// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #ifndef ROCKSDB_LITE #include "utilities/transactions/transaction_util.h" #include #include #include #include "db/db_impl/db_impl.h" #include "rocksdb/status.h" #include "rocksdb/utilities/write_batch_with_index.h" #include "util/string_util.h" namespace rocksdb { Status TransactionUtil::CheckKeyForConflicts( DBImpl* db_impl, ColumnFamilyHandle* column_family, const std::string& key, SequenceNumber snap_seq, bool cache_only, ReadCallback* snap_checker, SequenceNumber min_uncommitted) { Status result; auto cfh = reinterpret_cast(column_family); auto cfd = cfh->cfd(); SuperVersion* sv = db_impl->GetAndRefSuperVersion(cfd); if (sv == nullptr) { result = Status::InvalidArgument("Could not access column family " + cfh->GetName()); } if (result.ok()) { SequenceNumber earliest_seq = db_impl->GetEarliestMemTableSequenceNumber(sv, true); result = CheckKey(db_impl, sv, earliest_seq, snap_seq, key, cache_only, snap_checker, min_uncommitted); db_impl->ReturnAndCleanupSuperVersion(cfd, sv); } return result; } Status TransactionUtil::CheckKey(DBImpl* db_impl, SuperVersion* sv, SequenceNumber earliest_seq, SequenceNumber snap_seq, const std::string& key, bool cache_only, ReadCallback* snap_checker, SequenceNumber min_uncommitted) { // When `min_uncommitted` is provided, keys are not always committed // in sequence number order, and `snap_checker` is used to check whether // specific sequence number is in the database is visible to the transaction. // So `snap_checker` must be provided. assert(min_uncommitted == kMaxSequenceNumber || snap_checker != nullptr); Status result; bool need_to_read_sst = false; // Since it would be too slow to check the SST files, we will only use // the memtables to check whether there have been any recent writes // to this key after it was accessed in this transaction. But if the // Memtables do not contain a long enough history, we must fail the // transaction. if (earliest_seq == kMaxSequenceNumber) { // The age of this memtable is unknown. Cannot rely on it to check // for recent writes. This error shouldn't happen often in practice as // the Memtable should have a valid earliest sequence number except in some // corner cases (such as error cases during recovery). need_to_read_sst = true; if (cache_only) { result = Status::TryAgain( "Transaction ould not check for conflicts as the MemTable does not " "countain a long enough history to check write at SequenceNumber: ", ToString(snap_seq)); } } else if (snap_seq < earliest_seq || min_uncommitted <= earliest_seq) { // Use <= for min_uncommitted since earliest_seq is actually the largest sec // before this memtable was created need_to_read_sst = true; if (cache_only) { // The age of this memtable is too new to use to check for recent // writes. char msg[300]; snprintf(msg, sizeof(msg), "Transaction could not check for conflicts for operation at " "SequenceNumber %" PRIu64 " as the MemTable only contains changes newer than " "SequenceNumber %" PRIu64 ". Increasing the value of the " "max_write_buffer_size_to_maintain option could reduce the " "frequency " "of this error.", snap_seq, earliest_seq); result = Status::TryAgain(msg); } } if (result.ok()) { SequenceNumber seq = kMaxSequenceNumber; bool found_record_for_key = false; // When min_uncommitted == kMaxSequenceNumber, writes are committed in // sequence number order, so only keys larger than `snap_seq` can cause // conflict. // When min_uncommitted != kMaxSequenceNumber, keys lower than // min_uncommitted will not triggered conflicts, while keys larger than // min_uncommitted might create conflicts, so we need to read them out // from the DB, and call callback to snap_checker to determine. So only // keys lower than min_uncommitted can be skipped. SequenceNumber lower_bound_seq = (min_uncommitted == kMaxSequenceNumber) ? snap_seq : min_uncommitted; Status s = db_impl->GetLatestSequenceForKey(sv, key, !need_to_read_sst, lower_bound_seq, &seq, &found_record_for_key); if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) { result = s; } else if (found_record_for_key) { bool write_conflict = snap_checker == nullptr ? snap_seq < seq : !snap_checker->IsVisible(seq); if (write_conflict) { result = Status::Busy(); } } } return result; } Status TransactionUtil::CheckKeysForConflicts(DBImpl* db_impl, const TransactionKeyMap& key_map, bool cache_only) { Status result; for (auto& key_map_iter : key_map) { uint32_t cf_id = key_map_iter.first; const auto& keys = key_map_iter.second; SuperVersion* sv = db_impl->GetAndRefSuperVersion(cf_id); if (sv == nullptr) { result = Status::InvalidArgument("Could not access column family " + ToString(cf_id)); break; } SequenceNumber earliest_seq = db_impl->GetEarliestMemTableSequenceNumber(sv, true); // For each of the keys in this transaction, check to see if someone has // written to this key since the start of the transaction. for (const auto& key_iter : keys) { const auto& key = key_iter.first; const SequenceNumber key_seq = key_iter.second.seq; result = CheckKey(db_impl, sv, earliest_seq, key_seq, key, cache_only); if (!result.ok()) { break; } } db_impl->ReturnAndCleanupSuperVersion(cf_id, sv); if (!result.ok()) { break; } } return result; } } // namespace rocksdb #endif // ROCKSDB_LITE