) = ParseVectorInt(value); break; case OptionType::kUInt: *reinterpret_cast(opt_address) = ParseUint32(value); break; case OptionType::kUInt32T: *reinterpret_cast(opt_address) = ParseUint32(value); break; case OptionType::kUInt64T: *reinterpret_cast(opt_address) = ParseUint64(value); break; case OptionType::kSizeT: *reinterpret_cast(opt_address) = ParseSizeT(value); break; case OptionType::kString: *reinterpret_cast(opt_address) = value; break; case OptionType::kDouble: *reinterpret_cast(opt_address) = ParseDouble(value); break; case OptionType::kCompactionStyle: return ParseEnum( compaction_style_string_map, value, reinterpret_cast(opt_address)); case OptionType::kCompactionPri: return ParseEnum( compaction_pri_string_map, value, reinterpret_cast(opt_address)); case OptionType::kCompressionType: return ParseEnum( compression_type_string_map, value, reinterpret_cast(opt_address)); case OptionType::kVectorCompressionType: return ParseVectorCompressionType( value, reinterpret_cast*>(opt_address)); case OptionType::kSliceTransform: return ParseSliceTransform( value, reinterpret_cast*>( opt_address)); case OptionType::kChecksumType: return ParseEnum( checksum_type_string_map, value, reinterpret_cast(opt_address)); case OptionType::kBlockBasedTableIndexType: return ParseEnum( block_base_table_index_type_string_map, value, reinterpret_cast(opt_address)); case OptionType::kEncodingType: return ParseEnum( encoding_type_string_map, value, reinterpret_cast(opt_address)); case OptionType::kWALRecoveryMode: return ParseEnum( wal_recovery_mode_string_map, value, reinterpret_cast(opt_address)); case OptionType::kAccessHint: return ParseEnum( access_hint_string_map, value, reinterpret_cast(opt_address)); case OptionType::kInfoLogLevel: return ParseEnum( info_log_level_string_map, value, reinterpret_cast(opt_address)); default: return false; } return true; } } // anonymouse namespace bool SerializeSingleOptionHelper(const char* opt_address, const OptionType opt_type, std::string* value) { assert(value); switch (opt_type) { case OptionType::kBoolean: *value = *(reinterpret_cast(opt_address)) ? "true" : "false"; break; case OptionType::kInt: *value = ToString(*(reinterpret_cast(opt_address))); break; case OptionType::kVectorInt: return SerializeIntVector( *reinterpret_cast*>(opt_address), value); case OptionType::kUInt: *value = ToString(*(reinterpret_cast(opt_address))); break; case OptionType::kUInt32T: *value = ToString(*(reinterpret_cast(opt_address))); break; case OptionType::kUInt64T: *value = ToString(*(reinterpret_cast(opt_address))); break; case OptionType::kSizeT: *value = ToString(*(reinterpret_cast(opt_address))); break; case OptionType::kDouble: *value = ToString(*(reinterpret_cast(opt_address))); break; case OptionType::kString: *value = EscapeOptionString( *(reinterpret_cast(opt_address))); break; case OptionType::kCompactionStyle: return SerializeEnum( compaction_style_string_map, *(reinterpret_cast(opt_address)), value); case OptionType::kCompactionPri: return SerializeEnum( compaction_pri_string_map, *(reinterpret_cast(opt_address)), value); case OptionType::kCompressionType: return SerializeEnum( compression_type_string_map, *(reinterpret_cast(opt_address)), value); case OptionType::kVectorCompressionType: return SerializeVectorCompressionType( *(reinterpret_cast*>(opt_address)), value); break; case OptionType::kSliceTransform: { const auto* slice_transform_ptr = reinterpret_cast*>( opt_address); *value = slice_transform_ptr->get() ? slice_transform_ptr->get()->Name() : kNullptrString; break; } case OptionType::kTableFactory: { const auto* table_factory_ptr = reinterpret_cast*>( opt_address); *value = table_factory_ptr->get() ? table_factory_ptr->get()->Name() : kNullptrString; break; } case OptionType::kComparator: { // it's a const pointer of const Comparator* const auto* ptr = reinterpret_cast(opt_address); // Since the user-specified