// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/db_impl.h" #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "db/builder.h" #include "db/compaction_job.h" #include "db/db_iter.h" #include "db/dbformat.h" #include "db/event_helpers.h" #include "db/filename.h" #include "db/flush_job.h" #include "db/forward_iterator.h" #include "db/job_context.h" #include "db/log_reader.h" #include "db/log_writer.h" #include "db/managed_iterator.h" #include "db/memtable.h" #include "db/memtable_list.h" #include "db/merge_context.h" #include "db/merge_helper.h" #include "db/table_cache.h" #include "db/table_properties_collector.h" #include "db/transaction_log_impl.h" #include "db/version_set.h" #include "db/write_batch_internal.h" #include "db/write_callback.h" #include "db/writebuffer.h" #include "port/likely.h" #include "port/port.h" #include "rocksdb/cache.h" #include "rocksdb/compaction_filter.h" #include "rocksdb/db.h" #include "rocksdb/delete_scheduler.h" #include "rocksdb/env.h" #include "rocksdb/merge_operator.h" #include "rocksdb/statistics.h" #include "rocksdb/status.h" #include "rocksdb/table.h" #include "rocksdb/version.h" #include "table/block.h" #include "table/block_based_table_factory.h" #include "table/merger.h" #include "table/table_builder.h" #include "table/two_level_iterator.h" #include "util/auto_roll_logger.h" #include "util/autovector.h" #include "util/build_version.h" #include "util/coding.h" #include "util/compression.h" #include "util/crc32c.h" #include "util/db_info_dumper.h" #include "util/file_reader_writer.h" #include "util/file_util.h" #include "util/hash_linklist_rep.h" #include "util/hash_skiplist_rep.h" #include "util/iostats_context_imp.h" #include "util/log_buffer.h" #include "util/logging.h" #include "util/mutexlock.h" #include "util/perf_context_imp.h" #include "util/stop_watch.h" #include "util/string_util.h" #include "util/sync_point.h" #include "util/thread_status_updater.h" #include "util/thread_status_util.h" #include "util/xfunc.h" namespace rocksdb { const std::string kDefaultColumnFamilyName("default"); void DumpRocksDBBuildVersion(Logger * log); struct DBImpl::WriteContext { autovector superversions_to_free_; autovector memtables_to_free_; ~WriteContext() { for (auto& sv : superversions_to_free_) { delete sv; } for (auto& m : memtables_to_free_) { delete m; } } }; Options SanitizeOptions(const std::string& dbname, const InternalKeyComparator* icmp, const Options& src) { auto db_options = SanitizeOptions(dbname, DBOptions(src)); auto cf_options = SanitizeOptions(db_options, icmp, ColumnFamilyOptions(src)); return Options(db_options, cf_options); } DBOptions SanitizeOptions(const std::string& dbname, const DBOptions& src) { DBOptions result = src; // result.max_open_files means an "infinite" open files. if (result.max_open_files != -1) { int max_max_open_files = port::GetMaxOpenFiles(); if (max_max_open_files == -1) { max_max_open_files = 1000000; } ClipToRange(&result.max_open_files, 20, max_max_open_files); } if (result.info_log == nullptr) { Status s = CreateLoggerFromOptions(dbname, result.db_log_dir, src.env, result, &result.info_log); if (!s.ok()) { // No place suitable for logging result.info_log = nullptr; } } result.env->IncBackgroundThreadsIfNeeded(src.max_background_compactions, Env::Priority::LOW); result.env->IncBackgroundThreadsIfNeeded(src.max_background_flushes, Env::Priority::HIGH); if (result.rate_limiter.get() != nullptr) { if (result.bytes_per_sync == 0) { result.bytes_per_sync = 1024 * 1024; } } if (result.wal_dir.empty()) { // Use dbname as default result.wal_dir = dbname; } if (result.wal_dir.back() == '/') { result.wal_dir = result.wal_dir.substr(0, result.wal_dir.size() - 1); } if (result.db_paths.size() == 0) { result.db_paths.emplace_back(dbname, std::numeric_limits::max()); } if (result.compaction_readahead_size > 0) { result.new_table_reader_for_compaction_inputs = true; } return result; } namespace { Status SanitizeOptionsByTable( const DBOptions& db_opts, const std::vector& column_families) { Status s; for (auto cf : column_families) { s = cf.options.table_factory->SanitizeOptions(db_opts, cf.options); if (!s.ok()) { return s; } } return Status::OK(); } CompressionType GetCompressionFlush(const ImmutableCFOptions& ioptions) { // Compressing memtable flushes might not help unless the sequential load // optimization is used for leveled compaction. Otherwise the CPU and // latency overhead is not offset by saving much space. bool can_compress; if (ioptions.compaction_style == kCompactionStyleUniversal) { can_compress = (ioptions.compaction_options_universal.compression_size_percent < 0); } else { // For leveled compress when min_level_to_compress == 0. can_compress = ioptions.compression_per_level.empty() || ioptions.compression_per_level[0] != kNoCompression; } if (can_compress) { return ioptions.compression; } else { return kNoCompression; } } void DumpSupportInfo(Logger* logger) { Log(InfoLogLevel::INFO_LEVEL, logger, "Compression algorithms supported:"); Log(InfoLogLevel::INFO_LEVEL, logger, "\tSnappy supported: %d", Snappy_Supported()); Log(InfoLogLevel::INFO_LEVEL, logger, "\tZlib supported: %d", Zlib_Supported()); Log(InfoLogLevel::INFO_LEVEL, logger, "\tBzip supported: %d", BZip2_Supported()); Log(InfoLogLevel::INFO_LEVEL, logger, "\tLZ4 supported: %d", LZ4_Supported()); Log(InfoLogLevel::INFO_LEVEL, logger, "Fast CRC32 supported: %d", crc32c::IsFastCrc32Supported()); } } // namespace DBImpl::DBImpl(const DBOptions& options, const std::string& dbname) : env_(options.env), dbname_(dbname), db_options_(SanitizeOptions(dbname, options)), stats_(db_options_.statistics.get()), db_lock_(nullptr), mutex_(stats_, env_, DB_MUTEX_WAIT_MICROS, options.use_adaptive_mutex), shutting_down_(false), bg_cv_(&mutex_), logfile_number_(0), log_dir_synced_(false), log_empty_(true), default_cf_handle_(nullptr), log_sync_cv_(&mutex_), total_log_size_(0), max_total_in_memory_state_(0), is_snapshot_supported_(true), write_buffer_(options.db_write_buffer_size), write_controller_(options.delayed_write_rate), last_batch_group_size_(0), unscheduled_flushes_(0), unscheduled_compactions_(0), bg_compaction_scheduled_(0), bg_manual_only_(0), bg_flush_scheduled_(0), manual_compaction_(nullptr), disable_delete_obsolete_files_(0), delete_obsolete_files_next_run_( options.env->NowMicros() + db_options_.delete_obsolete_files_period_micros), last_stats_dump_time_microsec_(0), next_job_id_(1), flush_on_destroy_(false), env_options_(db_options_), #ifndef ROCKSDB_LITE wal_manager_(db_options_, env_options_), #endif // ROCKSDB_LITE event_logger_(db_options_.info_log.get()), bg_work_gate_closed_(false), refitting_level_(false), opened_successfully_(false) { env_->GetAbsolutePath(dbname, &db_absolute_path_); // Reserve ten files or so for other uses and give the rest to TableCache. // Give a large number for setting of "infinite" open files. const int table_cache_size = (db_options_.max_open_files == -1) ? 4194304 : db_options_.max_open_files - 10; table_cache_ = NewLRUCache(table_cache_size, db_options_.table_cache_numshardbits); versions_.reset(new VersionSet(dbname_, &db_options_, env_options_, table_cache_.get(), &write_buffer_, &write_controller_)); column_family_memtables_.reset(new ColumnFamilyMemTablesImpl( versions_->GetColumnFamilySet(), &flush_scheduler_)); DumpRocksDBBuildVersion(db_options_.info_log.get()); DumpDBFileSummary(db_options_, dbname_); db_options_.Dump(db_options_.info_log.get()); DumpSupportInfo(db_options_.info_log.get()); LogFlush(db_options_.info_log); } // Will lock the mutex_, will wait for completion if wait is true void DBImpl::CancelAllBackgroundWork(bool wait) { InstrumentedMutexLock l(&mutex_); shutting_down_.store(true, std::memory_order_release); bg_cv_.SignalAll(); if (!wait) { return; } // Wait for background work to finish while (bg_compaction_scheduled_ || bg_flush_scheduled_) { bg_cv_.Wait(); } } DBImpl::~DBImpl() { mutex_.Lock(); if (!shutting_down_.load(std::memory_order_acquire) && flush_on_destroy_) { for (auto cfd : *versions_->GetColumnFamilySet()) { if (!cfd->IsDropped() && !cfd->mem()->IsEmpty()) { cfd->Ref(); mutex_.Unlock(); FlushMemTable(cfd, FlushOptions()); mutex_.Lock(); cfd->Unref(); } } versions_->GetColumnFamilySet()->FreeDeadColumnFamilies(); } mutex_.Unlock(); // CancelAllBackgroundWork called with false means we just set the shutdown // marker. After this we do a variant of the waiting and unschedule work // (to consider: moving all the waiting into CancelAllBackgroundWork(true)) CancelAllBackgroundWork(false); int compactions_unscheduled = env_->UnSchedule(this, Env::Priority::LOW); int flushes_unscheduled = env_->UnSchedule(this, Env::Priority::HIGH); mutex_.Lock(); bg_compaction_scheduled_ -= compactions_unscheduled; bg_flush_scheduled_ -= flushes_unscheduled; // Wait for background work to finish while (bg_compaction_scheduled_ || bg_flush_scheduled_) { bg_cv_.Wait(); } EraseThreadStatusDbInfo(); flush_scheduler_.Clear(); while (!flush_queue_.empty()) { auto cfd = PopFirstFromFlushQueue(); if (cfd->Unref()) { delete cfd; } } while (!compaction_queue_.empty()) { auto cfd = PopFirstFromCompactionQueue(); if (cfd->Unref()) { delete cfd; } } if (default_cf_handle_ != nullptr) { // we need to delete handle outside of lock because it does its own locking mutex_.Unlock(); delete default_cf_handle_; mutex_.Lock(); } // Clean up obsolete files due to SuperVersion release. // (1) Need to delete to obsolete files before closing because RepairDB() // scans all existing files in the file system and builds manifest file. // Keeping obsolete files confuses the repair process. // (2) Need to check if we Open()/Recover() the DB successfully before // deleting because if VersionSet recover fails (may be due to corrupted // manifest file), it is not able to identify live files correctly. As a // result, all "live" files can get deleted by accident. However, corrupted // manifest is recoverable by RepairDB(). if (opened_successfully_) { JobContext job_context(next_job_id_.fetch_add(1)); FindObsoleteFiles(&job_context, true); mutex_.Unlock(); // manifest number starting from 2 job_context.manifest_file_number = 1; if (job_context.HaveSomethingToDelete()) { PurgeObsoleteFiles(job_context); } job_context.Clean(); mutex_.Lock(); } for (auto l : logs_to_free_) { delete l; } for (auto& log : logs_) { log.ClearWriter(); } logs_.clear(); // versions need to be destroyed before table_cache since it can hold // references to table_cache. versions_.reset(); mutex_.Unlock(); if (db_lock_ != nullptr) { env_->UnlockFile(db_lock_); } LogFlush(db_options_.info_log); } Status DBImpl::NewDB() { VersionEdit new_db; new_db.SetLogNumber(0); new_db.SetNextFile(2); new_db.SetLastSequence(0); Status s; Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "Creating manifest 1 \n"); const std::string manifest = DescriptorFileName(dbname_, 1); { unique_ptr file; EnvOptions env_options = env_->OptimizeForManifestWrite(env_options_); s = env_->NewWritableFile(manifest, &file, env_options); if (!s.ok()) { return s; } file->SetPreallocationBlockSize(db_options_.manifest_preallocation_size); unique_ptr file_writer( new WritableFileWriter(std::move(file), env_options)); log::Writer log(std::move(file_writer)); std::string record; new_db.EncodeTo(&record); s = log.AddRecord(record); if (s.ok()) { s = SyncManifest(env_, &db_options_, log.file()); } } if (s.ok()) { // Make "CURRENT" file that points to the new manifest file. s = SetCurrentFile(env_, dbname_, 1, directories_.GetDbDir()); } else { env_->DeleteFile(manifest); } return s; } void DBImpl::MaybeIgnoreError(Status* s) const { if (s->ok() || db_options_.paranoid_checks) { // No change needed } else { Log(InfoLogLevel::WARN_LEVEL, db_options_.info_log, "Ignoring error %s", s->ToString().c_str()); *s = Status::OK(); } } const Status DBImpl::CreateArchivalDirectory() { if (db_options_.WAL_ttl_seconds > 0 || db_options_.WAL_size_limit_MB > 0) { std::string archivalPath = ArchivalDirectory(db_options_.wal_dir); return env_->CreateDirIfMissing(archivalPath); } return Status::OK(); } void DBImpl::PrintStatistics() { auto dbstats = db_options_.statistics.get(); if (dbstats) { Log(InfoLogLevel::WARN_LEVEL, db_options_.info_log, "STATISTICS:\n %s", dbstats->ToString().c_str()); } } void DBImpl::MaybeDumpStats() { if (db_options_.stats_dump_period_sec == 0) return; const uint64_t now_micros = env_->NowMicros(); if (last_stats_dump_time_microsec_ + db_options_.stats_dump_period_sec * 1000000 <= now_micros) { // Multiple threads could race in here simultaneously. // However, the last one will update last_stats_dump_time_microsec_ // atomically. We could see more than one dump during one dump // period in rare cases. last_stats_dump_time_microsec_ = now_micros; #ifndef ROCKSDB_LITE bool tmp1 = false; bool tmp2 = false; DBPropertyType cf_property_type = GetPropertyType(DB::Properties::kCFStats, &tmp1, &tmp2); DBPropertyType db_property_type = GetPropertyType(DB::Properties::kDBStats, &tmp1, &tmp2); std::string stats; { InstrumentedMutexLock l(&mutex_); for (auto cfd : *versions_->GetColumnFamilySet()) { cfd->internal_stats()->GetStringProperty(cf_property_type, DB::Properties::kCFStats, &stats); } default_cf_internal_stats_->GetStringProperty(db_property_type, DB::Properties::kDBStats, &stats); } Log(InfoLogLevel::WARN_LEVEL, db_options_.info_log, "------- DUMPING STATS -------"); Log(InfoLogLevel::WARN_LEVEL, db_options_.info_log, "%s", stats.c_str()); #endif // !ROCKSDB_LITE PrintStatistics(); } } // * Returns the list of live files in 'sst_live' // If it's doing full scan: // * Returns the list of all files in the filesystem in // 'full_scan_candidate_files'. // Otherwise, gets obsolete files from VersionSet. // no_full_scan = true -- never do the full scan using GetChildren() // force = false -- don't force the full scan, except every // db_options_.delete_obsolete_files_period_micros // force = true -- force the full scan void DBImpl::FindObsoleteFiles(JobContext* job_context, bool force, bool no_full_scan) { mutex_.AssertHeld(); // if deletion is disabled, do nothing if (disable_delete_obsolete_files_ > 0) { return; } bool doing_the_full_scan = false; // logic for figurint out if we're doing the full scan if (no_full_scan) { doing_the_full_scan = false; } else if (force || db_options_.delete_obsolete_files_period_micros == 0) { doing_the_full_scan = true; } else { const uint64_t now_micros = env_->NowMicros(); if (delete_obsolete_files_next_run_ < now_micros) { doing_the_full_scan = true; delete_obsolete_files_next_run_ = now_micros + db_options_.delete_obsolete_files_period_micros; } } // don't delete files that might be currently written to from compaction // threads // Since job_context->min_pending_output is set, until file scan finishes, // mutex_ cannot be released. Otherwise, we might see no min_pending_output // here but later find newer generated unfinalized files while scannint. if (!pending_outputs_.empty()) { job_context->min_pending_output = *pending_outputs_.begin(); } else { // delete all of them job_context->min_pending_output = std::numeric_limits::max(); } // Get obsolete files. This function will also update the list of // pending files in VersionSet(). versions_->GetObsoleteFiles(&job_context->sst_delete_files, job_context->min_pending_output); // store the current filenum, lognum, etc job_context->manifest_file_number = versions_->manifest_file_number(); job_context->pending_manifest_file_number = versions_->pending_manifest_file_number(); job_context->log_number = versions_->MinLogNumber(); job_context->prev_log_number = versions_->prev_log_number(); versions_->AddLiveFiles(&job_context->sst_live); if (doing_the_full_scan) { for (uint32_t path_id = 0; path_id < db_options_.db_paths.size(); path_id++) { // set of all files in the directory. We'll exclude files that are still // alive in the subsequent processings. std::vector files; env_->GetChildren(db_options_.db_paths[path_id].path, &files); // Ignore errors for (std::string file : files) { // TODO(icanadi) clean up this mess to avoid having one-off "/" prefixes job_context->full_scan_candidate_files.emplace_back("/" + file, path_id); } } //Add log files in wal_dir if (db_options_.wal_dir != dbname_) { std::vector log_files; env_->GetChildren(db_options_.wal_dir, &log_files); // Ignore errors for (std::string log_file : log_files) { job_context->full_scan_candidate_files.emplace_back(log_file, 0); } } // Add info log files in db_log_dir if (!db_options_.db_log_dir.empty() && db_options_.db_log_dir != dbname_) { std::vector info_log_files; // Ignore errors env_->GetChildren(db_options_.db_log_dir, &info_log_files); for (std::string log_file : info_log_files) { job_context->full_scan_candidate_files.emplace_back(log_file, 0); } } } if (!alive_log_files_.empty()) { uint64_t min_log_number = versions_->MinLogNumber(); // find newly obsoleted log files while (alive_log_files_.begin()->number < min_log_number) { auto& earliest = *alive_log_files_.begin(); job_context->log_delete_files.push_back(earliest.number); total_log_size_ -= earliest.size; alive_log_files_.pop_front(); // Current log should always stay alive since it can't have // number < MinLogNumber(). assert(alive_log_files_.size()); } while (!logs_.empty() && logs_.front().number < min_log_number) { auto& log = logs_.front(); if (log.getting_synced) { log_sync_cv_.Wait(); // logs_ could have changed while we were waiting. continue; } logs_to_free_.push_back(log.ReleaseWriter()); logs_.pop_front(); } // Current log cannot be obsolete. assert(!logs_.empty()); } // We're just cleaning up for DB::Write(). assert(job_context->logs_to_free.empty()); job_context->logs_to_free = logs_to_free_; logs_to_free_.clear(); } namespace { bool CompareCandidateFile(const JobContext::CandidateFileInfo& first, const JobContext::CandidateFileInfo& second) { if (first.file_name > second.file_name) { return true; } else if (first.file_name < second.file_name) { return false; } else { return (first.path_id > second.path_id); } } }; // namespace // Diffs the files listed in filenames and those that do not // belong to live files are posibly removed. Also, removes all the // files in sst_delete_files and log_delete_files. // It is not necessary to hold the mutex when invoking this method. void DBImpl::PurgeObsoleteFiles(const JobContext& state) { // we'd better have sth to delete assert(state.HaveSomethingToDelete()); // this checks if FindObsoleteFiles() was run before. If not, don't do // PurgeObsoleteFiles(). If FindObsoleteFiles() was run, we need to also // run PurgeObsoleteFiles(), even if disable_delete_obsolete_files_ is true if (state.manifest_file_number == 0) { return; } // Now, convert live list to an unordered map, WITHOUT mutex held; // set is slow. std::unordered_map sst_live_map; for (const FileDescriptor& fd : state.sst_live) { sst_live_map[fd.GetNumber()] = &fd; } auto candidate_files = state.full_scan_candidate_files; candidate_files.reserve(candidate_files.size() + state.sst_delete_files.size() + state.log_delete_files.size()); // We may ignore the dbname when generating the file names. const char* kDumbDbName = ""; for (auto file : state.sst_delete_files) { candidate_files.emplace_back( MakeTableFileName(kDumbDbName, file->fd.GetNumber()), file->fd.GetPathId()); delete file; } for (auto file_num : state.log_delete_files) { if (file_num > 0) { candidate_files.emplace_back(LogFileName(kDumbDbName, file_num).substr(1), 0); } } // dedup state.candidate_files so we don't try to delete the same // file twice sort(candidate_files.begin(), candidate_files.end(), CompareCandidateFile); candidate_files.erase(unique(candidate_files.begin(), candidate_files.end()), candidate_files.end()); std::vector old_info_log_files; InfoLogPrefix info_log_prefix(!db_options_.db_log_dir.empty(), dbname_); for (const auto& candidate_file : candidate_files) { std::string to_delete = candidate_file.file_name; uint32_t path_id = candidate_file.path_id; uint64_t number; FileType type; // Ignore file if we cannot recognize it. if (!ParseFileName(to_delete, &number, info_log_prefix.prefix, &type)) { continue; } bool keep = true; switch (type) { case kLogFile: keep = ((number >= state.log_number) || (number == state.prev_log_number)); break; case kDescriptorFile: // Keep my manifest file, and any newer incarnations' // (can happen during manifest roll) keep = (number >= state.manifest_file_number); break; case kTableFile: // If the second condition is not there, this makes // DontDeletePendingOutputs fail keep = (sst_live_map.find(number) != sst_live_map.end()) || number >= state.min_pending_output; break; case kTempFile: // Any temp files that are currently being written to must // be recorded in pending_outputs_, which is inserted into "live". // Also, SetCurrentFile creates a temp file when writing out new // manifest, which is equal to state.pending_manifest_file_number. We // should not delete that file keep = (sst_live_map.find(number) != sst_live_map.end()) || (number == state.pending_manifest_file_number); break; case kInfoLogFile: keep = true; if (number != 0) { old_info_log_files.push_back(to_delete); } break; case kCurrentFile: case kDBLockFile: case kIdentityFile: case kMetaDatabase: keep = true; break; } if (keep) { continue; } std::string fname; if (type == kTableFile) { // evict from cache TableCache::Evict(table_cache_.get(), number); fname = TableFileName(db_options_.db_paths, number, path_id); } else { fname = ((type == kLogFile) ? db_options_.wal_dir : dbname_) + "/" + to_delete; } #ifndef ROCKSDB_LITE if (type == kLogFile && (db_options_.WAL_ttl_seconds > 0 || db_options_.WAL_size_limit_MB > 0)) { wal_manager_.ArchiveWALFile(fname, number); continue; } #endif // !ROCKSDB_LITE Status file_deletion_status; if (type == kTableFile && path_id == 0) { file_deletion_status = DeleteOrMoveToTrash(&db_options_, fname); } else { file_deletion_status = env_->DeleteFile(fname); } if (file_deletion_status.ok()) { Log(InfoLogLevel::DEBUG_LEVEL, db_options_.info_log, "[JOB %d] Delete %s type=%d #%" PRIu64 " -- %s\n", state.job_id, fname.c_str(), type, number, file_deletion_status.ToString().c_str()); } else { Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "[JOB %d] Failed to delete %s type=%d #%" PRIu64 " -- %s\n", state.job_id, fname.c_str(), type, number, file_deletion_status.ToString().c_str()); } if (type == kTableFile) { EventHelpers::LogAndNotifyTableFileDeletion( &event_logger_, state.job_id, number, fname, file_deletion_status, GetName(), db_options_.listeners); } } // Delete old info log files. size_t old_info_log_file_count = old_info_log_files.size(); if (old_info_log_file_count >= db_options_.keep_log_file_num) { std::sort(old_info_log_files.begin(), old_info_log_files.end()); size_t end = old_info_log_file_count - db_options_.keep_log_file_num; for (unsigned int i = 0; i <= end; i++) { std::string& to_delete = old_info_log_files.at(i); std::string full_path_to_delete = (db_options_.db_log_dir.empty() ? dbname_ : db_options_.db_log_dir) + "/" + to_delete; Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "[JOB %d] Delete info log file %s\n", state.job_id, full_path_to_delete.c_str()); Status s = env_->DeleteFile(full_path_to_delete); if (!s.ok()) { Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "[JOB %d] Delete info log file %s FAILED -- %s\n", state.job_id, to_delete.c_str(), s.ToString().c_str()); } } } #ifndef ROCKSDB_LITE wal_manager_.PurgeObsoleteWALFiles(); #endif // ROCKSDB_LITE LogFlush(db_options_.info_log); } void DBImpl::DeleteObsoleteFiles() { mutex_.AssertHeld(); JobContext job_context(next_job_id_.fetch_add(1)); FindObsoleteFiles(&job_context, true); mutex_.Unlock(); if (job_context.HaveSomethingToDelete()) { PurgeObsoleteFiles(job_context); } job_context.Clean(); mutex_.Lock(); } Status DBImpl::Directories::CreateAndNewDirectory( Env* env, const std::string& dirname, std::unique_ptr* directory) const { // We call CreateDirIfMissing() as the directory may already exist (if we // are reopening a DB), when this happens we don't want creating the // directory to cause an error. However, we need to check if creating the // directory fails or else we may get an obscure message about the lock // file not existing. One real-world example of this occurring is if // env->CreateDirIfMissing() doesn't create intermediate directories, e.g. // when dbname_ is "dir/db" but when "dir" doesn't exist. Status s = env->CreateDirIfMissing(dirname); if (!s.ok()) { return s; } return env->NewDirectory(dirname, directory); } Status DBImpl::Directories::SetDirectories( Env* env, const std::string& dbname, const std::string& wal_dir, const std::vector& data_paths) { Status s = CreateAndNewDirectory(env, dbname, &db_dir_); if (!s.ok()) { return s; } if (!wal_dir.empty() && dbname != wal_dir) { s = CreateAndNewDirectory(env, wal_dir, &wal_dir_); if (!s.ok()) { return s; } } data_dirs_.clear(); for (auto& p : data_paths) { const std::string db_path = p.path; if (db_path == dbname) { data_dirs_.emplace_back(nullptr); } else { std::unique_ptr path_directory; s = CreateAndNewDirectory(env, db_path, &path_directory); if (!s.ok()) { return s; } data_dirs_.emplace_back(path_directory.release()); } } assert(data_dirs_.size() == data_paths.size()); return Status::OK(); } Directory* DBImpl::Directories::GetDataDir(size_t path_id) { assert(path_id < data_dirs_.size()); Directory* ret_dir = data_dirs_[path_id].get(); if (ret_dir == nullptr) { // Should use db_dir_ return db_dir_.get(); } return ret_dir; } Status DBImpl::Recover( const std::vector& column_families, bool read_only, bool error_if_log_file_exist) { mutex_.AssertHeld(); bool is_new_db = false; assert(db_lock_ == nullptr); if (!read_only) { Status s = directories_.SetDirectories(env_, dbname_, db_options_.wal_dir, db_options_.db_paths); if (!s.ok()) { return s; } s = env_->LockFile(LockFileName(dbname_), &db_lock_); if (!s.ok()) { return s; } s = env_->FileExists(CurrentFileName(dbname_)); if (s.IsNotFound()) { if (db_options_.create_if_missing) { s = NewDB(); is_new_db = true; if (!s.ok()) { return s; } } else { return Status::InvalidArgument( dbname_, "does not exist (create_if_missing is false)"); } } else if (s.ok()) { if (db_options_.error_if_exists) { return Status::InvalidArgument( dbname_, "exists (error_if_exists is true)"); } } else { // Unexpected error reading file assert(s.IsIOError()); return s; } // Check for the IDENTITY file and create it if not there s = env_->FileExists(IdentityFileName(dbname_)); if (s.IsNotFound()) { s = SetIdentityFile(env_, dbname_); if (!s.ok()) { return s; } } else if (!s.ok()) { assert(s.IsIOError()); return s; } } Status s = versions_->Recover(column_families, read_only); if (db_options_.paranoid_checks && s.ok()) { s = CheckConsistency(); } if (s.ok()) { SequenceNumber max_sequence(kMaxSequenceNumber); default_cf_handle_ = new ColumnFamilyHandleImpl( versions_->GetColumnFamilySet()->GetDefault(), this, &mutex_); default_cf_internal_stats_ = default_cf_handle_->cfd()->internal_stats(); single_column_family_mode_ = versions_->GetColumnFamilySet()->NumberOfColumnFamilies() == 1; // Recover from all newer log files than the ones named in the // descriptor (new log files may have been added by the previous // incarnation without registering them in the descriptor). // // Note that prev_log_number() is no longer used, but we pay // attention to it in case we are recovering a database // produced by an older version of rocksdb. const uint64_t min_log = versions_->MinLogNumber(); const uint64_t prev_log = versions_->prev_log_number(); std::vector filenames; s = env_->GetChildren(db_options_.wal_dir, &filenames); if (!s.ok()) { return s; } std::vector logs; for (size_t i = 0; i < filenames.size(); i++) { uint64_t number; FileType type; if (ParseFileName(filenames[i], &number, &type) && type == kLogFile) { if (is_new_db) { return Status::Corruption( "While creating a new Db, wal_dir contains " "existing log file: ", filenames[i]); } else if ((number >= min_log) || (number == prev_log)) { logs.push_back(number); } } } if (logs.size() > 0 && error_if_log_file_exist) { return Status::Corruption("" "The db was opened in readonly mode with error_if_log_file_exist" "flag but a log file already exists"); } if (!logs.empty()) { // Recover in the order in which the logs were generated std::sort(logs.begin(), logs.end()); s = RecoverLogFiles(logs, &max_sequence, read_only); if (!s.ok()) { // Clear memtables if recovery failed for (auto cfd : *versions_->GetColumnFamilySet()) { cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(), kMaxSequenceNumber); } } } SetTickerCount(stats_, SEQUENCE_NUMBER, versions_->LastSequence()); } // Initial value max_total_in_memory_state_ = 0; for (auto cfd : *versions_->GetColumnFamilySet()) { auto* mutable_cf_options = cfd->GetLatestMutableCFOptions(); max_total_in_memory_state_ += mutable_cf_options->write_buffer_size * mutable_cf_options->max_write_buffer_number; } return s; } // REQUIRES: log_numbers are sorted in ascending order Status DBImpl::RecoverLogFiles(const std::vector& log_numbers, SequenceNumber* max_sequence, bool read_only) { struct LogReporter : public log::Reader::Reporter { Env* env; Logger* info_log; const char* fname; Status* status; // nullptr if db_options_.paranoid_checks==false virtual void Corruption(size_t bytes, const Status& s) override { Log(InfoLogLevel::WARN_LEVEL, info_log, "%s%s: dropping %d bytes; %s", (this->status == nullptr ? "(ignoring error) " : ""), fname, static_cast(bytes), s.ToString().c_str()); if (this->status != nullptr && this->status->ok()) { *this->status = s; } } }; mutex_.AssertHeld(); Status status; std::unordered_map version_edits; // no need to refcount because iteration is under mutex for (auto cfd : *versions_->GetColumnFamilySet()) { VersionEdit edit; edit.SetColumnFamily(cfd->GetID()); version_edits.insert({cfd->GetID(), edit}); } int job_id = next_job_id_.fetch_add(1); { auto stream = event_logger_.Log(); stream << "job" << job_id << "event" << "recovery_started"; stream << "log_files"; stream.StartArray(); for (auto log_number : log_numbers) { stream << log_number; } stream.EndArray(); } bool continue_replay_log = true; for (auto log_number : log_numbers) { // The previous incarnation may not have written any MANIFEST // records after allocating this log number. So we manually // update the file number allocation counter in VersionSet. versions_->MarkFileNumberUsedDuringRecovery(log_number); // Open the log file std::string fname = LogFileName(db_options_.wal_dir, log_number); unique_ptr file_reader; { unique_ptr file; status = env_->NewSequentialFile(fname, &file, env_options_); if (!status.ok()) { MaybeIgnoreError(&status); if (!status.ok()) { return status; } else { // Fail with one log file, but that's ok. // Try next one. continue; } } file_reader.reset(new SequentialFileReader(std::move(file))); } // Create the log reader. LogReporter reporter; reporter.env = env_; reporter.info_log = db_options_.info_log.get(); reporter.fname = fname.c_str(); if (!db_options_.paranoid_checks || db_options_.wal_recovery_mode == WALRecoveryMode::kSkipAnyCorruptedRecords) { reporter.status = nullptr; } else { reporter.status = &status; } // We intentially make log::Reader