// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #pragma once #include <cmath> #include "port/port.h" // for PREFETCH #include "util/fastrange.h" #include "util/ribbon_alg.h" namespace ROCKSDB_NAMESPACE { namespace ribbon { // RIBBON PHSF & RIBBON Filter (Rapid Incremental Boolean Banding ON-the-fly) // // ribbon_impl.h: templated (parameterized) standard implementations // // Ribbon is a Perfect Hash Static Function construction useful as a compact // static Bloom filter alternative. See ribbon_alg.h for core algorithms // and core design details. // // TODO: more details on trade-offs and practical issues. // // APIs for configuring Ribbon are in ribbon_config.h // Ribbon implementations in this file take these parameters, which must be // provided in a class/struct type with members expressed in this concept: // concept TypesAndSettings { // // See RibbonTypes and *Hasher in ribbon_alg.h, except here we have // // the added constraint that Hash be equivalent to either uint32_t or // // uint64_t. // typename Hash; // typename CoeffRow; // typename ResultRow; // typename Index; // typename Key; // static constexpr bool kFirstCoeffAlwaysOne; // // // An unsigned integer type for identifying a hash seed, typically // // uint32_t or uint64_t. Importantly, this is the amount of data // // stored in memory for identifying a raw seed. See StandardHasher. // typename Seed; // // // When true, the PHSF implements a static filter, expecting just // // keys as inputs for construction. When false, implements a general // // PHSF and expects std::pair<Key, ResultRow> as inputs for // // construction. // static constexpr bool kIsFilter; // // // When true, enables a special "homogeneous" filter implementation that // // is slightly faster to construct, and never fails to construct though // // FP rate can quickly explode in cases where corresponding // // non-homogeneous filter would fail (or nearly fail?) to construct. // // For smaller filters, you can configure with ConstructionFailureChance // // smaller than desired FP rate to largely counteract this effect. // // TODO: configuring Homogeneous Ribbon for arbitrarily large filters // // based on data from OptimizeHomogAtScale // static constexpr bool kHomogeneous; // // // When true, adds a tiny bit more hashing logic on queries and // // construction to improve utilization at the beginning and end of // // the structure. Recommended when CoeffRow is only 64 bits (or // // less), so typical num_starts < 10k. Although this is compatible // // with kHomogeneous, the competing space vs. time priorities might // // not be useful. // static constexpr bool kUseSmash; // // // When true, allows number of "starts" to be zero, for best support // // of the "no keys to add" case by always returning false for filter // // queries. (This is distinct from the "keys added but no space for // // any data" case, in which a filter always returns true.) The cost // // supporting this is a conditional branch (probably predictable) in // // queries. // static constexpr bool kAllowZeroStarts; // // // A seedable stock hash function on Keys. All bits of Hash must // // be reasonably high quality. XXH functions recommended, but // // Murmur, City, Farm, etc. also work. // static Hash HashFn(const Key &, Seed raw_seed); // }; // A bit of a hack to automatically construct the type for // AddInput based on a constexpr bool. template <typename Key, typename ResultRow, bool IsFilter> struct AddInputSelector { // For general PHSF, not filter using T = std::pair<Key, ResultRow>; }; template <typename Key, typename ResultRow> struct AddInputSelector<Key, ResultRow, true /*IsFilter*/> { // For Filter using T = Key; }; // To avoid writing 'typename' everywhere that we use types like 'Index' #define IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings) \ using CoeffRow = typename TypesAndSettings::CoeffRow; \ using ResultRow = typename TypesAndSettings::ResultRow; \ using Index = typename TypesAndSettings::Index; \ using Hash = typename TypesAndSettings::Hash; \ using Key = typename TypesAndSettings::Key; \ using Seed = typename TypesAndSettings::Seed; \ \ /* Some more additions */ \ using QueryInput = Key; \ using AddInput = typename ROCKSDB_NAMESPACE::ribbon::AddInputSelector< \ Key, ResultRow, TypesAndSettings::kIsFilter>::T; \ static constexpr auto kCoeffBits = \ static_cast<Index>(sizeof(CoeffRow) * 8U); \ \ /* Export to algorithm */ \ static constexpr bool kFirstCoeffAlwaysOne = \ TypesAndSettings::kFirstCoeffAlwaysOne; \ \ static_assert(sizeof(CoeffRow) + sizeof(ResultRow) + sizeof(Index) + \ sizeof(Hash) + sizeof(Key) + sizeof(Seed) + \ sizeof(QueryInput) + sizeof(AddInput) + kCoeffBits + \ kFirstCoeffAlwaysOne > \ 0, \ "avoid unused warnings, semicolon expected after macro call") #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4309) // cast truncating constant #pragma warning(disable : 4307) // arithmetic constant overflow #endif // StandardHasher: A standard implementation of concepts RibbonTypes, // PhsfQueryHasher, FilterQueryHasher, and BandingHasher from ribbon_alg.h. // // This implementation should be suitable for most all practical