comparator will be wrapped by // InternalKeyComparator, we should persist the user-specified one // instead of InternalKeyComparator. const auto* internal_comparator = dynamic_cast(*ptr); if (internal_comparator != nullptr) { *value = internal_comparator->user_comparator()->Name(); } else { *value = *ptr ? (*ptr)->Name() : kNullptrString; } break; } case OptionType::kCompactionFilter: { // it's a const pointer of const CompactionFilter* const auto* ptr = reinterpret_cast(opt_address); *value = *ptr ? (*ptr)->Name() : kNullptrString; break; } case OptionType::kCompactionFilterFactory: { const auto* ptr = reinterpret_cast*>( opt_address); *value = ptr->get() ? ptr->get()->Name() : kNullptrString; break; } case OptionType::kMemTableRepFactory: { const auto* ptr = reinterpret_cast*>( opt_address); *value = ptr->get() ? ptr->get()->Name() : kNullptrString; break; } case OptionType::kMergeOperator: { const auto* ptr = reinterpret_cast*>(opt_address); *value = ptr->get() ? ptr->get()->Name() : kNullptrString; break; } case OptionType::kFilterPolicy: { const auto* ptr = reinterpret_cast*>(opt_address); *value = ptr->get() ? ptr->get()->Name() : kNullptrString; break; } case OptionType::kChecksumType: return SerializeEnum( checksum_type_string_map, *reinterpret_cast(opt_address), value); case OptionType::kBlockBasedTableIndexType: return SerializeEnum( block_base_table_index_type_string_map, *reinterpret_cast( opt_address), value); case OptionType::kFlushBlockPolicyFactory: { const auto* ptr = reinterpret_cast*>( opt_address); *value = ptr->get() ? ptr->get()->Name() : kNullptrString; break; } case OptionType::kEncodingType: return SerializeEnum( encoding_type_string_map, *reinterpret_cast(opt_address), value); case OptionType::kWALRecoveryMode: return SerializeEnum( wal_recovery_mode_string_map, *reinterpret_cast(opt_address), value); case OptionType::kAccessHint: return SerializeEnum( access_hint_string_map, *reinterpret_cast(opt_address), value); case OptionType::kInfoLogLevel: return SerializeEnum( info_log_level_string_map, *reinterpret_cast(opt_address), value); default: return false; } return true; } Status GetMutableOptionsFromStrings( const MutableCFOptions& base_options, const std::unordered_map& options_map, MutableCFOptions* new_options) { assert(new_options); *new_options = base_options; for (const auto& o : options_map) { try { auto iter = cf_options_type_info.find(o.first); if (iter == cf_options_type_info.end()) { return Status::InvalidArgument("Unrecognized option: " + o.first); } const auto& opt_info = iter->second; if (!opt_info.is_mutable) { return Status::InvalidArgument("Option not changeable: " + o.first); } bool is_ok = ParseOptionHelper( reinterpret_cast(new_options) + opt_info.mutable_offset, opt_info.type, o.second); if (!is_ok) { return Status::InvalidArgument("Error parsing " + o.first); } } catch (std::exception& e) { return Status::InvalidArgument("Error parsing " + o.first + ":" + std::string(e.what())); } } return Status::OK(); } Status GetMutableDBOptionsFromStrings( const MutableDBOptions& base_options, const std::unordered_map& options_map, MutableDBOptions* new_options) { assert(new_options); *new_options = base_options; for (const auto& o : options_map) { try { auto iter = db_options_type_info.find(o.first); if (iter == db_options_type_info.end()) { return Status::InvalidArgument("Unrecognized option: " + o.first); } const auto& opt_info = iter->second; if (!opt_info.is_mutable) { return Status::InvalidArgument("Option not changeable: " + o.first); } bool is_ok = ParseOptionHelper( reinterpret_cast(new_options) + opt_info.mutable_offset, opt_info.type, o.second); if (!is_ok) { return Status::InvalidArgument("Error parsing " + o.first); } } catch (std::exception& e) { return Status::InvalidArgument("Error parsing " + o.first + ":" + std::string(e.what())); } } return Status::OK(); } Status StringToMap(const