do checksumming even if // paranoid_checks==false so that corruptions cause entire commits // to be skipped instead of propagating bad information (like overly // large sequence numbers). log::Reader reader(std::move(file_reader), &reporter, true /*checksum*/, 0 /*initial_offset*/); Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "Recovering log #%" PRIu64 " mode %d skip-recovery %d", log_number, db_options_.wal_recovery_mode, !continue_replay_log); // Determine if we should tolerate incomplete records at the tail end of the // log bool report_eof_inconsistency; if (db_options_.wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency) { // in clean shutdown we don't expect any error in the log files report_eof_inconsistency = true; } else { // for other modes ignore only incomplete records in the last log file // which is presumably due to write in progress during restart report_eof_inconsistency = false; // TODO krad: Evaluate if we need to move to a more strict mode where we // restrict the inconsistency to only the last log } // Read all the records and add to a memtable std::string scratch; Slice record; WriteBatch batch; if (!continue_replay_log) { uint64_t bytes; if (env_->GetFileSize(fname, &bytes).ok()) { auto info_log = db_options_.info_log.get(); Log(InfoLogLevel::WARN_LEVEL, info_log, "%s: dropping %d bytes", fname.c_str(), static_cast(bytes)); } } while (continue_replay_log && reader.ReadRecord(&record, &scratch, report_eof_inconsistency) && status.ok()) { if (record.size() < 12) { reporter.Corruption(record.size(), Status::Corruption("log record too small")); continue; } WriteBatchInternal::SetContents(&batch, record); // If column family was not found, it might mean that the WAL write // batch references to the column family that was dropped after the // insert. We don't want to fail the whole write batch in that case -- // we just ignore the update. // That's why we set ignore missing column families to true status = WriteBatchInternal::InsertInto( &batch, column_family_memtables_.get(), true, log_number); MaybeIgnoreError(&status); if (!status.ok()) { // We are treating this as a failure while reading since we read valid // blocks that do not form coherent data reporter.Corruption(record.size(), status); continue; } const SequenceNumber last_seq = WriteBatchInternal::Sequence(&batch) + WriteBatchInternal::Count(&batch) - 1; if ((*max_sequence == kMaxSequenceNumber) || (last_seq > *max_sequence)) { *max_sequence = last_seq; } if (!read_only) { // we can do this because this is called before client has access to the // DB and there is only a single thread operating on DB ColumnFamilyData* cfd; while ((cfd = flush_scheduler_.GetNextColumnFamily()) != nullptr) { cfd->Unref(); // If this asserts, it means that InsertInto failed in // filtering updates to already-flushed column families assert(cfd->GetLogNumber() <= log_number); auto iter = version_edits.find(cfd->GetID()); assert(iter != version_edits.end()); VersionEdit* edit = &iter->second; status = WriteLevel0TableForRecovery(job_id, cfd, cfd->mem(), edit); if (!status.ok()) { // Reflect errors immediately so that conditions like full // file-systems cause the DB::Open() to fail. return status; } cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(), *max_sequence); } } } if (!status.ok()) { if (db_options_.wal_recovery_mode == WALRecoveryMode::kSkipAnyCorruptedRecords) { // We should ignore all errors unconditionally status = Status::OK(); } else if (db_options_.wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery) { // We should ignore the error but not continue replaying status = Status::OK(); continue_replay_log = false; Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "Point in time recovered to log #%" PRIu64 " seq #%" PRIu64, log_number, *max_sequence); } else { assert(db_options_.wal_recovery_mode == WALRecoveryMode::kTolerateCorruptedTailRecords || db_options_.wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency); return status; } } flush_scheduler_.Clear(); if ((*max_sequence != kMaxSequenceNumber) && (versions_->LastSequence() < *max_sequence)) { versions_->SetLastSequence(*max_sequence); } } if (!read_only) { // no need to refcount since client still doesn't have access // to the DB and can not drop column families while we iterate auto max_log_number = log_numbers.back(); for (auto cfd : *versions_->GetColumnFamilySet()) { auto iter = version_edits.find(cfd->GetID()); assert(iter != version_edits.end()); VersionEdit* edit = &iter->second; if (cfd->GetLogNumber() > max_log_number) { // Column family cfd has already flushed the data // from all logs. Memtable has to be empty because // we filter the updates based on log_number // (in WriteBatch::InsertInto) assert(cfd->mem()->GetFirstSequenceNumber() == 0); assert(edit->NumEntries() == 0); continue; } // flush the final memtable (if non-empty) if (cfd->mem()->GetFirstSequenceNumber() != 0) { status = WriteLevel0TableForRecovery(job_id, cfd, cfd->mem(), edit); if (!status.ok()) { // Recovery failed break; } cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(), *max_sequence); } // write MANIFEST with update // writing log_number in the manifest means that any log file // with number strongly less than (log_number + 1) is already // recovered and should be ignored on next reincarnation. // Since we already recovered max_log_number, we want all logs // with numbers `<= max_log_number` (includes this one) to be ignored edit->SetLogNumber(max_log_number + 1); // we must mark the next log number as used, even though it's // not actually used. that is because VersionSet assumes // VersionSet::next_file_number_ always to be strictly greater than any // log number versions_->MarkFileNumberUsedDuringRecovery(max_log_number + 1); status = versions_->LogAndApply( cfd, *cfd->GetLatestMutableCFOptions(), edit, &mutex_); if (!status.ok()) { // Recovery failed break; } } } event_logger_.Log() << "job" << job_id << "event" << "recovery_finished"; return status; } Status DBImpl::WriteLevel0TableForRecovery(int job_id, ColumnFamilyData* cfd, MemTable* mem, VersionEdit* edit) { mutex_.AssertHeld(); const uint64_t start_micros = env_->NowMicros(); FileMetaData meta; meta.fd = FileDescriptor(versions_->NewFileNumber(), 0, 0); auto pending_outputs_inserted_elem = CaptureCurrentFileNumberInPendingOutputs(); ReadOptions ro; ro.total_order_seek = true; Arena arena; Status s; TableProperties table_properties; { ScopedArenaIterator iter(mem->NewIterator(ro, &arena)); Log(InfoLogLevel::DEBUG_LEVEL, db_options_.info_log, "[%s] [WriteLevel0TableForRecovery]" " Level-0 table #%" PRIu64 ": started", cfd->GetName().c_str(), meta.fd.GetNumber()); bool paranoid_file_checks = cfd->GetLatestMutableCFOptions()->paranoid_file_checks; { mutex_.Unlock(); TableFileCreationInfo info; s = BuildTable( dbname_, env_, *cfd->ioptions(), env_options_, cfd->table_cache(), iter.get(), &meta, cfd->internal_comparator(), cfd->int_tbl_prop_collector_factories(), snapshots_.GetAll(), GetCompressionFlush(*cfd->ioptions()), cfd->ioptions()->compression_opts, paranoid_file_checks, cfd->internal_stats(), Env::IO_HIGH, &info.table_properties); LogFlush(db_options_.info_log); Log(InfoLogLevel::DEBUG_LEVEL, db_options_.info_log, "[%s] [WriteLevel0TableForRecovery]" " Level-0 table #%" PRIu64 ": %" PRIu64 " bytes %s", cfd->GetName().c_str(), meta.fd.GetNumber(), meta.fd.GetFileSize(), s.ToString().c_str()); // output to event logger if (s.ok()) { info.db_name = dbname_; info.cf_name = cfd->GetName(); info.file_path = TableFileName(db_options_.db_paths, meta.fd.GetNumber(), meta.fd.GetPathId()); info.file_size = meta.fd.GetFileSize(); info.job_id = job_id; EventHelpers::LogAndNotifyTableFileCreation( &event_logger_, db_options_.listeners, meta.fd, info); } mutex_.Lock(); } } ReleaseFileNumberFromPendingOutputs(pending_outputs_inserted_elem); // Note that if file_size is zero, the file has been deleted and // should not be added to the manifest. int level = 0; if (s.ok() && meta.fd.GetFileSize() > 0) { edit->AddFile(level, meta.fd.GetNumber(), meta.fd.GetPathId(), meta.fd.GetFileSize(), meta.smallest, meta.largest, meta.smallest_seqno, meta.largest_seqno, meta.marked_for_compaction); } InternalStats::CompactionStats stats(1); stats.micros = env_->NowMicros() - start_micros; stats.bytes_written = meta.fd.GetFileSize(); stats.num_output_files = 1; cfd->internal_stats()->AddCompactionStats(level, stats); cfd->internal_stats()->AddCFStats( InternalStats::BYTES_FLUSHED, meta.fd.GetFileSize()); RecordTick(stats_, COMPACT_WRITE_BYTES, meta.fd.GetFileSize()); return s; } Status DBImpl::FlushMemTableToOutputFile( ColumnFamilyData* cfd, const MutableCFOptions& mutable_cf_options, bool* made_progress, JobContext* job_context, LogBuffer* log_buffer) { mutex_.AssertHeld(); assert(cfd->imm()->NumNotFlushed() != 0); assert(cfd->imm()->IsFlushPending()); FlushJob flush_job(dbname_, cfd, db_options_, mutable_cf_options, env_options_, versions_.get(), &mutex_, &shutting_down_, snapshots_.GetAll(), job_context, log_buffer, directories_.GetDbDir(), directories_.GetDataDir(0U), GetCompressionFlush(*cfd->ioptions()), stats_, &event_logger_); FileMetaData file_meta; // Within flush_job.Run, rocksdb may call event listener to notify // file creation and deletion. // // Note that flush_job.Run will unlock and lock the db_mutex, // and EventListener callback will be called when the db_mutex // is unlocked by the current thread. Status s = flush_job.Run(&file_meta); if (s.ok()) { InstallSuperVersionAndScheduleWorkWrapper(cfd, job_context, mutable_cf_options); if (made_progress) { *made_progress = 1; } VersionStorageInfo::LevelSummaryStorage tmp; LogToBuffer(log_buffer, "[%s] Level summary: %s\n", cfd->GetName().c_str(), cfd->current()->storage_info()->LevelSummary(&tmp)); } if (!s.ok() && !s.IsShutdownInProgress() && db_options_.paranoid_checks && bg_error_.ok()) { // if a bad error happened (not ShutdownInProgress) and paranoid_checks is // true, mark DB read-only bg_error_ = s; } RecordFlushIOStats(); #ifndef ROCKSDB_LITE if (s.ok()) { // may temporarily unlock and lock the mutex. NotifyOnFlushCompleted(cfd, &file_meta, mutable_cf_options, job_context->job_id); } #endif // ROCKSDB_LITE return s; } void DBImpl::NotifyOnFlushCompleted( ColumnFamilyData* cfd, FileMetaData* file_meta, const MutableCFOptions& mutable_cf_options, int job_id) { #ifndef ROCKSDB_LITE if (db_options_.listeners.size() == 0U) { return; } mutex_.AssertHeld(); if (shutting_down_.load(std::memory_order_acquire)) { return; } bool triggered_writes_slowdown = (cfd->current()->storage_info()->NumLevelFiles(0) >= mutable_cf_options.level0_slowdown_writes_trigger); bool triggered_writes_stop = (cfd->current()->storage_info()->NumLevelFiles(0) >= mutable_cf_options.level0_stop_writes_trigger); // release lock while notifying events mutex_.Unlock(); { FlushJobInfo info; info.cf_name = cfd->GetName(); // TODO(yhchiang): make db_paths dynamic in case flush does not // go to L0 in the future. info.file_path = MakeTableFileName(db_options_.db_paths[0].path, file_meta->fd.GetNumber()); info.thread_id = env_->GetThreadID(); info.job_id = job_id; info.triggered_writes_slowdown = triggered_writes_slowdown; info.triggered_writes_stop = triggered_writes_stop; info.smallest_seqno = file_meta->smallest_seqno; info.largest_seqno = file_meta->largest_seqno; for (auto listener : db_options_.listeners) { listener->OnFlushCompleted(this, info); } } mutex_.Lock(); // no need to signal bg_cv_ as it will be signaled at the end of the // flush process. #endif // ROCKSDB_LITE } Status DBImpl::CompactRange(const CompactRangeOptions& options, ColumnFamilyHandle* column_family, const Slice* begin, const Slice* end) { if (options.target_path_id >= db_options_.db_paths.size()) { return Status::InvalidArgument("Invalid target path ID"); } auto cfh = reinterpret_cast(column_family); auto cfd = cfh->cfd(); Status s = FlushMemTable(cfd, FlushOptions()); if (!s.ok()) { LogFlush(db_options_.info_log); return s; } int max_level_with_files = 0; { InstrumentedMutexLock l(&mutex_); Version* base = cfd->current(); for (int level = 1; level < base->storage_info()->num_non_empty_levels(); level++) { if (base->storage_info()->OverlapInLevel(level, begin, end)) { max_level_with_files = level; } } } int final_output_level = 0; if (cfd->ioptions()->compaction_style == kCompactionStyleUniversal && cfd->NumberLevels() > 1) { // Always compact all files together. s = RunManualCompaction(cfd, ColumnFamilyData::kCompactAllLevels, cfd->NumberLevels() - 1, options.target_path_id, begin, end); final_output_level = cfd->NumberLevels() - 1; } else { for (int level = 0; level <= max_level_with_files; level++) { int output_level; // in case the compaction is universal or if we're compacting the // bottom-most level, the output level will be the same as input one. // level 0 can never be the bottommost level (i.e. if all files are in // level 0, we will compact to level 1) if (cfd->ioptions()->compaction_style == kCompactionStyleUniversal || cfd->ioptions()->compaction_style == kCompactionStyleFIFO) { output_level = level; } else if (level == max_level_with_files && level > 0) { if (options.bottommost_level_compaction == BottommostLevelCompaction::kSkip) { // Skip bottommost level compaction continue; } else if (options.bottommost_level_compaction == BottommostLevelCompaction::kIfHaveCompactionFilter && cfd->ioptions()->compaction_filter == nullptr && cfd->ioptions()->compaction_filter_factory == nullptr) { // Skip bottommost level compaction since we don't have a compaction // filter continue; } output_level = level; } else { output_level = level + 1; if (cfd->ioptions()->compaction_style == kCompactionStyleLevel && cfd->ioptions()->level_compaction_dynamic_level_bytes && level == 0) { output_level = ColumnFamilyData::kCompactToBaseLevel; } } s = RunManualCompaction(cfd, level, output_level, options.target_path_id, begin, end); if (!s.ok()) { break; } if (output_level == ColumnFamilyData::kCompactToBaseLevel) { final_output_level = cfd->NumberLevels() - 1; } else if (output_level > final_output_level) { final_output_level = output_level; } TEST_SYNC_POINT("DBImpl::RunManualCompaction()::1"); TEST_SYNC_POINT("DBImpl::RunManualCompaction()::2"); } } if (!s.ok()) { LogFlush(db_options_.info_log); return s; } if (options.change_level) { s = ReFitLevel(cfd, final_output_level, options.target_level); } LogFlush(db_options_.info_log); { InstrumentedMutexLock l(&mutex_); // an automatic compaction that has been scheduled might have been // preempted by the manual compactions. Need to schedule it back. MaybeScheduleFlushOrCompaction(); } return s; } Status DBImpl::CompactFiles( const CompactionOptions& compact_options, ColumnFamilyHandle* column_family, const std::vector& input_file_names, const int output_level, const int output_path_id) { #ifdef ROCKSDB_LITE // not supported in lite version return Status::NotSupported("Not supported in ROCKSDB LITE"); #else if (column_family == nullptr) { return Status::InvalidArgument("ColumnFamilyHandle must be non-null."); } auto cfd = reinterpret_cast(column_family)->cfd(); assert(cfd); Status s; JobContext job_context(0, true); LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, db_options_.info_log.get()); // Perform CompactFiles SuperVersion* sv = GetAndRefSuperVersion(cfd); { InstrumentedMutexLock l(&mutex_); s = CompactFilesImpl(compact_options, cfd, sv->current, input_file_names, output_level, output_path_id, &job_context, &log_buffer); } ReturnAndCleanupSuperVersion(cfd, sv); // Find and delete obsolete files { InstrumentedMutexLock l(&mutex_); // If !s.ok(), this means that Compaction failed. In that case, we want // to delete all obsolete files we might have created and we force // FindObsoleteFiles(). This is because job_context does not // catch all created files if compaction failed. FindObsoleteFiles(&job_context, !s.ok()); } // release the mutex // delete unnecessary files if any, this is done outside the mutex if (job_context.HaveSomethingToDelete() || !log_buffer.IsEmpty()) { // Have to flush the info logs before bg_compaction_scheduled_-- // because if bg_flush_scheduled_ becomes 0 and the lock is // released, the deconstructor of DB can kick in and destroy all the // states of DB so info_log might not be available after that point. // It also applies to access other states that DB owns. log_buffer.FlushBufferToLog(); if (job_context.HaveSomethingToDelete()) { // no mutex is locked here. No need to Unlock() and Lock() here. PurgeObsoleteFiles(job_context); } job_context.Clean(); } return s; #endif // ROCKSDB_LITE } #ifndef ROCKSDB_LITE Status DBImpl::CompactFilesImpl( const CompactionOptions& compact_options, ColumnFamilyData* cfd, Version* version, const std::vector& input_file_names, const int output_level, int output_path_id, JobContext* job_context, LogBuffer* log_buffer) { mutex_.AssertHeld(); if (shutting_down_.load(std::memory_order_acquire)) { return Status::ShutdownInProgress(); } std::unordered_set input_set; for (auto file_name : input_file_names) { input_set.insert(TableFileNameToNumber(file_name)); } ColumnFamilyMetaData cf_meta; // TODO(yhchiang): can directly use version here if none of the // following functions call is pluggable to external developers. version->GetColumnFamilyMetaData(&cf_meta); if (output_path_id < 0) { if (db_options_.db_paths.size() == 1U) { output_path_id = 0; } else { return Status::NotSupported( "Automatic output path selection is not " "yet supported in CompactFiles()"); } } Status s = cfd->compaction_picker()->SanitizeCompactionInputFiles( &input_set, cf_meta, output_level); if (!s.ok()) { return s; } std::vector input_files; s = cfd->compaction_picker()->GetCompactionInputsFromFileNumbers( &input_files, &input_set, version->storage_info(), compact_options); if (!s.ok()) { return s; } for (auto inputs : input_files) { if (cfd->compaction_picker()->FilesInCompaction(inputs.files)) { return Status::Aborted( "Some of the necessary compaction input " "files are already being compacted"); } } // At this point, CompactFiles will be run. bg_compaction_scheduled_++; unique_ptr c; assert(cfd->compaction_picker()); c.reset(cfd->compaction_picker()->FormCompaction( compact_options, input_files, output_level, version->storage_info(), *cfd->GetLatestMutableCFOptions(), output_path_id)); assert(c); c->SetInputVersion(version); // deletion compaction currently not allowed in CompactFiles. assert(!c->deletion_compaction()); assert(is_snapshot_supported_ || snapshots_.empty()); CompactionJob compaction_job( job_context->job_id, c.get(), db_options_, env_options_, versions_.get(), &shutting_down_, log_buffer, directories_.GetDbDir(), directories_.GetDataDir(c->output_path_id()), stats_, snapshots_.GetAll(), table_cache_, &event_logger_, c->mutable_cf_options()->paranoid_file_checks, c->mutable_cf_options()->compaction_measure_io_stats, dbname_, nullptr); // Here we pass a nullptr for CompactionJobStats because // CompactFiles does not trigger OnCompactionCompleted(), // which is the only place where CompactionJobStats is // returned. The idea of not triggering OnCompationCompleted() // is that CompactFiles runs in the caller thread, so the user // should always know when it completes. As a result, it makes // less sense to notify the users something they should already // know. // // In the future, if we would like to add CompactionJobStats // support for CompactFiles, we should have CompactFiles API // pass a pointer of CompactionJobStats as the out-value // instead of using EventListener. compaction_job.Prepare(); mutex_.Unlock(); compaction_job.Run(); mutex_.Lock(); Status status = compaction_job.Install(*c->mutable_cf_options(), &mutex_); if (status.ok()) { InstallSuperVersionAndScheduleWorkWrapper( c->column_family_data(), job_context, *c->mutable_cf_options()); } c->ReleaseCompactionFiles(s); c.reset(); if (status.ok()) { // Done } else if (status.IsShutdownInProgress()) { // Ignore compaction errors found during shutting down } else { Log(InfoLogLevel::WARN_LEVEL, db_options_.info_log, "[%s] [JOB %d] Compaction error: %s", c->column_family_data()->GetName().c_str(), job_context->job_id, status.ToString().c_str()); if (db_options_.paranoid_checks && bg_error_.ok()) { bg_error_ = status; } } bg_compaction_scheduled_--; if (bg_compaction_scheduled_ == 0) { bg_cv_.SignalAll(); } return status; } #endif // ROCKSDB_LITE void DBImpl::NotifyOnCompactionCompleted( ColumnFamilyData* cfd, Compaction *c, const Status &st, const CompactionJobStats& compaction_job_stats, const int job_id) { #ifndef ROCKSDB_LITE if (db_options_.listeners.size() == 0U) { return; } mutex_.AssertHeld(); if (shutting_down_.load(std::memory_order_acquire)) { return; } // release lock while notifying events mutex_.Unlock(); { CompactionJobInfo info; info.cf_name = cfd->GetName(); info.status = st; info.thread_id = env_->GetThreadID(); info.job_id = job_id; info.base_input_level = c->start_level(); info.output_level = c->output_level(); info.stats = compaction_job_stats; for (size_t i = 0; i < c->num_input_levels(); ++i) { for (const auto fmd : *c->inputs(i)) { info.input_files.push_back( TableFileName(db_options_.db_paths, fmd->fd.GetNumber(), fmd->fd.GetPathId())); } } for (const auto newf : c->edit()->GetNewFiles()) { info.output_files.push_back( TableFileName(db_options_.db_paths, newf.second.fd.GetNumber(), newf.second.fd.GetPathId())); } for (auto listener : db_options_.listeners) { listener->OnCompactionCompleted(this, info); } } mutex_.Lock(); // no need to signal bg_cv_ as it will be signaled at the end of the // flush process. #endif // ROCKSDB_LITE } Status DBImpl::SetOptions(ColumnFamilyHandle* column_family, const std::unordered_map& options_map) { #ifdef ROCKSDB_LITE return Status::NotSupported("Not supported in ROCKSDB LITE"); #else auto* cfd = reinterpret_cast(column_family)->cfd(); if (options_map.empty()) { Log(InfoLogLevel::WARN_LEVEL, db_options_.info_log, "SetOptions() on column family [%s], empty input", cfd->GetName().c_str()); return Status::InvalidArgument("empty input"); } MutableCFOptions new_options; Status s; { InstrumentedMutexLock l(&mutex_); s = cfd->SetOptions(options_map); if (s.ok()) { new_options = *cfd->GetLatestMutableCFOptions(); } } Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "SetOptions() on column family [%s], inputs:", cfd->GetName().c_str()); for (const auto& o : options_map) { Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "%s: %s\n", o.first.c_str(), o.second.c_str()); } if (s.ok()) { Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "[%s] SetOptions succeeded", cfd->GetName().c_str()); new_options.Dump(db_options_.info_log.get()); } else { Log(InfoLogLevel::WARN_LEVEL, db_options_.info_log, "[%s] SetOptions failed", cfd->GetName().c_str()); } LogFlush(db_options_.info_log); return s; #endif // ROCKSDB_LITE } // return the same level if it cannot be moved int DBImpl::FindMinimumEmptyLevelFitting(ColumnFamilyData* cfd, const MutableCFOptions& mutable_cf_options, int level) { mutex_.AssertHeld(); const auto* vstorage = cfd->current()->storage_info(); int minimum_level = level; for (int i = level - 1; i > 0; --i) { // stop if level i is not empty if (vstorage->NumLevelFiles(i) > 0) break; // stop if level i is too small (cannot fit the level files) if (vstorage->MaxBytesForLevel(i) < vstorage->NumLevelBytes(level)) { break; } minimum_level = i; } return minimum_level; } Status DBImpl::ReFitLevel(ColumnFamilyData* cfd, int level, int target_level) { assert(level < cfd->NumberLevels()); if (target_level >= cfd->NumberLevels()) { return Status::InvalidArgument("Target level exceeds number of levels"); } SuperVersion* superversion_to_free = nullptr; SuperVersion* new_superversion = new SuperVersion(); InstrumentedMutexLock guard_lock(&mutex_); // only allow one thread refitting if (refitting_level_) { Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "[ReFitLevel] another thread is refitting"); delete new_superversion; return Status::NotSupported("another thread is refitting"); } refitting_level_ = true; // wait for all background threads to stop bg_work_gate_closed_ = true; while (bg_compaction_scheduled_ > 0 || bg_flush_scheduled_) { Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "[RefitLevel] waiting for background threads to stop: %d %d", bg_compaction_scheduled_, bg_flush_scheduled_); bg_cv_.Wait(); } const MutableCFOptions mutable_cf_options = *cfd->GetLatestMutableCFOptions(); // move to a smaller level int to_level = target_level; if (target_level < 0) { to_level = FindMinimumEmptyLevelFitting(cfd, mutable_cf_options, level); } Status status; auto* vstorage = cfd->current()->storage_info(); if (to_level > level) { if (level == 0) { delete new_superversion; return Status::NotSupported( "Cannot change from level 0 to other levels."); } // Check levels are empty for a trivial move for (int l = level + 1; l <= to_level; l++) { if (vstorage->NumLevelFiles(l) > 0) { delete new_superversion; return Status::NotSupported( "Levels between source and target are not empty for a move."); } } } if (to_level != level) { Log(InfoLogLevel::DEBUG_LEVEL, db_options_.info_log, "[%s] Before refitting:\n%s", cfd->GetName().c_str(), cfd->current()->DebugString().data()); VersionEdit edit; edit.SetColumnFamily(cfd->GetID()); for (const auto& f : vstorage->LevelFiles(level)) { edit.DeleteFile(level, f->fd.GetNumber()); edit.AddFile(to_level, f->fd.GetNumber(), f->fd.GetPathId(), f->fd.GetFileSize(), f->smallest, f->largest, f->smallest_seqno, f->largest_seqno, f->marked_for_compaction); } Log(InfoLogLevel::DEBUG_LEVEL, db_options_.info_log, "[%s] Apply version edit:\n%s", cfd->GetName().c_str(), edit.DebugString().data()); status = versions_->LogAndApply(cfd, mutable_cf_options, &edit, &mutex_, directories_.GetDbDir()); superversion_to_free = InstallSuperVersionAndScheduleWork( cfd, new_superversion, mutable_cf_options); new_superversion = nullptr; Log(InfoLogLevel::DEBUG_LEVEL, db_options_.info_log, "[%s] LogAndApply: %s\n", cfd->GetName().c_str(), status.ToString().data()); if (status.ok()) { Log(InfoLogLevel::DEBUG_LEVEL, db_options_.info_log, "[%s] After refitting:\n%s", cfd->GetName().c_str(), cfd->current()->DebugString().data()); } } refitting_level_ = false; bg_work_gate_closed_ = false; delete superversion_to_free; delete new_superversion; return status; } int DBImpl::NumberLevels(ColumnFamilyHandle* column_family) { auto cfh = reinterpret_cast(column_family); return cfh->cfd()->NumberLevels(); } int DBImpl::MaxMemCompactionLevel(ColumnFamilyHandle* column_family) { return 0; } int DBImpl::Level0StopWriteTrigger(ColumnFamilyHandle* column_family) { auto cfh = reinterpret_cast(column_family); InstrumentedMutexLock l(&mutex_); return cfh->cfd()->GetSuperVersion()-> mutable_cf_options.level0_stop_writes_trigger; } Status DBImpl::Flush(const FlushOptions& flush_options, ColumnFamilyHandle* column_family) { auto cfh = reinterpret_cast(column_family); return FlushMemTable(cfh->cfd(), flush_options); } Status DBImpl::SyncWAL() { autovector logs_to_sync; bool need_log_dir_sync; uint64_t current_log_number; { InstrumentedMutexLock l(&mutex_); assert(!logs_.empty()); // This SyncWAL() call only cares about logs up to this number. current_log_number = logfile_number_; while (logs_.front().number <= current_log_number && logs_.front().getting_synced) { log_sync_cv_.Wait(); } // First check that logs are safe to sync in background. for (auto it = logs_.begin(); it != logs_.end() && it->number <= current_log_number; ++it) { if (!it->writer->file()->writable_file()->IsSyncThreadSafe()) { return Status::NotSupported( "SyncWAL() is not supported for this implementation of WAL file", db_options_.allow_mmap_writes ? "try setting Options::allow_mmap_writes to false" : Slice()); } } for (auto it = logs_.begin(); it != logs_.end() && it->number <= current_log_number; ++it) { auto& log = *it; assert(!log.getting_synced); log.getting_synced = true; logs_to_sync.push_back(log.writer); } need_log_dir_sync = !log_dir_synced_; } Status status; for (log::Writer* log : logs_to_sync) { status = log->file()->SyncWithoutFlush(db_options_.use_fsync); if (!status.ok()) { break; } } if (status.ok() && need_log_dir_sync) { status = directories_.GetWalDir()->Fsync(); } { InstrumentedMutexLock l(&mutex_); MarkLogsSynced(current_log_number, need_log_dir_sync, status); } return status; } void DBImpl::MarkLogsSynced( uint64_t up_to, bool synced_dir, const Status& status) { mutex_.AssertHeld(); if (synced_dir && logfile_number_ == up_to && status.ok()) { log_dir_synced_ = true; } for (auto it = logs_.begin(); it != logs_.end() && it->number <= up_to;) { auto& log = *it; assert(log.getting_synced); if (status.ok() && logs_.size() > 1) { logs_to_free_.push_back(log.ReleaseWriter()); it = logs_.erase(it); } else { log.getting_synced = false; ++it; } } assert(logs_.empty() || (logs_.size() == 1 && !logs_[0].getting_synced)); log_sync_cv_.SignalAll(); } SequenceNumber DBImpl::GetLatestSequenceNumber() const { return versions_->LastSequence(); } Status DBImpl::RunManualCompaction(ColumnFamilyData* cfd, int input_level, int output_level, uint32_t output_path_id, const Slice* begin, const Slice* end, bool disallow_trivial_move) { assert(input_level == ColumnFamilyData::kCompactAllLevels || input_level >= 0); InternalKey begin_storage, end_storage; ManualCompaction manual; manual.cfd = cfd; manual.input_level = input_level; manual.output_level = output_level; manual.output_path_id = output_path_id; manual.done = false; manual.in_progress = false; manual.disallow_trivial_move = disallow_trivial_move; // For universal compaction, we enforce every manual compaction to compact // all files. if (begin == nullptr || cfd->ioptions()->compaction_style == kCompactionStyleUniversal || cfd->ioptions()->compaction_style == kCompactionStyleFIFO) { manual.begin = nullptr; } else { begin_storage.SetMaxPossibleForUserKey(*begin); manual.begin = &begin_storage; } if (end == nullptr || cfd->ioptions()->compaction_style == kCompactionStyleUniversal || cfd->ioptions()->compaction_style == kCompactionStyleFIFO) { manual.end = nullptr; } else { end_storage.SetMinPossibleForUserKey(*end); manual.end = &end_storage; } InstrumentedMutexLock l(&mutex_); // When a manual compaction arrives, temporarily disable scheduling of // non-manual compactions and wait until the number of scheduled compaction // jobs drops to zero. This is needed to ensure that this manual compaction // can compact any range of keys/files. // // bg_manual_only_ is non-zero when at least one thread is inside // RunManualCompaction(), i.e. during that time no other compaction will // get scheduled (see MaybeScheduleFlushOrCompaction). // // Note that the following loop doesn't stop more that one thread calling // RunManualCompaction() from getting to the second while loop below. // However, only one of them will actually schedule compaction, while // others will wait on a condition variable until it completes. ++bg_manual_only_; while (bg_compaction_scheduled_ > 0) { Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "[%s] Manual compaction waiting for all other scheduled background " "compactions to finish", cfd->GetName().c_str()); bg_cv_.Wait(); } Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "[%s] Manual