purposes // as it "behaves" across a wide range of settings, with little room left // for improvement. The key functionality in this hasher is generating // CoeffRows, starts, and (for filters) ResultRows, which could be ~150 // bits of data or more, from a modest hash of 64 or even just 32 bits, with // enough uniformity and bitwise independence to be close to "the best you // can do" with available hash information in terms of FP rate and // compactness. (64 bits recommended and sufficient for PHSF practical // purposes.) // // Another feature of this hasher is a minimal "premixing" of seeds before // they are provided to TypesAndSettings::HashFn in case that function does // not provide sufficiently independent hashes when iterating merely // sequentially on seeds. (This for example works around a problem with the // preview version 0.7.2 of XXH3 used in RocksDB, a.k.a. XXPH3 or Hash64, and // MurmurHash1 used in RocksDB, a.k.a. Hash.) We say this pre-mixing step // translates "ordinal seeds," which we iterate sequentially to find a // solution, into "raw seeds," with many more bits changing for each // iteration. The translation is an easily reversible lightweight mixing, // not suitable for hashing on its own. An advantage of this approach is that // StandardHasher can store just the raw seed (e.g. 64 bits) for fast query // times, while from the application perspective, we can limit to a small // number of ordinal keys (e.g. 64 in 6 bits) for saving in metadata. // // The default constructor initializes the seed to ordinal seed zero, which // is equal to raw seed zero. // template <class TypesAndSettings> class StandardHasher { public: IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings); inline Hash GetHash(const Key& key) const { return TypesAndSettings::HashFn(key, raw_seed_); }; // For when AddInput == pair<Key, ResultRow> (kIsFilter == false) inline Hash GetHash(const std::pair<Key, ResultRow>& bi) const { return GetHash(bi.first); }; inline Index GetStart(Hash h, Index num_starts) const { // This is "critical path" code because it's required before memory // lookup. // // FastRange gives us a fast and effective mapping from h to the // appropriate range. This depends most, sometimes exclusively, on // upper bits of h. // if (TypesAndSettings::kUseSmash) { // Extra logic to "smash" entries at beginning and end, for // better utilization. For example, without smash and with // kFirstCoeffAlwaysOne, there's about a 30% chance that the // first slot in the banding will be unused, and worse without // kFirstCoeffAlwaysOne. The ending slots are even less utilized // without smash. // // But since this only affects roughly kCoeffBits of the slots, // it's usually small enough to be ignorable (less computation in // this function) when number of slots is roughly 10k or larger. // // The best values for these smash weights might depend on how // densely you're packing entries, and also kCoeffBits, but this // seems to work well for roughly 95% success probability. // constexpr Index kFrontSmash = kCoeffBits / 4; constexpr Index kBackSmash = kCoeffBits / 4; Index start = FastRangeGeneric(h, num_starts + kFrontSmash + kBackSmash); start = std::max(start, kFrontSmash); start -= kFrontSmash; start = std::min(start, num_starts - 1); return start; } else { // For query speed, we allow small number of initial and final // entries to be under-utilized. // NOTE: This call statically enforces that Hash is equivalent to // either uint32_t or uint64_t. return FastRangeGeneric(h, num_starts); } } inline CoeffRow GetCoeffRow(Hash h) const { // This is not so much "critical path" code because it can be done in // parallel (instruction level) with memory lookup. // // When we might have many entries squeezed into a single start, // we need reasonably good remixing for CoeffRow. if (TypesAndSettings::kUseSmash) { // Reasonably good, reasonably fast, reasonably general. // Probably not 1:1 but probably close enough. Unsigned128 a = Multiply64to128(h, kAltCoeffFactor1); Unsigned128 b = Multiply64to128(h, kAltCoeffFactor2); auto cr = static_cast<CoeffRow>(b ^ (a << 64) ^ (a >> 64)); // Now ensure the value is non-zero if (kFirstCoeffAlwaysOne) { cr |= 1; } else { // Still have to ensure some bit is non-zero cr |= (cr == 0) ? 1 : 0; } return cr; } // If not kUseSmash, we ensure we're not squeezing many entries into a // single start, in part by ensuring num_starts > num_slots / 2. Thus, // here we do not need good remixing for CoeffRow, but just enough that // (a) every bit is reasonably independent from Start. // (b) every Hash-length bit subsequence of the CoeffRow has full or // nearly full entropy from h. // (c) if nontrivial bit subsequences within are correlated, it needs to // be more complicated than exact copy or bitwise not (at least without // kFirstCoeffAlwaysOne), or else there seems to be a kind of // correlated clustering effect. // (d) the CoeffRow is not zero, so that no one input on its own can // doom construction success. (Preferably a mix of 1's and 0's if // satisfying above.) // First, establish sufficient bitwise independence from Start, with // multiplication