std::string& opts_str, std::unordered_map* opts_map) { assert(opts_map); // Example: // opts_str = "write_buffer_size=1024;max_write_buffer_number=2;" // "nested_opt={opt1=1;opt2=2};max_bytes_for_level_base=100" size_t pos = 0; std::string opts = trim(opts_str); while (pos < opts.size()) { size_t eq_pos = opts.find('=', pos); if (eq_pos == std::string::npos) { return Status::InvalidArgument("Mismatched key value pair, '=' expected"); } std::string key = trim(opts.substr(pos, eq_pos - pos)); if (key.empty()) { return Status::InvalidArgument("Empty key found"); } // skip space after '=' and look for '{' for possible nested options pos = eq_pos + 1; while (pos < opts.size() && isspace(opts[pos])) { ++pos; } // Empty value at the end if (pos >= opts.size()) { (*opts_map)[key] = ""; break; } if (opts[pos] == '{') { int count = 1; size_t brace_pos = pos + 1; while (brace_pos < opts.size()) { if (opts[brace_pos] == '{') { ++count; } else if (opts[brace_pos] == '}') { --count; if (count == 0) { break; } } ++brace_pos; } // found the matching closing brace if (count == 0) { (*opts_map)[key] = trim(opts.substr(pos + 1, brace_pos - pos - 1)); // skip all whitespace and move to the next ';' // brace_pos points to the next position after the matching '}' pos = brace_pos + 1; while (pos < opts.size() && isspace(opts[pos])) { ++pos; } if (pos < opts.size() && opts[pos] != ';') { return Status::InvalidArgument( "Unexpected chars after nested options"); } ++pos; } else { return Status::InvalidArgument( "Mismatched curly braces for nested options"); } } else { size_t sc_pos = opts.find(';', pos); if (sc_pos == std::string::npos) { (*opts_map)[key] = trim(opts.substr(pos)); // It either ends with a trailing semi-colon or the last key-value pair break; } else { (*opts_map)[key] = trim(opts.substr(pos, sc_pos - pos)); } pos = sc_pos + 1; } } return Status::OK(); } Status ParseColumnFamilyOption(const std::string& name, const std::string& org_value, ColumnFamilyOptions* new_options, bool input_strings_escaped = false) { const std::string& value = input_strings_escaped ? UnescapeOptionString(org_value) : org_value; try { if (name == "block_based_table_factory") { // Nested options BlockBasedTableOptions table_opt, base_table_options; auto block_based_table_factory = dynamic_cast( new_options->table_factory.get()); if (block_based_table_factory != nullptr) { base_table_options = block_based_table_factory->table_options(); } Status table_opt_s = GetBlockBasedTableOptionsFromString( base_table_options, value, &table_opt); if (!table_opt_s.ok()) { return Status::InvalidArgument( "unable to parse the specified CF option " + name); } new_options->table_factory.reset(NewBlockBasedTableFactory(table_opt)); } else if (name == "plain_table_factory") { // Nested options PlainTableOptions table_opt, base_table_options; auto plain_table_factory = dynamic_cast( new_options->table_factory.get()); if (plain_table_factory != nullptr) { base_table_options = plain_table_factory->table_options(); } Status table_opt_s = GetPlainTableOptionsFromString( base_table_options, value, &table_opt); if (!table_opt_s.ok()) { return Status::InvalidArgument( "unable to parse the specified CF option " + name); } new_options->table_factory.reset(NewPlainTableFactory(table_opt)); } else if (name == "memtable") { std::unique_ptr new_mem_factory; Status mem_factory_s = GetMemTableRepFactoryFromString(value, &new_mem_factory); if (!mem_factory_s.ok()) { return Status::InvalidArgument( "unable to parse the specified CF option " + name); } new_options->memtable_factory.reset(new_mem_factory.release()); } else if (name == "compression_opts") { size_t start = 0; size_t end = value.find(':'); if (end == std::string::npos) { return Status::InvalidArgument( "unable to parse the specified CF option " + name); } new_options->compression_opts.window_bits = ParseInt(value.substr(start, end - start)); start = end + 1; end = value.find(':', start); if (end == std::string::npos) { return Status::InvalidArgument( "unable to parse the specified CF option " + name); } new_options->compression_opts.level = ParseInt(value.substr(start, end - start)); start = end + 1; if (start >= value.size()) { return Status::InvalidArgument( "unable to parse the specified CF option " + name); } end = value.find(':', start); new_options->compression_opts.strategy = ParseInt(value.substr(start, value.size() - start)); // max_dict_bytes is optional for backwards compatibility if (end != std::string::npos) { start = end + 1; if (start >= value.size()) { return Status::InvalidArgument( "unable to parse the specified CF option " + name); } new_options->compression_opts.max_dict_bytes = ParseInt(value.substr(start, value.size() - start)); } } else if (name == "compaction_options_fifo") { new_options->compaction_options_fifo.max_table_files_size = ParseUint64(value); } else { auto iter = cf_options_type_info.find(name); if (iter == cf_options_type_info.end()) { return Status::InvalidArgument( "Unable to parse the specified CF option " + name); } const auto& opt_info = iter->second; if (opt_info.verification != OptionVerificationType::kDeprecated && ParseOptionHelper( reinterpret_cast(new_options) + opt_info.offset, opt_info.type, value)) { return Status::OK(); } switch (opt_info.verification) { case OptionVerificationType::kByName: case OptionVerificationType::kByNameAllowNull: return Status::NotSupported( "Deserializing the specified CF option " + name + " is not supported"); case OptionVerificationType::kDeprecated: return Status::OK(); default: return Status::InvalidArgument( "Unable to parse the specified CF option " + name); } } } catch (const std::exception&) { return Status::InvalidArgument( "unable to parse the specified option " + name); } return Status::OK(); } bool SerializeSingleDBOption(std::string* opt_string, const DBOptions& db_options, const std::string& name, const std::string& delimiter) { auto iter = db_options_type_info.find(name); if (iter == db_options_type_info.end()) { return false; } auto& opt_info = iter->second; const char* opt_address = reinterpret_cast(&db_options) + opt_info.offset; std::string value; bool result = SerializeSingleOptionHelper(opt_address, opt_info.type, &value); if (result) { *opt_string = name + "=" + value + delimiter; } return result; } Status GetStringFromDBOptions(std::string* opt_string, const DBOptions& db_options, const std::string& delimiter) { assert(opt_string); opt_string->clear(); for (auto iter = db_options_type_info.begin(); iter != db_options_type_info.end(); ++iter) { if (iter->second.verification == OptionVerificationType::kDeprecated) { // If the option is no longer used in rocksdb and marked as deprecated, // we skip it in the serialization. continue; } std::string single_output; bool result = SerializeSingleDBOption(&single_output, db_options, iter->first, delimiter); assert(result); if (result) { opt_string->append(single_output); } } return Status::OK(); } bool SerializeSingleColumnFamilyOption(std::string* opt_string, const ColumnFamilyOptions& cf_options, const std::string& name, const std::string& delimiter) { auto iter = cf_options_type_info.find(name); if (iter == cf_options_type_info.end()) { return false; } auto& opt_info = iter->second; const char* opt_address = reinterpret_cast(&cf_options) + opt_info.offset; std::string value; bool result = SerializeSingleOptionHelper(opt_address, opt_info.type, &value); if (result) { *opt_string = name + "=" + value + delimiter; } return result; } Status GetStringFromColumnFamilyOptions(std::string* opt_string, const ColumnFamilyOptions& cf_options, const std::string& delimiter) { assert(opt_string); opt_string->clear(); for (auto iter = cf_options_type_info.begin(); iter != cf_options_type_info.end(); ++iter) { if (iter->second.verification == OptionVerificationType::kDeprecated) { // If the option is no longer used in rocksdb and marked as deprecated, // we skip it in the serialization. continue; } std::string single_output; bool result = SerializeSingleColumnFamilyOption(&single_output, cf_options, iter->first, delimiter); if (result) { opt_string->append(single_output); } else { return Status::InvalidArgument("failed to serialize %s\n", iter->first.c_str()); } assert(result); } return Status::OK(); } Status GetStringFromCompressionType(std::string* compression_str, CompressionType compression_type) { bool ok = SerializeEnum(compression_type_string_map, compression_type, compression_str); if (ok) { return Status::OK(); } else { return Status::InvalidArgument("Invalid compression types"); } } std::vector GetSupportedCompressions() { std::vector supported_compressions; for (const auto& comp_to_name : compression_type_string_map) { CompressionType t = comp_to_name.second; if (t != kDisableCompressionOption && CompressionTypeSupported(t)) { supported_compressions.push_back(t); } } return supported_compressions; } bool SerializeSingleBlockBasedTableOption( std::string* opt_string, const BlockBasedTableOptions& bbt_options, const std::string& name, const std::string& delimiter) { auto iter = block_based_table_type_info.find(name); if (iter == block_based_table_type_info.end()) { return false; } auto& opt_info = iter->second; const char* opt_address = reinterpret_cast(&bbt_options) + opt_info.offset; std::string value; bool result = SerializeSingleOptionHelper(opt_address, opt_info.type, &value); if (result) { *opt_string = name + "=" + value + delimiter; } return result; } Status GetStringFromBlockBasedTableOptions( std::string* opt_string, const BlockBasedTableOptions& bbt_options, const std::string& delimiter) { assert(opt_string); opt_string->clear(); for (auto iter = block_based_table_type_info.begin(); iter != block_based_table_type_info.end(); ++iter) { if (iter->second.verification == OptionVerificationType::kDeprecated) { // If the option is no longer used in rocksdb and marked as deprecated, // we skip it in the serialization. continue; } std::string single_output; bool result = SerializeSingleBlockBasedTableOption( &single_output, bbt_options, iter->first, delimiter); assert(result); if (result) { opt_string->append(single_output); } } return Status::OK(); } Status GetStringFromTableFactory(std::string* opts_str, const TableFactory* tf, const std::string& delimiter) { const auto* bbtf = dynamic_cast(tf); opts_str->clear(); if (bbtf != nullptr) { return GetStringFromBlockBasedTableOptions(opts_str, bbtf->table_options(), delimiter); } return Status::OK(); } Status ParseDBOption(const std::string& name, const std::string& org_value, DBOptions* new_options, bool input_strings_escaped = false) { const std::string& value = input_strings_escaped ? UnescapeOptionString(org_value) : org_value; try { if (name == "rate_limiter_bytes_per_sec") { new_options->rate_limiter.reset( NewGenericRateLimiter(static_cast(ParseUint64(value)))); } else { auto iter = db_options_type_info.find(name); if (iter == db_options_type_info.end()) { return Status::InvalidArgument("Unrecognized option DBOptions:", name); } const auto& opt_info = iter->second; if (opt_info.verification != OptionVerificationType::kDeprecated && ParseOptionHelper( reinterpret_cast(new_options) + opt_info.offset, opt_info.type, value)) { return Status::OK(); } switch (opt_info.verification) { case OptionVerificationType::kByName: case OptionVerificationType::kByNameAllowNull: return Status::NotSupported( "Deserializing the specified DB option " + name + " is not supported"); case OptionVerificationType::kDeprecated: return Status::OK(); default: return Status::InvalidArgument( "Unable to parse the specified DB option " + name); } } } catch (const std::exception&) { return Status::InvalidArgument("Unable to parse DBOptions:", name); } return