compaction starting", cfd->GetName().c_str()); // We don't check bg_error_ here, because if we get the error in compaction, // the compaction will set manual.status to bg_error_ and set manual.done to // true. while (!manual.done) { assert(bg_manual_only_ > 0); if (manual_compaction_ != nullptr) { // Running either this or some other manual compaction bg_cv_.Wait(); } else { manual_compaction_ = &manual; bg_compaction_scheduled_++; env_->Schedule(&DBImpl::BGWorkCompaction, this, Env::Priority::LOW, this); } } assert(!manual.in_progress); assert(bg_manual_only_ > 0); --bg_manual_only_; return manual.status; } Status DBImpl::FlushMemTable(ColumnFamilyData* cfd, const FlushOptions& flush_options) { Status s; { WriteContext context; InstrumentedMutexLock guard_lock(&mutex_); if (cfd->imm()->NumNotFlushed() == 0 && cfd->mem()->IsEmpty()) { // Nothing to flush return Status::OK(); } WriteThread::Writer w; write_thread_.EnterUnbatched(&w, &mutex_); // SwitchMemtable() will release and reacquire mutex // during execution s = SwitchMemtable(cfd, &context); write_thread_.ExitUnbatched(&w); cfd->imm()->FlushRequested(); // schedule flush SchedulePendingFlush(cfd); MaybeScheduleFlushOrCompaction(); } if (s.ok() && flush_options.wait) { // Wait until the compaction completes s = WaitForFlushMemTable(cfd); } return s; } Status DBImpl::WaitForFlushMemTable(ColumnFamilyData* cfd) { Status s; // Wait until the compaction completes InstrumentedMutexLock l(&mutex_); while (cfd->imm()->NumNotFlushed() > 0 && bg_error_.ok()) { if (shutting_down_.load(std::memory_order_acquire)) { return Status::ShutdownInProgress(); } bg_cv_.Wait(); } if (!bg_error_.ok()) { s = bg_error_; } return s; } void DBImpl::MaybeScheduleFlushOrCompaction() { mutex_.AssertHeld(); if (!opened_successfully_) { // Compaction may introduce data race to DB open return; } if (bg_work_gate_closed_) { // gate closed for background work return; } else if (shutting_down_.load(std::memory_order_acquire)) { // DB is being deleted; no more background compactions return; } while (unscheduled_flushes_ > 0 && bg_flush_scheduled_ < db_options_.max_background_flushes) { unscheduled_flushes_--; bg_flush_scheduled_++; env_->Schedule(&DBImpl::BGWorkFlush, this, Env::Priority::HIGH, this); } // special case -- if max_background_flushes == 0, then schedule flush on a // compaction thread if (db_options_.max_background_flushes == 0) { while (unscheduled_flushes_ > 0 && bg_flush_scheduled_ + bg_compaction_scheduled_ < db_options_.max_background_compactions) { unscheduled_flushes_--; bg_flush_scheduled_++; env_->Schedule(&DBImpl::BGWorkFlush, this, Env::Priority::LOW, this); } } if (bg_manual_only_) { // only manual compactions are allowed to run. don't schedule automatic // compactions return; } while (bg_compaction_scheduled_ < db_options_.max_background_compactions && unscheduled_compactions_ > 0) { bg_compaction_scheduled_++; unscheduled_compactions_--; env_->Schedule(&DBImpl::BGWorkCompaction, this, Env::Priority::LOW, this); } } void DBImpl::AddToCompactionQueue(ColumnFamilyData* cfd) { assert(!cfd->pending_compaction()); cfd->Ref(); compaction_queue_.push_back(cfd); cfd->set_pending_compaction(true); } ColumnFamilyData* DBImpl::PopFirstFromCompactionQueue() { assert(!compaction_queue_.empty()); auto cfd = *compaction_queue_.begin(); compaction_queue_.pop_front(); assert(cfd->pending_compaction()); cfd->set_pending_compaction(false); return cfd; } void DBImpl::AddToFlushQueue(ColumnFamilyData* cfd) { assert(!cfd->pending_flush()); cfd->Ref(); flush_queue_.push_back(cfd); cfd->set_pending_flush(true); } ColumnFamilyData* DBImpl::PopFirstFromFlushQueue() { assert(!flush_queue_.empty()); auto cfd = *flush_queue_.begin(); flush_queue_.pop_front(); assert(cfd->pending_flush()); cfd->set_pending_flush(false); return cfd; } void DBImpl::SchedulePendingFlush(ColumnFamilyData* cfd) { if (!cfd->pending_flush() && cfd->imm()->IsFlushPending()) { AddToFlushQueue(cfd); ++unscheduled_flushes_; } } void DBImpl::SchedulePendingCompaction(ColumnFamilyData* cfd) { if (!cfd->pending_compaction() && cfd->NeedsCompaction()) { AddToCompactionQueue(cfd); ++unscheduled_compactions_; } } void DBImpl::RecordFlushIOStats() { RecordTick(stats_, FLUSH_WRITE_BYTES, IOSTATS(bytes_written)); IOSTATS_RESET(bytes_written); } void DBImpl::BGWorkFlush(void* db) { IOSTATS_SET_THREAD_POOL_ID(Env::Priority::HIGH); TEST_SYNC_POINT("DBImpl::BGWorkFlush"); reinterpret_cast(db)->BackgroundCallFlush(); TEST_SYNC_POINT("DBImpl::BGWorkFlush:done"); } void DBImpl::BGWorkCompaction(void* db) { IOSTATS_SET_THREAD_POOL_ID(Env::Priority::LOW); TEST_SYNC_POINT("DBImpl::BGWorkCompaction"); reinterpret_cast(db)->BackgroundCallCompaction(); } Status DBImpl::BackgroundFlush(bool* made_progress, JobContext* job_context, LogBuffer* log_buffer) { mutex_.AssertHeld(); Status status = bg_error_; if (status.ok() && shutting_down_.load(std::memory_order_acquire)) { status = Status::ShutdownInProgress(); } if (!status.ok()) { return status; } ColumnFamilyData* cfd = nullptr; while (!flush_queue_.empty()) { // This cfd is already referenced auto first_cfd = PopFirstFromFlushQueue(); if (first_cfd->IsDropped() || !first_cfd->imm()->IsFlushPending()) { // can't flush this CF, try next one if (first_cfd->Unref()) { delete first_cfd; } continue; } // found a flush! cfd = first_cfd; break; } if (cfd != nullptr) { const MutableCFOptions mutable_cf_options = *cfd->GetLatestMutableCFOptions(); LogToBuffer( log_buffer, "Calling FlushMemTableToOutputFile with column " "family [%s], flush slots available %d, compaction slots available %d", cfd->GetName().c_str(), db_options_.max_background_flushes - bg_flush_scheduled_, db_options_.max_background_compactions - bg_compaction_scheduled_); status = FlushMemTableToOutputFile(cfd, mutable_cf_options, made_progress, job_context, log_buffer); if (cfd->Unref()) { delete cfd; } } return status; } void DBImpl::BackgroundCallFlush() { bool made_progress = false; JobContext job_context(next_job_id_.fetch_add(1), true); assert(bg_flush_scheduled_); LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, db_options_.info_log.get()); { InstrumentedMutexLock l(&mutex_); auto pending_outputs_inserted_elem = CaptureCurrentFileNumberInPendingOutputs(); Status s = BackgroundFlush(&made_progress, &job_context, &log_buffer); if (!s.ok() && !s.IsShutdownInProgress()) { // Wait a little bit before retrying background flush in // case this is an environmental problem and we do not want to // chew up resources for failed flushes for the duration of // the problem. uint64_t error_cnt = default_cf_internal_stats_->BumpAndGetBackgroundErrorCount(); bg_cv_.SignalAll(); // In case a waiter can proceed despite the error mutex_.Unlock(); Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "Waiting after background flush error: %s" "Accumulated background error counts: %" PRIu64, s.ToString().c_str(), error_cnt); log_buffer.FlushBufferToLog(); LogFlush(db_options_.info_log); env_->SleepForMicroseconds(1000000); mutex_.Lock(); } ReleaseFileNumberFromPendingOutputs(pending_outputs_inserted_elem); // If flush failed, we want to delete all temporary files that we might have // created. Thus, we force full scan in FindObsoleteFiles() FindObsoleteFiles(&job_context, !s.ok() && !s.IsShutdownInProgress()); // delete unnecessary files if any, this is done outside the mutex if (job_context.HaveSomethingToDelete() || !log_buffer.IsEmpty()) { mutex_.Unlock(); // Have to flush the info logs before bg_flush_scheduled_-- // because if bg_flush_scheduled_ becomes 0 and the lock is // released, the deconstructor of DB can kick in and destroy all the // states of DB so info_log might not be available after that point. // It also applies to access other states that DB owns. log_buffer.FlushBufferToLog(); if (job_context.HaveSomethingToDelete()) { PurgeObsoleteFiles(job_context); } job_context.Clean(); mutex_.Lock(); } bg_flush_scheduled_--; // See if there's more work to be done MaybeScheduleFlushOrCompaction(); RecordFlushIOStats(); bg_cv_.SignalAll(); // IMPORTANT: there should be no code after calling SignalAll. This call may // signal the DB destructor that it's OK to proceed with destruction. In // that case, all DB variables will be dealloacated and referencing them // will cause trouble. } } void DBImpl::BackgroundCallCompaction() { bool made_progress = false; JobContext job_context(next_job_id_.fetch_add(1), true); MaybeDumpStats(); LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, db_options_.info_log.get()); { InstrumentedMutexLock l(&mutex_); auto pending_outputs_inserted_elem = CaptureCurrentFileNumberInPendingOutputs(); assert(bg_compaction_scheduled_); Status s = BackgroundCompaction(&made_progress, &job_context, &log_buffer); if (!s.ok() && !s.IsShutdownInProgress()) { // Wait a little bit before retrying background compaction in // case this is an environmental problem and we do not want to // chew up resources for failed compactions for the duration of // the problem. uint64_t error_cnt = default_cf_internal_stats_->BumpAndGetBackgroundErrorCount(); bg_cv_.SignalAll(); // In case a waiter can proceed despite the error mutex_.Unlock(); log_buffer.FlushBufferToLog(); Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "Waiting after background compaction error: %s, " "Accumulated background error counts: %" PRIu64, s.ToString().c_str(), error_cnt); LogFlush(db_options_.info_log); env_->SleepForMicroseconds(1000000); mutex_.Lock(); } ReleaseFileNumberFromPendingOutputs(pending_outputs_inserted_elem); // If compaction failed, we want to delete all temporary files that we might // have created (they might not be all recorded in job_context in case of a // failure). Thus, we force full scan in FindObsoleteFiles() FindObsoleteFiles(&job_context, !s.ok() && !s.IsShutdownInProgress()); // delete unnecessary files if any, this is done outside the mutex if (job_context.HaveSomethingToDelete() || !log_buffer.IsEmpty()) { mutex_.Unlock(); // Have to flush the info logs before bg_compaction_scheduled_-- // because if bg_flush_scheduled_ becomes 0 and the lock is // released, the deconstructor of DB can kick in and destroy all the // states of DB so info_log might not be available after that point. // It also applies to access other states that DB owns. log_buffer.FlushBufferToLog(); if (job_context.HaveSomethingToDelete()) { PurgeObsoleteFiles(job_context); } job_context.Clean(); mutex_.Lock(); } bg_compaction_scheduled_--; versions_->GetColumnFamilySet()->FreeDeadColumnFamilies(); // See if there's more work to be done MaybeScheduleFlushOrCompaction(); if (made_progress || bg_compaction_scheduled_ == 0 || bg_manual_only_ > 0) { // signal if // * made_progress -- need to wakeup DelayWrite // * bg_compaction_scheduled_ == 0 -- need to wakeup ~DBImpl // * bg_manual_only_ > 0 -- need to wakeup RunManualCompaction // If none of this is true, there is no need to signal since nobody is // waiting for it bg_cv_.SignalAll(); } // IMPORTANT: there should be no code after calling SignalAll. This call may // signal the DB destructor that it's OK to proceed with destruction. In // that case, all DB variables will be dealloacated and referencing them // will cause trouble. } } Status DBImpl::BackgroundCompaction(bool* made_progress, JobContext* job_context, LogBuffer* log_buffer) { *made_progress = false; mutex_.AssertHeld(); bool is_manual = (manual_compaction_ != nullptr) && (manual_compaction_->in_progress == false); bool trivial_move_disallowed = is_manual && manual_compaction_->disallow_trivial_move; CompactionJobStats compaction_job_stats; Status status = bg_error_; if (status.ok() && shutting_down_.load(std::memory_order_acquire)) { status = Status::ShutdownInProgress(); } if (!status.ok()) { if (is_manual) { manual_compaction_->status = status; manual_compaction_->done = true; manual_compaction_->in_progress = false; manual_compaction_ = nullptr; } return status; } if (is_manual) { // another thread cannot pick up the same work manual_compaction_->in_progress = true; } else if (manual_compaction_ != nullptr) { // there should be no automatic compactions running when manual compaction // is running return Status::OK(); } unique_ptr c; InternalKey manual_end_storage; InternalKey* manual_end = &manual_end_storage; if (is_manual) { ManualCompaction* m = manual_compaction_; assert(m->in_progress); c.reset(m->cfd->CompactRange( *m->cfd->GetLatestMutableCFOptions(), m->input_level, m->output_level, m->output_path_id, m->begin, m->end, &manual_end)); if (!c) { m->done = true; LogToBuffer(log_buffer, "[%s] Manual compaction from level-%d from %s .. " "%s; nothing to do\n", m->cfd->GetName().c_str(), m->input_level, (m->begin ? m->begin->DebugString().c_str() : "(begin)"), (m->end ? m->end->DebugString().c_str() : "(end)")); } else { LogToBuffer(log_buffer, "[%s] Manual compaction from level-%d to level-%d from %s .. " "%s; will stop at %s\n", m->cfd->GetName().c_str(), m->input_level, c->output_level(), (m->begin ? m->begin->DebugString().c_str() : "(begin)"), (m->end ? m->end->DebugString().c_str() : "(end)"), ((m->done || manual_end == nullptr) ? "(end)" : manual_end->DebugString().c_str())); } } else if (!compaction_queue_.empty()) { // cfd is referenced here auto cfd = PopFirstFromCompactionQueue(); // We unreference here because the following code will take a Ref() on // this cfd if it is going to use it (Compaction class holds a // reference). // This will all happen under a mutex so we don't have to be afraid of // somebody else deleting it. if (cfd->Unref()) { delete cfd; // This was the last reference of the column family, so no need to // compact. return Status::OK(); } // Pick up latest mutable CF Options and use it throughout the // compaction job // Compaction makes a copy of the latest MutableCFOptions. It should be used // throughout the compaction procedure to make sure consistency. It will // eventually be installed into SuperVersion auto* mutable_cf_options = cfd->GetLatestMutableCFOptions(); if (!mutable_cf_options->disable_auto_compactions && !cfd->IsDropped()) { // NOTE: try to avoid unnecessary copy of MutableCFOptions if // compaction is not necessary. Need to make sure mutex is held // until we make a copy in the following code c.reset(cfd->PickCompaction(*mutable_cf_options, log_buffer)); if (c != nullptr) { // update statistics MeasureTime(stats_, NUM_FILES_IN_SINGLE_COMPACTION, c->inputs(0)->size()); // There are three things that can change compaction score: // 1) When flush or compaction finish. This case is covered by // InstallSuperVersionAndScheduleWork // 2) When MutableCFOptions changes. This case is also covered by // InstallSuperVersionAndScheduleWork, because this is when the new // options take effect. // 3) When we Pick a new compaction, we "remove" those files being // compacted from the calculation, which then influences compaction // score. Here we check if we need the new compaction even without the // files that are currently being compacted. If we need another // compaction, we might be able to execute it in parallel, so we add it // to the queue and schedule a new thread. if (cfd->NeedsCompaction()) { // Yes, we need more compactions! AddToCompactionQueue(cfd); ++unscheduled_compactions_; MaybeScheduleFlushOrCompaction(); } } } } if (!c) { // Nothing to do LogToBuffer(log_buffer, "Compaction nothing to do"); } else if (c->deletion_compaction()) { // TODO(icanadi) Do we want to honor snapshots here? i.e. not delete old // file if there is alive snapshot pointing to it assert(c->num_input_files(1) == 