by a large random prime. // Note that we cast to Hash because if we use product bits beyond // original input size, that's going to correlate with Start (FastRange) // even with a (likely) different multiplier here. Hash a = h * kCoeffAndResultFactor; static_assert( sizeof(Hash) == sizeof(uint64_t) || sizeof(Hash) == sizeof(uint32_t), "Supported sizes"); // If that's big enough, we're done. If not, we have to expand it, // maybe up to 4x size. uint64_t b; if (sizeof(Hash) < sizeof(uint64_t)) { // Almost-trivial hash expansion (OK - see above), favoring roughly // equal number of 1's and 0's in result b = (uint64_t{a} << 32) ^ (a ^ kCoeffXor32); } else { b = a; } static_assert(sizeof(CoeffRow) <= sizeof(Unsigned128), "Supported sizes"); Unsigned128 c; if (sizeof(uint64_t) < sizeof(CoeffRow)) { // Almost-trivial hash expansion (OK - see above), favoring roughly // equal number of 1's and 0's in result c = (Unsigned128{b} << 64) ^ (b ^ kCoeffXor64); } else { c = b; } auto cr = static_cast<CoeffRow>(c); // Now ensure the value is non-zero if (kFirstCoeffAlwaysOne) { cr |= 1; } else if (sizeof(CoeffRow) == sizeof(Hash)) { // Still have to ensure some bit is non-zero cr |= (cr == 0) ? 1 : 0; } else { // (We did trivial expansion with constant xor, which ensures some // bits are non-zero.) } return cr; } inline ResultRow GetResultRowMask() const { // TODO: will be used with InterleavedSolutionStorage? // For now, all bits set (note: might be a small type so might need to // narrow after promotion) return static_cast<ResultRow>(~ResultRow{0}); } inline ResultRow GetResultRowFromHash(Hash h) const { if (TypesAndSettings::kIsFilter && !TypesAndSettings::kHomogeneous) { // This is not so much "critical path" code because it can be done in // parallel (instruction level) with memory lookup. // // ResultRow bits only needs to be independent from CoeffRow bits if // many entries might have the same start location, where "many" is // comparable to number of hash bits or kCoeffBits. If !kUseSmash // and num_starts > kCoeffBits, it is safe and efficient to draw from // the same bits computed for CoeffRow, which are reasonably // independent from Start. (Inlining and common subexpression // elimination with GetCoeffRow should make this // a single shared multiplication in generated code when !kUseSmash.) Hash a = h * kCoeffAndResultFactor; // The bits here that are *most* independent of Start are the highest // order bits (as in Knuth multiplicative hash). To make those the // most preferred for use in the result row, we do a bswap here. auto rr = static_cast<ResultRow>(EndianSwapValue(a)); return rr & GetResultRowMask(); } else { // Must be zero return 0; } } // For when AddInput == Key (kIsFilter == true) inline ResultRow GetResultRowFromInput(const Key&) const { // Must be zero return 0; } // For when AddInput == pair<Key, ResultRow> (kIsFilter == false) inline ResultRow GetResultRowFromInput( const std::pair<Key, ResultRow>& bi) const { // Simple extraction return bi.second; } // Seed tracking APIs - see class comment void SetRawSeed(Seed seed) { raw_seed_ = seed; } Seed GetRawSeed() { return raw_seed_; } void SetOrdinalSeed(Seed count) { // A simple, reversible mixing of any size (whole bytes) up to 64 bits. // This allows casting the raw seed to any smaller size we use for // ordinal seeds without risk of duplicate raw seeds for unique ordinal // seeds. // Seed type might be smaller than numerical promotion size, but Hash // should be at least that size, so we use Hash as intermediate type. static_assert(sizeof(Seed) <= sizeof(Hash), "Hash must be at least size of Seed"); // Multiply by a large random prime (one-to-one for any prefix of bits) Hash tmp = count * kToRawSeedFactor; // Within-byte one-to-one mixing static_assert((kSeedMixMask & (kSeedMixMask >> kSeedMixShift)) == 0, "Illegal mask+shift"); tmp ^= (tmp & kSeedMixMask) >> kSeedMixShift; raw_seed_ = static_cast<Seed>(tmp); // dynamic verification assert(GetOrdinalSeed() == count); } Seed GetOrdinalSeed() { Hash tmp = raw_seed_; // Within-byte one-to-one mixing (its own inverse) tmp ^= (tmp & kSeedMixMask) >> kSeedMixShift; // Multiply by 64-bit multiplicative inverse static_assert(kToRawSeedFactor * kFromRawSeedFactor == Hash{1}, "Must be inverses"); return static_cast<Seed>(tmp * kFromRawSeedFactor); } protected: // For expanding hash: // large random prime static constexpr Hash kCoeffAndResultFactor = static_cast<Hash>(0xc28f82822b650bedULL); static constexpr uint64_t kAltCoeffFactor1 = 0x876f170be4f1fcb9U; static constexpr uint64_t kAltCoeffFactor2 = 0xf0433a4aecda4c5fU; // random-ish data static constexpr uint32_t kCoeffXor32 = 0xa6293635U; static constexpr uint64_t kCoeffXor64 = 0xc367844a6e52731dU; // For pre-mixing seeds static constexpr Hash kSeedMixMask = static_cast<Hash>(0xf0f0f0f0f0f0f0f0ULL); static constexpr unsigned kSeedMixShift = 4U; static constexpr Hash kToRawSeedFactor = static_cast<Hash>(0xc78219a23eeadd03ULL); static constexpr Hash kFromRawSeedFactor = static_cast<Hash>(0xfe1a137d14b475abULL); // See class description Seed raw_seed_ = 0; }; // StandardRehasher (and StandardRehasherAdapter): A variant