Status::OK(); } std::string ParseBlockBasedTableOption(const std::string& name, const std::string& org_value, BlockBasedTableOptions* new_options, bool input_strings_escaped = false) { const std::string& value = input_strings_escaped ? UnescapeOptionString(org_value) : org_value; if (!input_strings_escaped) { // if the input string is not escaped, it means this function is // invoked from SetOptions, which takes the old format. if (name == "block_cache") { new_options->block_cache = NewLRUCache(ParseSizeT(value)); return ""; } else if (name == "block_cache_compressed") { new_options->block_cache_compressed = NewLRUCache(ParseSizeT(value)); return ""; } else if (name == "filter_policy") { // Expect the following format // bloomfilter:int:bool const std::string kName = "bloomfilter:"; if (value.compare(0, kName.size(), kName) != 0) { return "Invalid filter policy name"; } size_t pos = value.find(':', kName.size()); if (pos == std::string::npos) { return "Invalid filter policy config, missing bits_per_key"; } int bits_per_key = ParseInt(trim(value.substr(kName.size(), pos - kName.size()))); bool use_block_based_builder = ParseBoolean("use_block_based_builder", trim(value.substr(pos + 1))); new_options->filter_policy.reset( NewBloomFilterPolicy(bits_per_key, use_block_based_builder)); return ""; } } const auto iter = block_based_table_type_info.find(name); if (iter == block_based_table_type_info.end()) { return "Unrecognized option"; } const auto& opt_info = iter->second; if (!ParseOptionHelper(reinterpret_cast(new_options) + opt_info.offset, opt_info.type, value)) { return "Invalid value"; } return ""; } std::string ParsePlainTableOptions(const std::string& name, const std::string& org_value, PlainTableOptions* new_option, bool input_strings_escaped = false) { const std::string& value = input_strings_escaped ? UnescapeOptionString(org_value) : org_value; const auto iter = plain_table_type_info.find(name); if (iter == plain_table_type_info.end()) { return "Unrecognized option"; } const auto& opt_info = iter->second; if (!ParseOptionHelper(reinterpret_cast(new_option) + opt_info.offset, opt_info.type, value)) { return "Invalid value"; } return ""; } Status GetBlockBasedTableOptionsFromMap( const BlockBasedTableOptions& table_options, const std::unordered_map& opts_map, BlockBasedTableOptions* new_table_options, bool input_strings_escaped) { assert(new_table_options); *new_table_options = table_options; for (const auto& o : opts_map) { auto error_message = ParseBlockBasedTableOption( o.first, o.second, new_table_options, input_strings_escaped); if (error_message != "") { const auto iter = block_based_table_type_info.find(o.first); if (iter == block_based_table_type_info.end() || !input_strings_escaped || // !input_strings_escaped indicates // the old API, where everything is // parsable. (iter->second.verification != OptionVerificationType::kByName && iter->second.verification != OptionVerificationType::kByNameAllowNull && iter->second.verification != OptionVerificationType::kDeprecated)) { // Restore "new_options" to the default "base_options". *new_table_options = table_options; return Status::InvalidArgument("Can't parse BlockBasedTableOptions:", o.first + " " + error_message); } } } return Status::OK(); } Status GetBlockBasedTableOptionsFromString( const BlockBasedTableOptions& table_options, const std::string& opts_str, BlockBasedTableOptions* new_table_options) { std::unordered_map opts_map; Status s = StringToMap(opts_str, &opts_map); if (!s.ok()) { return s; } return GetBlockBasedTableOptionsFromMap(table_options, opts_map, new_table_options); } Status GetPlainTableOptionsFromMap( const PlainTableOptions& table_options, const std::unordered_map& opts_map, PlainTableOptions* new_table_options, bool input_strings_escaped) { assert(new_table_options); *new_table_options = table_options; for (const auto& o : opts_map) { auto