0); assert(c->level() == 0); assert(c->column_family_data()->ioptions()->compaction_style == kCompactionStyleFIFO); compaction_job_stats.num_input_files = c->num_input_files(0); for (const auto& f : *c->inputs(0)) { c->edit()->DeleteFile(c->level(), f->fd.GetNumber()); } status = versions_->LogAndApply(c->column_family_data(), *c->mutable_cf_options(), c->edit(), &mutex_, directories_.GetDbDir()); InstallSuperVersionAndScheduleWorkWrapper( c->column_family_data(), job_context, *c->mutable_cf_options()); LogToBuffer(log_buffer, "[%s] Deleted %d files\n", c->column_family_data()->GetName().c_str(), c->num_input_files(0)); *made_progress = true; } else if (!trivial_move_disallowed && c->IsTrivialMove()) { TEST_SYNC_POINT("DBImpl::BackgroundCompaction:TrivialMove"); // Instrument for event update // TODO(yhchiang): add op details for showing trivial-move. ThreadStatusUtil::SetColumnFamily(c->column_family_data()); ThreadStatusUtil::SetThreadOperation(ThreadStatus::OP_COMPACTION); compaction_job_stats.num_input_files = c->num_input_files(0); // Move files to next level int32_t moved_files = 0; int64_t moved_bytes = 0; for (unsigned int l = 0; l < c->num_input_levels(); l++) { if (c->level(l) == c->output_level()) { continue; } for (size_t i = 0; i < c->num_input_files(l); i++) { FileMetaData* f = c->input(l, i); c->edit()->DeleteFile(c->level(l), f->fd.GetNumber()); c->edit()->AddFile(c->output_level(), f->fd.GetNumber(), f->fd.GetPathId(), f->fd.GetFileSize(), f->smallest, f->largest, f->smallest_seqno, f->largest_seqno, f->marked_for_compaction); LogToBuffer(log_buffer, "[%s] Moving #%" PRIu64 " to level-%d %" PRIu64 " bytes\n", c->column_family_data()->GetName().c_str(), f->fd.GetNumber(), c->output_level(), f->fd.GetFileSize()); ++moved_files; moved_bytes += f->fd.GetFileSize(); } } status = versions_->LogAndApply(c->column_family_data(), *c->mutable_cf_options(), c->edit(), &mutex_, directories_.GetDbDir()); // Use latest MutableCFOptions InstallSuperVersionAndScheduleWorkWrapper( c->column_family_data(), job_context, *c->mutable_cf_options()); VersionStorageInfo::LevelSummaryStorage tmp; c->column_family_data()->internal_stats()->IncBytesMoved(c->output_level(), moved_bytes); { event_logger_.LogToBuffer(log_buffer) << "job" << job_context->job_id << "event" << "trivial_move" << "destination_level" << c->output_level() << "files" << moved_files << "total_files_size" << moved_bytes; } LogToBuffer( log_buffer, "[%s] Moved #%d files to level-%d %" PRIu64 " bytes %s: %s\n", c->column_family_data()->GetName().c_str(), moved_files, c->output_level(), moved_bytes, status.ToString().c_str(), c->column_family_data()->current()->storage_info()->LevelSummary(&tmp)); *made_progress = true; // Clear Instrument ThreadStatusUtil::ResetThreadStatus(); } else { int output_level __attribute__((unused)) = c->output_level(); TEST_SYNC_POINT_CALLBACK("DBImpl::BackgroundCompaction:NonTrivial", &output_level); assert(is_snapshot_supported_ || snapshots_.empty()); CompactionJob compaction_job( job_context->job_id, c.get(), db_options_, env_options_, versions_.get(), &shutting_down_, log_buffer, directories_.GetDbDir(), directories_.GetDataDir(c->output_path_id()), stats_, snapshots_.GetAll(), table_cache_, &event_logger_, c->mutable_cf_options()->paranoid_file_checks, c->mutable_cf_options()->compaction_measure_io_stats, dbname_, &compaction_job_stats); compaction_job.Prepare(); mutex_.Unlock(); compaction_job.Run(); TEST_SYNC_POINT("DBImpl::BackgroundCompaction:NonTrivial:AfterRun"); mutex_.Lock(); status = compaction_job.Install(*c->mutable_cf_options(), &mutex_); if (status.ok()) { InstallSuperVersionAndScheduleWorkWrapper( c->column_family_data(), job_context, *c->mutable_cf_options()); } *made_progress = true; } if (c != nullptr) { NotifyOnCompactionCompleted( c->column_family_data(), c.get(), status, compaction_job_stats, job_context->job_id); c->ReleaseCompactionFiles(status); *made_progress = true; } // this will unref its input_version and column_family_data c.reset(); if (status.ok()) { // Done } else if (status.IsShutdownInProgress()) { // Ignore compaction errors found during shutting down } else { Log(InfoLogLevel::WARN_LEVEL, db_options_.info_log, "Compaction error: %s", status.ToString().c_str()); if (db_options_.paranoid_checks && bg_error_.ok()) { bg_error_ = status; } } if (is_manual) { ManualCompaction* m = manual_compaction_; if (!status.ok()) { m->status = status; m->done = true; } // For universal compaction: // Because universal compaction always happens at level 0, so one // compaction will pick up all overlapped files. No files will be // filtered out due to size limit and left for a successive compaction. // So we can safely conclude the current compaction. // // Also note that, if we don't stop here, then the current compaction // writes a new file back to level 0, which will be used in successive // compaction. Hence the manual compaction will never finish. // // Stop the compaction if manual_end points to nullptr -- this means // that we compacted the whole range. manual_end should always point // to nullptr in case of universal compaction if (manual_end == nullptr) { m->done = true; } if (!m->done) { // We only compacted part of the requested range. Update *m // to the range that is left to be compacted. // Universal and FIFO compactions should always compact the whole range assert(m->cfd->ioptions()->compaction_style != kCompactionStyleUniversal || m->cfd->ioptions()->num_levels > 1); assert(m->cfd->ioptions()->compaction_style != kCompactionStyleFIFO); m->tmp_storage = *manual_end; m->begin = &m->tmp_storage; } m->in_progress = false; // not being processed anymore manual_compaction_ = nullptr; } return status; } namespace { struct IterState { IterState(DBImpl* _db, InstrumentedMutex* _mu, SuperVersion* _super_version) : db(_db), mu(_mu), super_version(_super_version) {} DBImpl* db; InstrumentedMutex* mu; SuperVersion* super_version; }; static void CleanupIteratorState(void* arg1, void* arg2) { IterState* state = reinterpret_cast(arg1); if (state->super_version->Unref()) { // Job id == 0 means that this is not our background process, but rather // user thread JobContext job_context(0); state->mu->Lock(); state->super_version->Cleanup(); state->db->FindObsoleteFiles(&job_context, false, true); state->mu->Unlock(); delete state->super_version; if (job_context.HaveSomethingToDelete()) { state->db->PurgeObsoleteFiles(job_context); } job_context.Clean(); } delete state; } } // namespace Iterator* DBImpl::NewInternalIterator(const ReadOptions& read_options, ColumnFamilyData* cfd, SuperVersion* super_version, Arena* arena) { Iterator* internal_iter; assert(arena != nullptr); // Need to create internal iterator from the arena. MergeIteratorBuilder merge_iter_builder(&cfd->internal_comparator(), arena); // Collect iterator for mutable mem merge_iter_builder.AddIterator( super_version->mem->NewIterator(read_options, arena)); // Collect all needed child iterators for immutable memtables super_version->imm->AddIterators(read_options, &merge_iter_builder); // Collect iterators for files in L0 - Ln super_version->current->AddIterators(read_options, env_options_, &merge_iter_builder); internal_iter = merge_iter_builder.Finish(); IterState* cleanup = new IterState(this, &mutex_, super_version); internal_iter->RegisterCleanup(CleanupIteratorState, cleanup, nullptr); return internal_iter; } ColumnFamilyHandle* DBImpl::DefaultColumnFamily() const { return default_cf_handle_; } Status DBImpl::Get(const ReadOptions& read_options, ColumnFamilyHandle* column_family, const Slice& key, std::string* value) { return GetImpl(read_options, column_family, key, value); } // JobContext gets created and destructed outside of the lock -- // we // use this convinently to: // * malloc one SuperVersion() outside of the lock -- new_superversion // * delete SuperVersion()s outside of the lock -- superversions_to_free // // However, if InstallSuperVersionAndScheduleWork() gets called twice with the // same job_context, we can't reuse the SuperVersion() that got // malloced because // first call already used it. In that rare case, we take a hit and create a // new SuperVersion() inside of the mutex. We do similar thing // for superversion_to_free void DBImpl::InstallSuperVersionAndScheduleWorkWrapper( ColumnFamilyData* cfd, JobContext* job_context, const MutableCFOptions& mutable_cf_options) { mutex_.AssertHeld(); SuperVersion* old_superversion = InstallSuperVersionAndScheduleWork( cfd, job_context->new_superversion, mutable_cf_options); job_context->new_superversion = nullptr; job_context->superversions_to_free.push_back(old_superversion); } SuperVersion* DBImpl::InstallSuperVersionAndScheduleWork( ColumnFamilyData* cfd, SuperVersion* new_sv, const MutableCFOptions& mutable_cf_options) { mutex_.AssertHeld(); // Update max_total_in_memory_state_ size_t old_memtable_size = 0; auto* old_sv = cfd->GetSuperVersion(); if (old_sv) { old_memtable_size = old_sv->mutable_cf_options.write_buffer_size * old_sv->mutable_cf_options.max_write_buffer_number; } auto* old = cfd->InstallSuperVersion( new_sv ? new_sv : new SuperVersion(), &mutex_, mutable_cf_options); // Whenever we install new SuperVersion, we might need to issue new flushes or // compactions. SchedulePendingFlush(cfd); SchedulePendingCompaction(cfd); MaybeScheduleFlushOrCompaction(); // Update max_total_in_memory_state_ max_total_in_memory_state_ = max_total_in_memory_state_ - old_memtable_size + mutable_cf_options.write_buffer_size * mutable_cf_options.max_write_buffer_number; return old; } Status DBImpl::GetImpl(const ReadOptions& read_options, ColumnFamilyHandle* column_family, const Slice& key, std::string* value, bool* value_found) { StopWatch sw(env_, stats_, DB_GET); PERF_TIMER_GUARD(get_snapshot_time); auto cfh = reinterpret_cast(column_family); auto cfd = cfh->cfd(); SequenceNumber snapshot; if (read_options.snapshot != nullptr) { snapshot = reinterpret_cast( read_options.snapshot)->number_; } else { snapshot = versions_->LastSequence(); } // Acquire SuperVersion SuperVersion* sv = GetAndRefSuperVersion(cfd); // Prepare to store a list of merge operations if merge occurs. MergeContext merge_context; Status s; // First look in the memtable, then in the immutable memtable (if any). // s is both in/out. When in, s could either be OK or MergeInProgress. // merge_operands will contain the sequence of merges in the latter case. LookupKey lkey(key, snapshot); PERF_TIMER_STOP(get_snapshot_time); if (sv->mem->Get(lkey, value, &s, &merge_context)) { // Done RecordTick(stats_, MEMTABLE_HIT); } else if (sv->imm->Get(lkey, value, &s, &merge_context)) { // Done RecordTick(stats_, MEMTABLE_HIT); } else { PERF_TIMER_GUARD(get_from_output_files_time); sv->current->Get(read_options, lkey, value, &s, &merge_context, value_found); RecordTick(stats_, MEMTABLE_MISS); } { PERF_TIMER_GUARD(get_post_process_time); ReturnAndCleanupSuperVersion(cfd, sv); RecordTick(stats_, NUMBER_KEYS_READ); RecordTick(stats_, BYTES_READ, value->size()); } return s; } std::vector DBImpl::MultiGet( const ReadOptions& read_options, const std::vector& column_family, const std::vector& keys, std::vector* values) { StopWatch sw(env_, stats_, DB_MULTIGET); PERF_TIMER_GUARD(get_snapshot_time); SequenceNumber snapshot; struct MultiGetColumnFamilyData { ColumnFamilyData* cfd; SuperVersion* super_version; }; std::unordered_map multiget_cf_data; // fill up and allocate outside of mutex for (auto cf : column_family) { auto cfh = reinterpret_cast(cf); auto cfd = cfh->cfd(); if (multiget_cf_data.find(cfd->GetID()) == multiget_cf_data.end()) { auto mgcfd = new MultiGetColumnFamilyData(); mgcfd->cfd = cfd; multiget_cf_data.insert({cfd->GetID(), mgcfd}); } } mutex_.Lock(); if (read_options.snapshot != nullptr) { snapshot = reinterpret_cast( read_options.snapshot)->number_; } else { snapshot = versions_->LastSequence(); } for (auto mgd_iter : multiget_cf_data) { mgd_iter.second->super_version = mgd_iter.second->cfd->GetSuperVersion()->Ref(); } mutex_.Unlock(); // Contain a list of merge operations if merge occurs. MergeContext merge_context; // Note: this always resizes the values array size_t num_keys = keys.size(); std::vector stat_list(num_keys); values->resize(num_keys); // Keep track of bytes that we read for statistics-recording later uint64_t bytes_read = 0; PERF_TIMER_STOP(get_snapshot_time); // For each of the given keys, apply the entire "get" process as follows: // First look in the memtable, then in the immutable memtable (if any). // s is both in/out. When in, s could either be OK or MergeInProgress. // merge_operands will contain the sequence of merges in the latter case. for (size_t i = 0; i < num_keys; ++i) { merge_context.Clear(); Status& s = stat_list[i]; std::string* value = &(*values)[i]; LookupKey lkey(keys[i], snapshot); auto cfh = reinterpret_cast(column_family[i]); auto mgd_iter = multiget_cf_data.find(cfh->cfd()->GetID()); assert(mgd_iter != multiget_cf_data.end()); auto mgd = mgd_iter->second; auto super_version = mgd->super_version; if (super_version->mem->Get(lkey, value, &s, &merge_context)) { // Done } else if (super_version->imm->Get(lkey, value, &s, &merge_context)) { // Done } else { PERF_TIMER_GUARD(get_from_output_files_time); super_version->current->Get(read_options, lkey, value, &s, &merge_context); } if (s.ok()) { bytes_read += value->size(); } } // Post processing (decrement reference counts and record statistics) PERF_TIMER_GUARD(get_post_process_time); autovector superversions_to_delete; // TODO(icanadi) do we need lock here or just around Cleanup()? mutex_.Lock(); for (auto mgd_iter : multiget_cf_data) { auto mgd = mgd_iter.second; if (mgd->super_version->Unref()) { mgd->super_version->Cleanup(); superversions_to_delete.push_back(mgd->super_version); } } mutex_.Unlock(); for (auto td : superversions_to_delete) { delete td; } for (auto mgd : multiget_cf_data) { delete mgd.second; } RecordTick(stats_, NUMBER_MULTIGET_CALLS); RecordTick(stats_, NUMBER_MULTIGET_KEYS_READ, num_keys); RecordTick(stats_, NUMBER_MULTIGET_BYTES_READ, bytes_read); PERF_TIMER_STOP(get_post_process_time); return stat_list; } Status DBImpl::CreateColumnFamily(const ColumnFamilyOptions& cf_options, const std::string& column_family_name, ColumnFamilyHandle** handle) { Status s; *handle = nullptr; s = CheckCompressionSupported(cf_options); if (!s.ok()) { return s; } { InstrumentedMutexLock l(&mutex_); if (versions_->GetColumnFamilySet()->GetColumnFamily(column_family_name) != nullptr) { return Status::InvalidArgument("Column family already exists"); } VersionEdit edit; edit.AddColumnFamily(column_family_name); uint32_t new_id = versions_->GetColumnFamilySet()->GetNextColumnFamilyID(); edit.SetColumnFamily(new_id); edit.SetLogNumber(logfile_number_); edit.SetComparatorName(cf_options.comparator->Name()); // LogAndApply will both write the creation in MANIFEST and create // ColumnFamilyData object Options opt(db_options_, cf_options); { // write thread WriteThread::Writer w; write_thread_.EnterUnbatched(&w, &mutex_); // LogAndApply will both write the creation in MANIFEST and create // ColumnFamilyData object s = versions_->LogAndApply( nullptr, MutableCFOptions(opt, ImmutableCFOptions(opt)), &edit, &mutex_, directories_.GetDbDir(), false, &cf_options); write_thread_.ExitUnbatched(&w); } if (s.ok()) { single_column_family_mode_ = false; auto* cfd = versions_->GetColumnFamilySet()->GetColumnFamily(column_family_name); assert(cfd != nullptr); delete InstallSuperVersionAndScheduleWork( cfd, nullptr, *cfd->GetLatestMutableCFOptions()); if (!cfd->mem()->IsSnapshotSupported()) { is_snapshot_supported_ = false; } *handle = new ColumnFamilyHandleImpl(cfd, this, &mutex_); Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "Created column family [%s] (ID %u)", column_family_name.c_str(), (unsigned)cfd->GetID()); } else { Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "Creating column family [%s] FAILED -- %s", column_family_name.c_str(), s.ToString().c_str()); } } // InstrumentedMutexLock l(&mutex_) // this is outside the mutex if (s.ok()) { NewThreadStatusCfInfo( reinterpret_cast(*handle)->cfd()); } return s; } Status DBImpl::DropColumnFamily(ColumnFamilyHandle* column_family) { auto cfh = reinterpret_cast(column_family); auto cfd = cfh->cfd(); if (cfd->GetID() == 0) { return Status::InvalidArgument("Can't drop default column family"); } bool cf_support_snapshot = cfd->mem()->IsSnapshotSupported(); VersionEdit edit; edit.DropColumnFamily(); edit.SetColumnFamily(cfd->GetID()); Status s; { InstrumentedMutexLock l(&mutex_); if (cfd->IsDropped()) { s = Status::InvalidArgument("Column family already dropped!