of // StandardHasher that uses the same type for keys as for hashes. // This is primarily intended for building a Ribbon filter // from existing hashes without going back to original inputs in // order to apply a different seed. This hasher seeds a 1-to-1 mixing // transformation to apply a seed to an existing hash. (Untested for // hash-sized keys that are not already uniformly distributed.) This // transformation builds on the seed pre-mixing done in StandardHasher. // // Testing suggests essentially no degradation of solution success rate // vs. going back to original inputs when changing hash seeds. For example: // Average re-seeds for solution with r=128, 1.02x overhead, and ~100k keys // is about 1.10 for both StandardHasher and StandardRehasher. // // StandardRehasher is not really recommended for general PHSFs (not // filters) because a collision in the original hash could prevent // construction despite re-seeding the Rehasher. (Such collisions // do not interfere with filter construction.) // // concept RehasherTypesAndSettings: like TypesAndSettings but // does not require Key or HashFn. template <class RehasherTypesAndSettings> class StandardRehasherAdapter : public RehasherTypesAndSettings { public: using Hash = typename RehasherTypesAndSettings::Hash; using Key = Hash; using Seed = typename RehasherTypesAndSettings::Seed; static Hash HashFn(const Hash& input, Seed raw_seed) { // Note: raw_seed is already lightly pre-mixed, and this multiplication // by a large prime is sufficient mixing (low-to-high bits) on top of // that for good FastRange results, which depends primarily on highest // bits. (The hashed CoeffRow and ResultRow are less sensitive to // mixing than Start.) // Also note: did consider adding ^ (input >> some) before the // multiplication, but doesn't appear to be necessary. return (input ^ raw_seed) * kRehashFactor; } private: static constexpr Hash kRehashFactor = static_cast<Hash>(0x6193d459236a3a0dULL); }; // See comment on StandardRehasherAdapter template <class RehasherTypesAndSettings> using StandardRehasher = StandardHasher<StandardRehasherAdapter<RehasherTypesAndSettings>>; #ifdef _MSC_VER #pragma warning(pop) #endif // Especially with smaller hashes (e.g. 32 bit), there can be noticeable // false positives due to collisions in the Hash returned by GetHash. // This function returns the expected FP rate due to those collisions, // which can be added to the expected FP rate from the underlying data // structure. (Note: technically, a + b is only a good approximation of // 1-(1-a)(1-b) == a + b - a*b, if a and b are much closer to 0 than to 1.) // The number of entries added can be a double here in case it's an // average. template <class Hasher, typename Numerical> double ExpectedCollisionFpRate(const Hasher& hasher, Numerical added) { // Standardize on the 'double' specialization return ExpectedCollisionFpRate(hasher, 1.0 * added); } template <class Hasher> double ExpectedCollisionFpRate(const Hasher& /*hasher*/, double added) { // Technically, there could be overlap among the added, but ignoring that // is typically close enough. return added / std::pow(256.0, sizeof(typename Hasher::Hash)); } // StandardBanding: a canonical implementation of BandingStorage and // BacktrackStorage, with convenience API for banding (solving with on-the-fly // Gaussian elimination) with and without backtracking. template <class TypesAndSettings> class StandardBanding : public StandardHasher<TypesAndSettings> { public: IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings); StandardBanding(Index num_slots = 0, Index backtrack_size = 0) { Reset(num_slots, backtrack_size); } void Reset(Index num_slots, Index backtrack_size = 0) { if (num_slots == 0) { // Unusual (TypesAndSettings::kAllowZeroStarts) or "uninitialized" num_starts_ = 0; } else { // Normal assert(num_slots >= kCoeffBits); if (num_slots > num_slots_allocated_) { coeff_rows_.reset(new CoeffRow[num_slots]()); if (!TypesAndSettings::kHomogeneous) { // Note: don't strictly have to zero-init result_rows, // except possible information leakage, etc ;) result_rows_.reset(new ResultRow[num_slots]()); } num_slots_allocated_ = num_slots; } else { for (Index i = 0; i < num_slots; ++i) { coeff_rows_[i] = 0; if (!TypesAndSettings::kHomogeneous) { // Note: don't strictly have to zero-init result_rows, // except possible information leakage, etc ;) result_rows_[i] = 0; } } } num_starts_ = num_slots - kCoeffBits + 1; } EnsureBacktrackSize(backtrack_size); } void EnsureBacktrackSize(Index backtrack_size) { if (backtrack_size > backtrack_size_) { backtrack_.reset(new Index[backtrack_size]); backtrack_size_ = backtrack_size; } } // ******************************************************************** // From concept BandingStorage inline bool UsePrefetch() const { // A rough guesstimate of when prefetching during construction pays off. // TODO: verify/validate return num_starts_ > 1500; } inline void Prefetch(Index i) const { PREFETCH(&coeff_rows_[i], 1 /* rw */, 1 /* locality */); if (!TypesAndSettings::kHomogeneous) { PREFETCH(&result_rows_[i], 1 /* rw */, 1 /* locality */); } } inline void LoadRow(Index