error_message = ParsePlainTableOptions( o.first, o.second, new_table_options, input_strings_escaped); if (error_message != "") { const auto iter = plain_table_type_info.find(o.first); if (iter == plain_table_type_info.end() || !input_strings_escaped || // !input_strings_escaped indicates // the old API, where everything is // parsable. (iter->second.verification != OptionVerificationType::kByName && iter->second.verification != OptionVerificationType::kByNameAllowNull && iter->second.verification != OptionVerificationType::kDeprecated)) { // Restore "new_options" to the default "base_options". *new_table_options = table_options; return Status::InvalidArgument("Can't parse PlainTableOptions:", o.first + " " + error_message); } } } return Status::OK(); } Status GetPlainTableOptionsFromString( const PlainTableOptions& table_options, const std::string& opts_str, PlainTableOptions* new_table_options) { std::unordered_map opts_map; Status s = StringToMap(opts_str, &opts_map); if (!s.ok()) { return s; } return GetPlainTableOptionsFromMap(table_options, opts_map, new_table_options); } Status GetMemTableRepFactoryFromString(const std::string& opts_str, std::unique_ptr* new_mem_factory) { std::vector opts_list = StringSplit(opts_str, ':'); size_t len = opts_list.size(); if (opts_list.size() <= 0 || opts_list.size() > 2) { return Status::InvalidArgument("Can't parse memtable_factory option ", opts_str); } MemTableRepFactory* mem_factory = nullptr; if (opts_list[0] == "skip_list") { // Expecting format // skip_list: if (2 == len) { size_t lookahead = ParseSizeT(opts_list[1]); mem_factory = new SkipListFactory(lookahead); } else if (1 == len) { mem_factory = new SkipListFactory(); } } else if (opts_list[0] == "prefix_hash") { // Expecting format // prfix_hash: if (2 == len) { size_t hash_bucket_count = ParseSizeT(opts_list[1]); mem_factory = NewHashSkipListRepFactory(hash_bucket_count); } else if (1 == len) { mem_factory = NewHashSkipListRepFactory(); } } else if (opts_list[0] == "hash_linkedlist") { // Expecting format // hash_linkedlist: if (2 == len) { size_t hash_bucket_count = ParseSizeT(opts_list[1]); mem_factory = NewHashLinkListRepFactory(hash_bucket_count); } else if (1 == len) { mem_factory = NewHashLinkListRepFactory(); } } else if (opts_list[0] == "vector") { // Expecting format // vector: if (2 == len) { size_t count = ParseSizeT(opts_list[1]); mem_factory = new VectorRepFactory(count); } else if (1 == len) { mem_factory = new VectorRepFactory(); } } else if (opts_list[0] == "cuckoo") { // Expecting format // cuckoo: if (2 == len) { size_t write_buffer_size = ParseSizeT(opts_list[1]); mem_factory= NewHashCuckooRepFactory(write_buffer_size); } else if (1 == len) { return Status::InvalidArgument("Can't parse memtable_factory option ", opts_str); } } else { return Status::InvalidArgument("Unrecognized memtable_factory option ", opts_str); } if (mem_factory != nullptr){ new_mem_factory->reset(mem_factory); } return Status::OK(); } Status GetColumnFamilyOptionsFromMap( const ColumnFamilyOptions& base_options, const std::unordered_map& opts_map, ColumnFamilyOptions* new_options, bool input_strings_escaped) { return GetColumnFamilyOptionsFromMapInternal( base_options, opts_map, new_options, input_strings_escaped); } Status GetColumnFamilyOptionsFromMapInternal( const ColumnFamilyOptions& base_options, const std::unordered_map& opts_map, ColumnFamilyOptions* new_options, bool input_strings_escaped, std::vector* unsupported_options_names) { assert(new_options); *new_options = base_options; if (unsupported_options_names) { unsupported_options_names->clear(); } for (const auto& o : opts_map) { auto s = ParseColumnFamilyOption(o.first, o.second, new_options, input_strings_escaped); if (!s.ok()) { if (s.IsNotSupported()) { // If the deserialization of the specified option is not supported // and an output vector of unsupported_options is provided, then // we log the name of the unsupported option and proceed. if (unsupported_options_names != nullptr) { unsupported_options_names->push_back(o.first); } // Note that we still return Status::OK in such case to maintain // the backward compatibility in the old public API defined in // rocksdb/convenience.h } else { // Restore "new_options" to the default "base_options". *new_options = base_options; return s; } } } return Status::OK(); } Status GetColumnFamilyOptionsFromString( const ColumnFamilyOptions& base_options, const std::string& opts_str, ColumnFamilyOptions* new_options) { std::unordered_map opts_map; Status s = StringToMap(opts_str, &opts_map); if (!s.ok()) { *new_options = base_options; return s; } return GetColumnFamilyOptionsFromMap(base_options, opts_map, new_options); } Status GetDBOptionsFromMap( const DBOptions& base_options, const std::unordered_map& opts_map, DBOptions* new_options, bool input_strings_escaped) { return GetDBOptionsFromMapInternal( base_options, opts_map, new_options, input_strings_escaped); } Status GetDBOptionsFromMapInternal( const DBOptions& base_options, const std::unordered_map& opts_map, DBOptions* new_options, bool input_strings_escaped, std::vector* unsupported_options_names) { assert(new_options); *new_options = base_options; if (unsupported_options_names) { unsupported_options_names->clear(); } for (const auto& o : opts_map) { auto s = ParseDBOption(o.first, o.second, new_options, input_strings_escaped); if (!s.ok()) { if (s.IsNotSupported()) { // If the deserialization of the specified option is not supported // and an output vector of unsupported_options is provided, then // we log the name of the unsupported option and proceed. if (unsupported_options_names != nullptr) { unsupported_options_names->push_back(o.first); } // Note that we still return Status::OK in such case to maintain // the backward compatibility in the old public API defined in // rocksdb/convenience.h } else { // Restore "new_options" to the default "base_options". *new_options = base_options; return s; } } } return Status::OK(); } Status GetDBOptionsFromString( const DBOptions& base_options, const std::string& opts_str, DBOptions* new_options) { std::unordered_map opts_map; Status s = StringToMap(opts_str, &opts_map); if (!s.ok()) { *new_options = base_options; return s; } return GetDBOptionsFromMap(base_options, opts_map, new_options); } Status GetOptionsFromString(const Options& base_options, const std::string& opts_str, Options* new_options) { std::unordered_map opts_map; Status s = StringToMap(opts_str, &opts_map); if (!s.ok()) { return s; } DBOptions new_db_options(base_options); ColumnFamilyOptions new_cf_options(base_options); for (const auto& o : opts_map) { if (ParseDBOption(o.first, o.second, &new_db_options).ok()) { } else if (ParseColumnFamilyOption( o.first, o.second, &new_cf_options).ok()) { } else { return Status::InvalidArgument("Can't parse option " + o.first); } } *new_options = Options(new_db_options, new_cf_options); return Status::OK(); } Status GetTableFactoryFromMap( const std::string& factory_name, const std::unordered_map& opt_map, std::shared_ptr* table_factory) { Status s; if (factory_name == BlockBasedTableFactory().Name()) { BlockBasedTableOptions bbt_opt; s = GetBlockBasedTableOptionsFromMap(BlockBasedTableOptions(), opt_map, &bbt_opt, true); if (!s.ok()) { return s; } table_factory->reset(new BlockBasedTableFactory(bbt_opt)); return Status::OK(); } else if (factory_name == PlainTableFactory().Name()) { PlainTableOptions pt_opt; s = GetPlainTableOptionsFromMap(PlainTableOptions(), opt_map, &pt_opt, true); if (!s.ok()) { return s; } table_factory->reset(new PlainTableFactory(pt_opt)); return Status::OK(); } // Return OK for not supported table factories as TableFactory // Deserialization is optional. table_factory->reset(); return Status::OK(); } #endif // !ROCKSDB_LITE } // namespace rocksdb