\n"); } if (s.ok()) { // we drop column family from a single write thread WriteThread::Writer w; write_thread_.EnterUnbatched(&w, &mutex_); s = versions_->LogAndApply(cfd, *cfd->GetLatestMutableCFOptions(), &edit, &mutex_); write_thread_.ExitUnbatched(&w); } if (!cf_support_snapshot) { // Dropped Column Family doesn't support snapshot. Need to recalculate // is_snapshot_supported_. bool new_is_snapshot_supported = true; for (auto c : *versions_->GetColumnFamilySet()) { if (!c->IsDropped() && !c->mem()->IsSnapshotSupported()) { new_is_snapshot_supported = false; break; } } is_snapshot_supported_ = new_is_snapshot_supported; } } if (s.ok()) { // Note that here we erase the associated cf_info of the to-be-dropped // cfd before its ref-count goes to zero to avoid having to erase cf_info // later inside db_mutex. EraseThreadStatusCfInfo(cfd); assert(cfd->IsDropped()); auto* mutable_cf_options = cfd->GetLatestMutableCFOptions(); max_total_in_memory_state_ -= mutable_cf_options->write_buffer_size * mutable_cf_options->max_write_buffer_number; Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "Dropped column family with id %u\n", cfd->GetID()); } else { Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "Dropping column family with id %u FAILED -- %s\n", cfd->GetID(), s.ToString().c_str()); } return s; } bool DBImpl::KeyMayExist(const ReadOptions& read_options, ColumnFamilyHandle* column_family, const Slice& key, std::string* value, bool* value_found) { if (value_found != nullptr) { // falsify later if key-may-exist but can't fetch value *value_found = true; } ReadOptions roptions = read_options; roptions.read_tier = kBlockCacheTier; // read from block cache only auto s = GetImpl(roptions, column_family, key, value, value_found); // If block_cache is enabled and the index block of the table didn't // not present in block_cache, the return value will be Status::Incomplete. // In this case, key may still exist in the table. return s.ok() || s.IsIncomplete(); } Iterator* DBImpl::NewIterator(const ReadOptions& read_options, ColumnFamilyHandle* column_family) { auto cfh = reinterpret_cast(column_family); auto cfd = cfh->cfd(); XFUNC_TEST("", "managed_new", managed_new1, xf_manage_new, reinterpret_cast(this), const_cast(&read_options), is_snapshot_supported_); if (read_options.managed) { #ifdef ROCKSDB_LITE // not supported in lite version return NewErrorIterator(Status::InvalidArgument( "Managed Iterators not supported in RocksDBLite.")); #else if ((read_options.tailing) || (read_options.snapshot != nullptr) || (is_snapshot_supported_)) { return new ManagedIterator(this, read_options, cfd); } // Managed iter not supported return NewErrorIterator(Status::InvalidArgument( "Managed Iterators not supported without snapshots.")); #endif } else if (read_options.tailing) { #ifdef ROCKSDB_LITE // not supported in lite version return nullptr; #else SuperVersion* sv = cfd->GetReferencedSuperVersion(&mutex_); auto iter = new ForwardIterator(this, read_options, cfd, sv); return NewDBIterator(env_, *cfd->ioptions(), cfd->user_comparator(), iter, kMaxSequenceNumber, sv->mutable_cf_options.max_sequential_skip_in_iterations, read_options.iterate_upper_bound); #endif } else { SequenceNumber latest_snapshot = versions_->LastSequence(); SuperVersion* sv = cfd->GetReferencedSuperVersion(&mutex_); auto snapshot = read_options.snapshot != nullptr ? reinterpret_cast( read_options.snapshot)->number_ : latest_snapshot; // Try to generate a DB iterator tree in continuous memory area to be // cache friendly. Here is an example of result: // +-------------------------------+ // | | // | ArenaWrappedDBIter | // | + | // | +---> Inner Iterator ------------+ // | | | | // | | +-- -- -- -- -- -- -- --+ | // | +--- | Arena | | // | | | | // | Allocated Memory: | | // | | +-------------------+ | // | | | DBIter | <---+ // | | + | // | | | +-> iter_ ------------+ // | | | | | // | | +-------------------+ | // | | | MergingIterator | <---+ // | | + | // | | | +->child iter1 ------------+ // | | | | | | // | | +->child iter2 ----------+ | // | | | | | | | // | | | +->child iter3 --------+ | | // | | | | | | // | | +-------------------+ | | | // | | | Iterator1 | <--------+ // | | +-------------------+ | | // | | | Iterator2 | <------+ // | | +-------------------+ | // | | | Iterator3 | <----+ // | | +-------------------+ // | | | // +-------+-----------------------+ // // ArenaWrappedDBIter inlines an arena area where all the iterators in // the iterator tree are allocated in the order of being accessed when // querying. // Laying out the iterators in the order of being accessed makes it more // likely that any iterator pointer is close to the iterator it points to so // that they are likely to be in the same cache line and/or page. ArenaWrappedDBIter* db_iter = NewArenaWrappedDbIterator( env_, *cfd->ioptions(), cfd->user_comparator(), snapshot, sv->mutable_cf_options.max_sequential_skip_in_iterations, read_options.iterate_upper_bound); Iterator* internal_iter = NewInternalIterator(read_options, cfd, sv, db_iter->GetArena()); db_iter->SetIterUnderDBIter(internal_iter); return db_iter; } // To stop compiler from complaining return nullptr; } Status DBImpl::NewIterators( const ReadOptions& read_options, const std::vector& column_families, std::vector* iterators) { iterators->clear(); iterators->reserve(column_families.size()); XFUNC_TEST("", "managed_new", managed_new1, xf_manage_new, reinterpret_cast(this), const_cast(&read_options), is_snapshot_supported_); if (read_options.managed) { #ifdef ROCKSDB_LITE return Status::InvalidArgument( "Managed interator not supported in RocksDB lite"); #else if ((!read_options.tailing) && (read_options.snapshot == nullptr) && (!is_snapshot_supported_)) { return Status::InvalidArgument( "Managed interator not supported without snapshots"); } for (auto cfh : column_families) { auto cfd = reinterpret_cast(cfh)->cfd(); auto iter = new ManagedIterator(this, read_options, cfd); iterators->push_back(iter); } #endif } else if (read_options.tailing) { #ifdef ROCKSDB_LITE return Status::InvalidArgument( "Tailing interator not supported in RocksDB lite"); #else for (auto cfh : column_families) { auto cfd = reinterpret_cast(cfh)->cfd(); SuperVersion* sv = cfd->GetReferencedSuperVersion(&mutex_); auto iter = new ForwardIterator(this, read_options, cfd, sv); iterators->push_back( NewDBIterator(env_, *cfd->ioptions(), cfd->user_comparator(), iter, kMaxSequenceNumber, sv->mutable_cf_options.max_sequential_skip_in_iterations)); } #endif } else { SequenceNumber latest_snapshot = versions_->LastSequence(); for (size_t i = 0; i < column_families.size(); ++i) { auto* cfd = reinterpret_cast( column_families[i])->cfd(); SuperVersion* sv = cfd->GetReferencedSuperVersion(&mutex_); auto snapshot = read_options.snapshot != nullptr ? reinterpret_cast( read_options.snapshot)->number_ : latest_snapshot; ArenaWrappedDBIter* db_iter = NewArenaWrappedDbIterator( env_, *cfd->ioptions(), cfd->user_comparator(), snapshot, sv->mutable_cf_options.max_sequential_skip_in_iterations); Iterator* internal_iter = NewInternalIterator( read_options, cfd, sv, db_iter->GetArena()); db_iter->SetIterUnderDBIter(internal_iter); iterators->push_back(db_iter); } } return Status::OK(); } const Snapshot* DBImpl::GetSnapshot() { int64_t unix_time = 0; env_->GetCurrentTime(&unix_time); // Ignore error SnapshotImpl* s = new SnapshotImpl; InstrumentedMutexLock l(&mutex_); // returns null if the underlying memtable does not support snapshot. if (!is_snapshot_supported_) { delete s; return nullptr; } return snapshots_.New(s, versions_->LastSequence(), unix_time); } void DBImpl::ReleaseSnapshot(const Snapshot* s) { const SnapshotImpl* casted_s = reinterpret_cast(s); { InstrumentedMutexLock l(&mutex_); snapshots_.Delete(casted_s); } delete casted_s; } // Convenience methods Status DBImpl::Put(const WriteOptions& o, ColumnFamilyHandle* column_family, const Slice& key, const Slice& val) { return DB::Put(o, column_family, key, val); } Status DBImpl::Merge(const WriteOptions& o, ColumnFamilyHandle* column_family, const Slice& key, const Slice& val) { auto cfh = reinterpret_cast(column_family); if (!cfh->cfd()->ioptions()->merge_operator) { return Status::NotSupported("Provide a merge_operator when opening DB"); } else { return DB::Merge(o, column_family, key, val); } } Status DBImpl::Delete(const WriteOptions& write_options, ColumnFamilyHandle* column_family, const Slice& key) { return DB::Delete(write_options, column_family, key); } Status DBImpl::Write(const WriteOptions& write_options, WriteBatch* my_batch) { return WriteImpl(write_options, my_batch, nullptr); } #ifndef ROCKSDB_LITE Status DBImpl::WriteWithCallback(const WriteOptions& write_options, WriteBatch* my_batch, WriteCallback* callback) { return WriteImpl(write_options, my_batch, callback); } #endif // ROCKSDB_LITE Status DBImpl::WriteImpl(const WriteOptions& write_options, WriteBatch* my_batch, WriteCallback* callback) { if (my_batch == nullptr) { return Status::Corruption("Batch is nullptr!"); } if (write_options.timeout_hint_us != 0) { return Status::InvalidArgument("timeout_hint_us is deprecated"); } Status status; bool callback_failed = false; bool xfunc_attempted_write = false; XFUNC_TEST("transaction", "transaction_xftest_write_impl", xf_transaction_write1, xf_transaction_write, write_options, db_options_, my_batch, callback, this, &status, &xfunc_attempted_write); if (xfunc_attempted_write) { // Test already did the write return status; } PERF_TIMER_GUARD(write_pre_and_post_process_time); WriteThread::Writer w; w.batch = my_batch; w.sync = write_options.sync; w.disableWAL = write_options.disableWAL; w.in_batch_group = false; w.done = false; w.has_callback = (callback != nullptr) ? true : false; if (!write_options.disableWAL) { RecordTick(stats_, WRITE_WITH_WAL); } StopWatch write_sw(env_, db_options_.statistics.get(), DB_WRITE); write_thread_.JoinBatchGroup(&w); if (w.done) { // write was done by someone else, no need to grab mutex RecordTick(stats_, WRITE_DONE_BY_OTHER); return w.status; } // else we are the leader of the write batch group WriteContext context; mutex_.Lock(); if (!write_options.disableWAL) { default_cf_internal_stats_->AddDBStats(InternalStats::WRITE_WITH_WAL, 1); } RecordTick(stats_, WRITE_DONE_BY_SELF); default_cf_internal_stats_->AddDBStats(InternalStats::WRITE_DONE_BY_SELF, 1); // Once reaches this point, the current writer "w" will try to do its write // job. It may also pick up some of the remaining writers in the "writers_" // when it finds suitable, and finish them in the same write batch. // This is how a write job could be done by the other writer. assert(!single_column_family_mode_ || versions_->GetColumnFamilySet()->NumberOfColumnFamilies() == 1); uint64_t max_total_wal_size = (db_options_.max_total_wal_size == 0) ? 4 * max_total_in_memory_state_ : db_options_.max_total_wal_size; if (UNLIKELY(!single_column_family_mode_) && alive_log_files_.begin()->getting_flushed == false && total_log_size_ > max_total_wal_size) { uint64_t flush_column_family_if_log_file = alive_log_files_.begin()->number; alive_log_files_.begin()->getting_flushed = true; Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "Flushing all column families with data in WAL number %" PRIu64 ". Total log size is %" PRIu64 " while max_total_wal_size is %" PRIu64, flush_column_family_if_log_file, total_log_size_, max_total_wal_size); // no need to refcount because drop is happening in write thread, so can't // happen while we're in the write thread for (auto cfd : *versions_->GetColumnFamilySet()) { if (cfd->IsDropped()) { continue; } if (cfd->GetLogNumber() <= flush_column_family_if_log_file) { status = SwitchMemtable(cfd, &context); if (!status.ok()) { break; } cfd->imm()->FlushRequested(); SchedulePendingFlush(cfd); } } MaybeScheduleFlushOrCompaction(); } else if (UNLIKELY(write_buffer_.ShouldFlush())) { Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "Flushing all column families. Write buffer is using %" PRIu64 " bytes out of a total of %" PRIu64 ".", write_buffer_.memory_usage(), write_buffer_.buffer_size()); // no need to refcount because drop is happening in write thread, so can't // happen while we're in the write thread for (auto cfd : *versions_->GetColumnFamilySet()) { if (cfd->IsDropped()) { continue; } if (!cfd->mem()->IsEmpty()) { status = SwitchMemtable(cfd, &context); if (!status.ok()) { break; } cfd->imm()->FlushRequested(); SchedulePendingFlush(cfd); } } MaybeScheduleFlushOrCompaction(); } if (UNLIKELY(status.ok() && !bg_error_.ok())) { status = bg_error_; } if (UNLIKELY(status.ok() && !flush_scheduler_.Empty())) { status = ScheduleFlushes(&context); } if (UNLIKELY(status.ok()) && (write_controller_.IsStopped() || write_controller_.NeedsDelay())) { PERF_TIMER_STOP(write_pre_and_post_process_time); PERF_TIMER_GUARD(write_delay_time); // We don't know size of curent batch so that we always use the size // for previous one. It might create a fairness issue that expiration // might happen for smaller writes but larger writes can go through. // Can optimize it if it is an issue. status = DelayWrite(last_batch_group_size_); PERF_TIMER_START(write_pre_and_post_process_time); } uint64_t last_sequence = versions_->LastSequence(); WriteThread::Writer* last_writer = &w; autovector write_batch_group; bool need_log_sync = !write_options.disableWAL && write_options.sync; bool need_log_dir_sync = need_log_sync && !log_dir_synced_; if (status.ok()) { last_batch_group_size_ = write_thread_.EnterAsBatchGroupLeader( &w, &last_writer, &write_batch_group); if (need_log_sync) { while (logs_.front().getting_synced) { log_sync_cv_.Wait(); } for (auto& log : logs_) { assert(!log.getting_synced); log.getting_synced = true; } } // Add to log and apply to memtable. We can release the lock // during this phase since &w is currently responsible for logging // and protects against concurrent loggers and concurrent writes // into memtables mutex_.Unlock(); if (callback != nullptr) { // If this write has a validation callback, check to see if this write // is able to be written. Must be called on the write thread. status = callback->Callback(this); callback_failed = true; } } else { mutex_.Unlock(); } // At this point the mutex is unlocked if (status.ok()) { WriteBatch* updates = nullptr; if (write_batch_group.size() == 1) { updates = write_batch_group[0]; } else { updates = &tmp_batch_; for (size_t i = 0; i < write_batch_group.size(); ++i) { WriteBatchInternal::Append(updates, write_batch_group[i]); } } const SequenceNumber current_sequence = last_sequence + 