i, CoeffRow* cr, ResultRow* rr, bool for_back_subst) const { *cr = coeff_rows_[i]; if (TypesAndSettings::kHomogeneous) { if (for_back_subst && *cr == 0) { // Cheap pseudorandom data to fill unconstrained solution rows *rr = static_cast<ResultRow>(i * 0x9E3779B185EBCA87ULL); } else { *rr = 0; } } else { *rr = result_rows_[i]; } } inline void StoreRow(Index i, CoeffRow cr, ResultRow rr) { coeff_rows_[i] = cr; if (TypesAndSettings::kHomogeneous) { assert(rr == 0); } else { result_rows_[i] = rr; } } inline Index GetNumStarts() const { return num_starts_; } // from concept BacktrackStorage, for when backtracking is used inline bool UseBacktrack() const { return true; } inline void BacktrackPut(Index i, Index to_save) { backtrack_[i] = to_save; } inline Index BacktrackGet(Index i) const { return backtrack_[i]; } // ******************************************************************** // Some useful API, still somewhat low level. Here an input is // a Key for filters, or std::pair<Key, ResultRow> for general PHSF. // Adds a range of inputs to the banding, returning true if successful. // False means none or some may have been successfully added, so it's // best to Reset this banding before any further use. // // Adding can fail even before all the "slots" are completely "full". // template <typename InputIterator> bool AddRange(InputIterator begin, InputIterator end) { assert(num_starts_ > 0 || TypesAndSettings::kAllowZeroStarts); if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) { // Unusual. Can't add any in this case. return begin == end; } // Normal return BandingAddRange(this, *this, begin, end); } // Adds a range of inputs to the banding, returning true if successful, // or if unsuccessful, rolls back to state before this call and returns // false. Caller guarantees that the number of inputs in this batch // does not exceed `backtrack_size` provided to Reset. // // Adding can fail even before all the "slots" are completely "full". // template <typename InputIterator> bool AddRangeOrRollBack(InputIterator begin, InputIterator end) { assert(num_starts_ > 0 || TypesAndSettings::kAllowZeroStarts); if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) { // Unusual. Can't add any in this case. return begin == end; } // else Normal return BandingAddRange(this, this, *this, begin, end); } // Adds a single input to the banding, returning true if successful. // If unsuccessful, returns false and banding state is unchanged. // // Adding can fail even before all the "slots" are completely "full". // bool Add(const AddInput& input) { // Pointer can act as iterator return AddRange(&input, &input + 1); } // Return the number of "occupied" rows (with non-zero coefficients stored). Index GetOccupiedCount() const { Index count = 0; if (num_starts_ > 0) { const Index num_slots = num_starts_ + kCoeffBits - 1; for (Index i = 0; i < num_slots; ++i) { if (coeff_rows_[i] != 0) { ++count; } } } return count; } // Returns whether a row is "occupied" in the banding (non-zero // coefficients stored). (Only recommended for debug/test) bool IsOccupied(Index i) { return coeff_rows_[i] != 0; } // ******************************************************************** // High-level API // Iteratively (a) resets the structure for `num_slots`, (b) attempts // to add the range of inputs, and (c) if unsuccessful, chooses next // hash seed, until either successful or unsuccessful with all the // allowed seeds. Returns true if successful. In that case, use // GetOrdinalSeed() or GetRawSeed() to get the successful seed. // // The allowed sequence of hash seeds is determined by // `starting_ordinal_seed,` the first ordinal seed to be attempted // (see StandardHasher), and `ordinal_seed_mask,` a bit mask (power of // two minus one) for the range of ordinal seeds to consider. The // max number of seeds considered will be ordinal_seed_mask + 1. // For filters we suggest `starting_ordinal_seed` be chosen randomly // or round-robin, to minimize false positive correlations between keys. // // If unsuccessful, how best to continue is going to be application // specific. It should be possible to choose parameters such that // failure is extremely unlikely, using max_seed around 32 to 64. // (TODO: APIs to help choose parameters) One option for fallback in // constructing a filter is to construct a Bloom filter instead. // Increasing num_slots is an option, but should not be used often // unless construction maximum latency is a concern (rather than // average running time of construction). Instead, choose parameters // appropriately and trust that seeds are independent. (Also, // increasing num_slots without changing hash seed would have a // significant correlation in success, rather than independence.) template <typename InputIterator> bool ResetAndFindSeedToSolve(Index num_slots, InputIterator begin, InputIterator end, Seed starting_ordinal_seed = 0U, Seed ordinal_seed_mask = 63U) { // power of 2 minus 1 assert((ordinal_seed_mask & (ordinal_seed_mask + 1)) == 0); // starting seed is within mask assert((starting_ordinal_seed & ordinal_seed_mask) == starting_ordinal_seed); starting_ordinal_seed &= ordinal_seed_mask; // if not debug Seed cur_ordinal_seed = starting_ordinal_seed; do { StandardHasher<TypesAndSettings>::SetOrdinalSeed(cur_ordinal_seed); Reset(num_slots); bool success = AddRange(begin, end); if (success) { return true; } cur_ordinal_seed = (cur_ordinal_seed + 1) & ordinal_seed_mask; } while (cur_ordinal_seed != starting_ordinal_seed); // Reached limit by circling around return false; } static std::size_t EstimateMemoryUsage(uint32_t num_slots) { std::size_t bytes_coeff_rows = num_slots * sizeof(CoeffRow); std::size_t bytes_result_rows = num_slots * sizeof(ResultRow); std::size_t bytes_backtrack = 0; std::size_t bytes_banding = bytes_coeff_rows + bytes_result_rows + bytes_backtrack; return bytes_banding; } protected: // TODO: explore combining in a struct std::unique_ptr<CoeffRow[]> coeff_rows_; std::unique_ptr<ResultRow[]> result_rows_; // We generally store "starts" instead of slots for speed of GetStart(), // as in StandardHasher. Index num_starts_ = 0; Index num_slots_allocated_ = 0; std::unique_ptr<Index[]> backtrack_; Index backtrack_size_ = 0; }; // Implements concept SimpleSolutionStorage, mostly for demonstration // purposes. This is "in memory" only because it does not handle byte // ordering issues for serialization. template <class TypesAndSettings> class InMemSimpleSolution { public: IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings); void PrepareForNumStarts(Index num_starts) { if (TypesAndSettings::kAllowZeroStarts && num_starts == 0) { // Unusual num_starts_ = 0; } else { // Normal const Index num_slots = num_starts + kCoeffBits - 1; assert(num_slots >= kCoeffBits); if (num_slots > num_slots_allocated_) { // Do not need to init the memory solution_rows_.reset(new ResultRow[num_slots]); num_slots_allocated_ = num_slots; } num_starts_ = num_starts; } } Index GetNumStarts() const { return num_starts_; } ResultRow Load(Index slot_num) const { return solution_rows_[slot_num]; } void Store(Index slot_num, ResultRow solution_row) { solution_rows_[slot_num] = solution_row; } // ******************************************************************** // High-level API template <typename BandingStorage> void BackSubstFrom(const BandingStorage& bs) { if (TypesAndSettings::kAllowZeroStarts && bs.GetNumStarts() == 0) { // Unusual PrepareForNumStarts(0); } else { // Normal SimpleBackSubst(this, bs); } } template <typename PhsfQueryHasher> ResultRow PhsfQuery(const Key& input, const PhsfQueryHasher& hasher) const { // assert(!TypesAndSettings::kIsFilter); Can be useful in testing if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) { // Unusual return 0; } else { // Normal return SimplePhsfQuery(input, hasher, *this); } } template <typename FilterQueryHasher> bool FilterQuery(const Key& input, const FilterQueryHasher& hasher) const { assert(TypesAndSettings::kIsFilter); if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) { // Unusual. Zero starts presumes no keys added -> always false return false; } else { // Normal, or upper_num_columns_ == 0 means "no space for data" and // thus will always return true. return SimpleFilterQuery(input, hasher, *this); } } double ExpectedFpRate() const { assert(TypesAndSettings::kIsFilter); if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) { // Unusual, but we don't have FPs if we always return false. return 0.0; } // else Normal // Each result (solution) bit (column) cuts FP rate in half return std::pow(0.5, 8U * sizeof(ResultRow)); } // ******************************************************************** // Static high-level API // Round up to a number of slots supported by this structure. Note that // this needs to be must be taken into account for the banding if this // solution layout/storage is to be used. static Index RoundUpNumSlots(Index num_slots) { // Must be at least kCoeffBits for at least one start // Or if not smash, even more because hashing not equipped // for stacking up so many entries on a single start location auto min_slots = kCoeffBits * (TypesAndSettings::kUseSmash ? 1 : 2); return std::max(num_slots, static_cast<Index>(min_slots)); } protected: // We generally store "starts" instead of slots for speed of GetStart(), // as in StandardHasher. Index num_starts_ = 0; Index num_slots_allocated_ = 0; std::unique_ptr<ResultRow[]> solution_rows_; }; // Implements concept InterleavedSolutionStorage always using little-endian // byte order, so easy for serialization/deserialization. This implementation // fully supports fractional bits per key, where any number of segments // (number of bytes multiple of sizeof(CoeffRow)) can be used with any number // of slots that is a multiple of kCoeffBits. // // The structure is passed an externally allocated/de-allocated byte buffer // that is optionally pre-populated (from storage) for answering queries, // or can be populated by BackSubstFrom. // template <class TypesAndSettings> class SerializableInterleavedSolution { public: IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings); // Does not take ownership of `data` but uses it (up to `data_len` bytes) // throughout lifetime SerializableInterleavedSolution(char* data, size_t data_len) : data_(data), data_len_(data_len) {} void PrepareForNumStarts(Index num_starts) { assert(num_starts == 0 || (num_starts % kCoeffBits == 1)); num_starts_ = num_starts; InternalConfigure(); } Index GetNumStarts() const { return num_starts_; } Index GetNumBlocks() const { const Index num_slots = num_starts_ + kCoeffBits - 1; return num_slots / kCoeffBits; } Index GetUpperNumColumns() const { return upper_num_columns_; } Index GetUpperStartBlock() const { return upper_start_block_; } Index GetNumSegments() const { return static_cast<Index>(data_len_ / sizeof(CoeffRow)); } CoeffRow LoadSegment(Index segment_num) const { assert(data_ != nullptr); // suppress clang analyzer report return DecodeFixedGeneric<CoeffRow>(data_ + segment_num * sizeof(CoeffRow)); } void StoreSegment(Index segment_num, CoeffRow val) { assert(data_ != nullptr); // suppress clang analyzer report EncodeFixedGeneric(data_ + segment_num * sizeof(CoeffRow), val); } void PrefetchSegmentRange(Index begin_segment_num, Index end_segment_num) const { if (end_segment_num == begin_segment_num) { // Nothing to do return; } char* cur = data_ + begin_segment_num * sizeof(CoeffRow); char* last = data_ + (end_segment_num - 1) * sizeof(CoeffRow); while (cur < last) { PREFETCH(cur, 0 /* rw */, 1 /* locality */); cur += CACHE_LINE_SIZE; } PREFETCH(last, 0 /* rw */, 1 /* locality */); } // ******************************************************************** // High-level API void ConfigureForNumBlocks(Index num_blocks) { if (num_blocks == 0) { PrepareForNumStarts(0); } else { PrepareForNumStarts(num_blocks * kCoeffBits - kCoeffBits + 1); } } void ConfigureForNumSlots(Index num_slots) { assert(num_slots % kCoeffBits == 0); ConfigureForNumBlocks(num_slots / kCoeffBits); } template <typename BandingStorage> void BackSubstFrom(const BandingStorage& bs) { if (TypesAndSettings::kAllowZeroStarts && bs.GetNumStarts() == 0) { // Unusual PrepareForNumStarts(0); } else { // Normal InterleavedBackSubst(this, bs); } } template <typename PhsfQueryHasher> ResultRow PhsfQuery(const Key& input, const PhsfQueryHasher& hasher) const { // assert(!TypesAndSettings::kIsFilter); Can be useful in testing if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) { // Unusual return 0; } else { // Normal // NOTE: not using a struct to encourage compiler optimization Hash hash; Index segment_num; Index num_columns; Index start_bit; InterleavedPrepareQuery(input, hasher, *this, &hash, &segment_num, &num_columns, &start_bit); return InterleavedPhsfQuery(hash, segment_num, num_columns, start_bit, hasher, *this); } } template <typename FilterQueryHasher> bool FilterQuery(const Key& input, const FilterQueryHasher& hasher) const { assert(TypesAndSettings::kIsFilter); if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) { // Unusual. Zero starts presumes no keys added -> always false return false; } else { // Normal, or upper_num_columns_ == 0 means "no space for data" and // thus will always return true. // NOTE: not using a struct to encourage compiler optimization Hash hash; Index segment_num; Index num_columns; Index start_bit; InterleavedPrepareQuery(input, hasher, *this, &hash, &segment_num, &num_columns, &start_bit); return InterleavedFilterQuery(hash, segment_num, num_columns, start_bit, hasher, *this); } } double ExpectedFpRate() const { assert(TypesAndSettings::kIsFilter); if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) { // Unusual. Zero starts presumes no keys added -> always false return 0.0; } // else Normal // Note: Ignoring smash setting; still close enough in that case double lower_portion = (upper_start_block_ * 1.0 * kCoeffBits) / num_starts_; // Each result (solution) bit (column) cuts FP rate in half. Weight that // for upper and lower number of bits (columns). return lower_portion * std::pow(0.5, upper_num_columns_ - 1) + (1.0 - lower_portion) * std::pow(0.5, upper_num_columns_); } // ******************************************************************** // Static high-level API // Round up to a number of slots supported by this structure. Note that // this needs to be must be taken into account for the banding if this // solution layout/storage is to be used. static Index RoundUpNumSlots(Index num_slots) { // Must be multiple of kCoeffBits Index corrected = (num_slots + kCoeffBits - 1) / kCoeffBits * kCoeffBits; // Do not use num_starts==1 unless kUseSmash, because the hashing // might not be equipped for stacking up so many entries on a // single start location. if (!TypesAndSettings::kUseSmash && corrected == kCoeffBits) { corrected += kCoeffBits; } return corrected; } // Round down to a number of slots supported by this structure. Note that // this needs to be must be taken into account for the banding if this // solution layout/storage is to be used. static Index RoundDownNumSlots(Index num_slots) { // Must be multiple of kCoeffBits Index corrected = num_slots / kCoeffBits * kCoeffBits; // Do not use num_starts==1 unless kUseSmash, because the hashing // might not be equipped for stacking up so many entries on a // single start location. if (!TypesAndSettings::kUseSmash && corrected == kCoeffBits) { corrected = 0; } return corrected; } // Compute the number of bytes for a given number of slots and desired // FP rate. Since desired FP rate might not be exactly achievable, // rounding_bias32==0 means to always round toward lower FP rate // than desired (more bytes); rounding_bias32==max uint32_t means always // round toward higher FP rate than desired (fewer bytes); other values // act as a proportional threshold or bias between the two. static size_t GetBytesForFpRate(Index num_slots, double desired_fp_rate, uint32_t rounding_bias32) { return InternalGetBytesForFpRate(num_slots, desired_fp_rate, 1.0 / desired_fp_rate, rounding_bias32); } // The same, but specifying desired accuracy as 1.0 / FP rate, or // one_in_fp_rate. E.g. desired_one_in_fp_rate=100 means 1% FP rate. static size_t GetBytesForOneInFpRate(Index num_slots, double desired_one_in_fp_rate, uint32_t rounding_bias32) { return InternalGetBytesForFpRate(num_slots, 1.0 / desired_one_in_fp_rate, desired_one_in_fp_rate, rounding_bias32); } protected: static size_t InternalGetBytesForFpRate(Index num_slots, double desired_fp_rate, double desired_one_in_fp_rate, uint32_t rounding_bias32) { assert(TypesAndSettings::kIsFilter); if (TypesAndSettings::kAllowZeroStarts) { if (num_slots == 0) { // Unusual. Zero starts presumes no keys added -> always false (no FPs) return 0U; } } else { assert(num_slots > 0); } // Must be rounded up already. assert(RoundUpNumSlots(num_slots) == num_slots); if (desired_one_in_fp_rate > 1.0 && desired_fp_rate < 1.0) { // Typical: less than 100% FP rate if (desired_one_in_fp_rate <= static_cast<ResultRow>(-1)) { // Typical: Less than maximum result row entropy ResultRow rounded = static_cast<ResultRow>(desired_one_in_fp_rate); int lower_columns = FloorLog2(rounded); double lower_columns_fp_rate = std::pow(2.0, -lower_columns); double upper_columns_fp_rate = std::pow(2.0, -(lower_columns + 1)); // Floating point don't let me down! assert(lower_columns_fp_rate >= desired_fp_rate); assert(upper_columns_fp_rate <= desired_fp_rate); double lower_portion = (desired_fp_rate - upper_columns_fp_rate) / (lower_columns_fp_rate - upper_columns_fp_rate); // Floating point don't let me down! assert(lower_portion >= 0.0); assert(lower_portion <= 1.0); double rounding_bias = (rounding_bias32 + 0.5) / double{0x100000000}; assert(rounding_bias > 0.0); assert(rounding_bias < 1.0); // Note: Ignoring smash setting; still close enough in that case Index num_starts = num_slots - kCoeffBits + 1; // Lower upper_start_block means lower FP rate (higher accuracy) Index upper_start_block = static_cast<Index>( (lower_portion * num_starts + rounding_bias) / kCoeffBits); Index num_blocks = num_slots / kCoeffBits; assert(upper_start_block < num_blocks); // Start by assuming all blocks use lower number of columns Index num_segments = num_blocks * static_cast<Index>(lower_columns); // Correct by 1 each for blocks using upper number of columns num_segments += (num_blocks - upper_start_block); // Total bytes return num_segments * sizeof(CoeffRow); } else { // one_in_fp_rate too big, thus requested FP rate is smaller than // supported. Use max number of columns for minimum supported FP rate. return num_slots * sizeof(ResultRow); } } else { // Effectively asking for 100% FP rate, or NaN etc. if (TypesAndSettings::kAllowZeroStarts) { // Zero segments return 0U; } else { // One segment (minimum size, maximizing FP rate) return sizeof(CoeffRow); } } } void InternalConfigure() { const Index num_blocks = GetNumBlocks(); Index num_segments = GetNumSegments(); if (num_blocks == 0) { // Exceptional upper_num_columns_ = 0; upper_start_block_ = 0; } else { // Normal upper_num_columns_ = (num_segments + /*round up*/ num_blocks - 1) / num_blocks; upper_start_block_ = upper_num_columns_ * num_blocks - num_segments; // Unless that's more columns than supported by ResultRow data type if (upper_num_columns_ > 8U * sizeof(ResultRow)) { // Use maximum columns (there will be space unused) upper_num_columns_ = static_cast<Index>(8U * sizeof(ResultRow)); upper_start_block_ = 0; num_segments = num_blocks * upper_num_columns_; } } // Update data_len_ for correct rounding and/or unused space // NOTE: unused space stays gone if we PrepareForNumStarts again. // We are prioritizing minimizing the number of fields over making // the "unusued space" feature work well. data_len_ = num_segments * sizeof(CoeffRow); } char* const data_; size_t data_len_; Index num_starts_ = 0; Index upper_num_columns_ = 0; Index upper_start_block_ = 0; }; } // namespace ribbon } // namespace ROCKSDB_NAMESPACE // For convenience working with templates #define IMPORT_RIBBON_IMPL_TYPES(TypesAndSettings) \ using Hasher = ROCKSDB_NAMESPACE::ribbon::StandardHasher<TypesAndSettings>; \ using Banding = \ ROCKSDB_NAMESPACE::ribbon::StandardBanding<TypesAndSettings>; \ using SimpleSoln = \ ROCKSDB_NAMESPACE::ribbon::InMemSimpleSolution<TypesAndSettings>; \ using InterleavedSoln = \ ROCKSDB_NAMESPACE::ribbon::SerializableInterleavedSolution< \ TypesAndSettings>; \ static_assert(sizeof(Hasher) + sizeof(Banding) + sizeof(SimpleSoln) + \ sizeof(InterleavedSoln) > \ 0, \ "avoid unused warnings, semicolon expected after macro call")