1; WriteBatchInternal::SetSequence(updates, current_sequence); int my_batch_count = WriteBatchInternal::Count(updates); last_sequence += my_batch_count; const uint64_t batch_size = WriteBatchInternal::ByteSize(updates); // Record statistics RecordTick(stats_, NUMBER_KEYS_WRITTEN, my_batch_count); RecordTick(stats_, BYTES_WRITTEN, batch_size); if (write_options.disableWAL) { flush_on_destroy_ = true; } PERF_TIMER_STOP(write_pre_and_post_process_time); uint64_t log_size = 0; if (!write_options.disableWAL) { PERF_TIMER_GUARD(write_wal_time); Slice log_entry = WriteBatchInternal::Contents(updates); status = logs_.back().writer->AddRecord(log_entry); total_log_size_ += log_entry.size(); alive_log_files_.back().AddSize(log_entry.size()); log_empty_ = false; log_size = log_entry.size(); RecordTick(stats_, WAL_FILE_BYTES, log_size); if (status.ok() && need_log_sync) { RecordTick(stats_, WAL_FILE_SYNCED); StopWatch sw(env_, stats_, WAL_FILE_SYNC_MICROS); // It's safe to access logs_ with unlocked mutex_ here because: // - we've set getting_synced=true for all logs, // so other threads won't pop from logs_ while we're here, // - only writer thread can push to logs_, and we're in // writer thread, so no one will push to logs_, // - as long as other threads don't modify it, it's safe to read // from std::deque from multiple threads concurrently. for (auto& log : logs_) { status = log.writer->file()->Sync(db_options_.use_fsync); if (!status.ok()) { break; } } if (status.ok() && need_log_dir_sync) { // We only sync WAL directory the first time WAL syncing is // requested, so that in case users never turn on WAL sync, // we can avoid the disk I/O in the write code path. status = directories_.GetWalDir()->Fsync(); } } } if (status.ok()) { PERF_TIMER_GUARD(write_memtable_time); status = WriteBatchInternal::InsertInto( updates, column_family_memtables_.get(), write_options.ignore_missing_column_families, 0, this, false); // A non-OK status here indicates iteration failure (either in-memory // writebatch corruption (very bad), or the client specified invalid // column family). This will later on trigger bg_error_. // // Note that existing logic was not sound. Any partial failure writing // into the memtable would result in a state that some write ops might // have succeeded in memtable but Status reports error for all writes. SetTickerCount(stats_, SEQUENCE_NUMBER, last_sequence); } PERF_TIMER_START(write_pre_and_post_process_time); if (updates == &tmp_batch_) { tmp_batch_.Clear(); } mutex_.Lock(); // internal stats default_cf_internal_stats_->AddDBStats( InternalStats::BYTES_WRITTEN, batch_size); default_cf_internal_stats_->AddDBStats(InternalStats::NUMBER_KEYS_WRITTEN, my_batch_count); if (!write_options.disableWAL) { default_cf_internal_stats_->AddDBStats( InternalStats::WAL_FILE_SYNCED, 1); default_cf_internal_stats_->AddDBStats( InternalStats::WAL_FILE_BYTES, log_size); } if (status.ok()) { versions_->SetLastSequence(last_sequence); } } else { // Operation failed. Make sure sure mutex is held for cleanup code below. mutex_.Lock(); } if (db_options_.paranoid_checks && !status.ok() && !callback_failed && !status.IsBusy() && bg_error_.ok()) { bg_error_ = status; // stop compaction & fail any further writes } mutex_.AssertHeld(); if (need_log_sync) { MarkLogsSynced(logfile_number_, need_log_dir_sync, status); } uint64_t writes_for_other = write_batch_group.size() - 1; if (writes_for_other > 0) { default_cf_internal_stats_->AddDBStats(InternalStats::WRITE_DONE_BY_OTHER, writes_for_other); if (!write_options.disableWAL) { default_cf_internal_stats_->AddDBStats(InternalStats::WRITE_WITH_WAL, writes_for_other); } } mutex_.Unlock(); write_thread_.ExitAsBatchGroupLeader(&w, last_writer, status); return status; } // REQUIRES: mutex_ is held // REQUIRES: this thread is currently at the front of the writer queue Status DBImpl::DelayWrite(uint64_t num_bytes) { uint64_t time_delayed = 0; bool delayed = false; { StopWatch sw(env_, stats_, WRITE_STALL, &time_delayed); auto delay = write_controller_.GetDelay(env_, num_bytes); if (delay > 0) { mutex_.Unlock(); delayed = true; TEST_SYNC_POINT("DBImpl::DelayWrite:Sleep"); // hopefully we don't have to sleep more than 2 billion microseconds env_->SleepForMicroseconds(static_cast(delay)); mutex_.Lock(); } while (bg_error_.ok() && write_controller_.IsStopped()) { delayed = true; TEST_SYNC_POINT("DBImpl::DelayWrite:Wait"); bg_cv_.Wait(); } } if (delayed) { default_cf_internal_stats_->AddDBStats(InternalStats::WRITE_STALL_MICROS, time_delayed); RecordTick(stats_, STALL_MICROS, time_delayed); } return bg_error_; } Status DBImpl::ScheduleFlushes(WriteContext* context) { ColumnFamilyData* cfd; while ((cfd = flush_scheduler_.GetNextColumnFamily()) != nullptr) { auto status = SwitchMemtable(cfd, context); if (cfd->Unref()) { delete cfd; } if (!status.ok()) { return status; } } return Status::OK(); } // REQUIRES: mutex_ is held // REQUIRES: this thread is currently at the front of the writer queue Status DBImpl::SwitchMemtable(ColumnFamilyData* cfd, WriteContext* context) { mutex_.AssertHeld(); unique_ptr lfile; log::Writer* new_log = nullptr; MemTable* new_mem = nullptr; // Attempt to switch to a new memtable and trigger flush of old. // Do this without holding the dbmutex lock. assert(versions_->prev_log_number() == 0); bool creating_new_log = !log_empty_; uint64_t new_log_number = creating_new_log ? versions_->NewFileNumber() : logfile_number_; SuperVersion* new_superversion = nullptr; const MutableCFOptions mutable_cf_options = *cfd->GetLatestMutableCFOptions(); mutex_.Unlock(); Status s; { if (creating_new_log) { EnvOptions opt_env_opt = env_->OptimizeForLogWrite(env_options_, db_options_); s = env_->NewWritableFile( LogFileName(db_options_.wal_dir, new_log_number), &lfile, opt_env_opt); if (s.ok()) { // Our final size should be less than write_buffer_size // (compression, etc) but err on the side of caution. lfile->SetPreallocationBlockSize( 1.1 * mutable_cf_options.write_buffer_size); unique_ptr file_writer( new WritableFileWriter(std::move(lfile), opt_env_opt)); new_log = new log::Writer(std::move(file_writer)); } } if (s.ok()) { SequenceNumber seq = versions_->LastSequence(); new_mem = cfd->ConstructNewMemtable(mutable_cf_options, seq); new_superversion = new SuperVersion(); } } Log(InfoLogLevel::DEBUG_LEVEL, db_options_.info_log, "[%s] New memtable created with log file: #%" PRIu64 "\n", cfd->GetName().c_str(), new_log_number); mutex_.Lock(); if (!s.ok()) { // how do we fail if we're not creating new log? assert(creating_new_log); assert(!new_mem); assert(!new_log); return s; } if (creating_new_log) { logfile_number_ = new_log_number; assert(new_log != nullptr); log_empty_ = true; log_dir_synced_ = false; logs_.emplace_back(logfile_number_, new_log); alive_log_files_.push_back(LogFileNumberSize(logfile_number_)); for (auto loop_cfd : *versions_->GetColumnFamilySet()) { // all this is just optimization to delete logs that // are no longer needed -- if CF is empty, that means it // doesn't need that particular log to stay alive, so we just // advance the log number. no need to persist this in the manifest if (loop_cfd->mem()->GetFirstSequenceNumber() == 0 && loop_cfd->imm()->NumNotFlushed() == 0) { loop_cfd->SetLogNumber(logfile_number_); } } } cfd->mem()->SetNextLogNumber(logfile_number_); cfd->imm()->Add(cfd->mem(), &context->memtables_to_free_); new_mem->Ref(); cfd->SetMemtable(new_mem); context->superversions_to_free_.push_back(InstallSuperVersionAndScheduleWork( cfd, new_superversion, mutable_cf_options)); return s; } #ifndef ROCKSDB_LITE Status DBImpl::GetPropertiesOfAllTables(ColumnFamilyHandle* column_family, TablePropertiesCollection* props) { auto cfh = reinterpret_cast(column_family); auto cfd = cfh->cfd(); // Increment the ref count mutex_.Lock(); auto version = cfd->current(); version->Ref(); mutex_.Unlock(); auto s = version->GetPropertiesOfAllTables(props); // Decrement the ref count mutex_.Lock(); version->Unref(); mutex_.Unlock(); return s; } #endif // ROCKSDB_LITE const std::string& DBImpl::GetName() const { return dbname_; } Env* DBImpl::GetEnv() const { return env_; } const Options& DBImpl::GetOptions(ColumnFamilyHandle* column_family) const { auto cfh = reinterpret_cast(column_family); return *cfh->cfd()->options(); } const DBOptions& DBImpl::GetDBOptions() const { return db_options_; } bool DBImpl::GetProperty(ColumnFamilyHandle* column_family, const Slice& property, std::string* value) { bool is_int_property = false; bool need_out_of_mutex = false; DBPropertyType property_type = GetPropertyType(property, &is_int_property, &need_out_of_mutex); value->clear(); if (is_int_property) { uint64_t int_value; bool ret_value = GetIntPropertyInternal(column_family, property_type, need_out_of_mutex, &int_value); if (ret_value) { *value = ToString(int_value); } return ret_value; } else { auto cfh = reinterpret_cast(column_family); auto cfd = cfh->cfd(); InstrumentedMutexLock l(&mutex_); return cfd->internal_stats()->GetStringProperty(property_type, property, value); } } bool DBImpl::GetIntProperty(ColumnFamilyHandle* column_family, const Slice& property, uint64_t* value) { bool is_int_property = false; bool need_out_of_mutex = false; DBPropertyType property_type = GetPropertyType(property, &is_int_property, &need_out_of_mutex); if (!is_int_property) { return false; } return GetIntPropertyInternal(column_family, property_type, need_out_of_mutex, value); } bool DBImpl::GetIntPropertyInternal(ColumnFamilyHandle* column_family, DBPropertyType property_type, bool need_out_of_mutex, uint64_t* value) { auto cfh = reinterpret_cast(column_family); auto cfd = cfh->cfd(); if (!need_out_of_mutex) { InstrumentedMutexLock l(&mutex_); return cfd->internal_stats()->GetIntProperty(property_type, value, this); } else { SuperVersion* sv = GetAndRefSuperVersion(cfd); bool ret = cfd->internal_stats()->GetIntPropertyOutOfMutex( property_type, sv->current, value); ReturnAndCleanupSuperVersion(cfd, sv); return ret; } } SuperVersion* DBImpl::GetAndRefSuperVersion(ColumnFamilyData* cfd) { // TODO(ljin): consider using GetReferencedSuperVersion() directly return cfd->GetThreadLocalSuperVersion(&mutex_); } // REQUIRED: this function should only be called on the write thread or if the // mutex is held. SuperVersion* DBImpl::GetAndRefSuperVersion(uint32_t column_family_id) { auto column_family_set = versions_->GetColumnFamilySet(); auto cfd = column_family_set->GetColumnFamily(column_family_id); if (!cfd) { return nullptr; } return GetAndRefSuperVersion(cfd); } // REQUIRED: mutex is NOT held SuperVersion* DBImpl::GetAndRefSuperVersionUnlocked(uint32_t column_family_id) { ColumnFamilyData* cfd; { InstrumentedMutexLock l(&mutex_); auto column_family_set = versions_->GetColumnFamilySet(); cfd = column_family_set->GetColumnFamily(column_family_id); } if (!cfd) { return nullptr; } return GetAndRefSuperVersion(cfd); } void DBImpl::ReturnAndCleanupSuperVersion(ColumnFamilyData* cfd, SuperVersion* sv) { bool unref_sv = !cfd->ReturnThreadLocalSuperVersion(sv); if (unref_sv) { // Release SuperVersion if (sv->Unref()) { { InstrumentedMutexLock l(&mutex_); sv->Cleanup(); } delete sv; RecordTick(stats_, NUMBER_SUPERVERSION_CLEANUPS); } RecordTick(stats_, NUMBER_SUPERVERSION_RELEASES); } } // REQUIRED: this function should only be called on the write thread. void DBImpl::ReturnAndCleanupSuperVersion(uint32_t column_family_id, SuperVersion* sv) { auto column_family_set = versions_->GetColumnFamilySet(); auto cfd = column_family_set->GetColumnFamily(column_family_id); // If SuperVersion is held, and we successfully fetched a cfd using // GetAndRefSuperVersion(), it must still exist. assert(cfd != nullptr); ReturnAndCleanupSuperVersion(cfd, sv); } // REQUIRED: Mutex should NOT be held. void DBImpl::ReturnAndCleanupSuperVersionUnlocked(uint32_t column_family_id, SuperVersion* sv) { ColumnFamilyData* cfd; { InstrumentedMutexLock l(&mutex_); auto column_family_set = versions_->GetColumnFamilySet(); cfd = column_family_set->GetColumnFamily(column_family_id); } // If SuperVersion is held, and we successfully fetched a cfd using // GetAndRefSuperVersion(), it must still exist. assert(cfd != nullptr); ReturnAndCleanupSuperVersion(cfd, sv); } // REQUIRED: this function should only be called on the write thread or if the // mutex is held. ColumnFamilyHandle* DBImpl::GetColumnFamilyHandle(uint32_t column_family_id) { ColumnFamilyMemTables* cf_memtables = column_family_memtables_.get(); if (!cf_memtables->Seek(column_family_id)) { return nullptr; } return cf_memtables->GetColumnFamilyHandle(); } // REQUIRED: mutex is NOT held. ColumnFamilyHandle* DBImpl::GetColumnFamilyHandleUnlocked( uint32_t column_family_id) { ColumnFamilyMemTables* cf_memtables = column_family_memtables_.get(); InstrumentedMutexLock l(&mutex_); if (!cf_memtables->Seek(column_family_id)) { return nullptr; } return cf_memtables->GetColumnFamilyHandle(); } void DBImpl::GetApproximateSizes(ColumnFamilyHandle* column_family, const Range* range, int n, uint64_t* sizes, bool include_memtable) { Version* v; auto cfh = reinterpret_cast(column_family); auto cfd = cfh->cfd(); SuperVersion* sv = GetAndRefSuperVersion(cfd); v = sv->current; for (int i = 0; i < n; i++) { // Convert user_key into a corresponding internal key. InternalKey k1(range[i].start, kMaxSequenceNumber, kValueTypeForSeek); InternalKey k2(range[i].limit, kMaxSequenceNumber, kValueTypeForSeek); sizes[i] = versions_->ApproximateSize(v, k1.Encode(), k2.Encode()); if (include_memtable) { sizes[i] += sv->mem->ApproximateSize(k1.Encode(), k2.Encode()); sizes[i] += sv->imm->ApproximateSize(k1.Encode(), k2.Encode()); } } ReturnAndCleanupSuperVersion(cfd, sv); } std::list::iterator DBImpl::CaptureCurrentFileNumberInPendingOutputs() { // We need to remember the iterator of our insert, because after the // background job is done, we need to remove that element from // pending_outputs_. pending_outputs_.push_back(versions_->current_next_file_number()); auto pending_outputs_inserted_elem = pending_outputs_.end(); --pending_outputs_inserted_elem; return pending_outputs_inserted_elem; } void DBImpl::ReleaseFileNumberFromPendingOutputs( std::list::iterator v) { pending_outputs_.erase(v); } #ifndef ROCKSDB_LITE Status DBImpl::GetUpdatesSince( SequenceNumber seq, unique_ptr* iter, const TransactionLogIterator::ReadOptions& read_options) { RecordTick(stats_, GET_UPDATES_SINCE_CALLS); if (seq > versions_->LastSequence()) { return Status::NotFound("Requested sequence not yet written in the db"); } return wal_manager_.GetUpdatesSince(seq, iter, read_options, versions_.get()); } Status DBImpl::DeleteFile(std::string name) { uint64_t number; FileType type; WalFileType log_type; if (!ParseFileName(name, &number, &type, &log_type) || (type != kTableFile && type != kLogFile)) { Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "DeleteFile %s failed.\n", name.c_str()); return Status::InvalidArgument("Invalid file name"); } Status status; if (type == kLogFile) { // Only allow deleting archived log files if (log_type != kArchivedLogFile) { Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "DeleteFile %s failed - not archived log.\n", name.c_str()); return Status::NotSupported("Delete only supported for archived logs"); } status = env_->DeleteFile(db_options_.wal_dir + "/" + name.c_str()); if (!status.ok()) { Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "DeleteFile %s failed -- %s.\n", name.c_str(), status.ToString().c_str()); } return status; } int level; FileMetaData* metadata; ColumnFamilyData* cfd; VersionEdit edit; JobContext job_context(next_job_id_.fetch_add(1), true); { InstrumentedMutexLock l(&mutex_); status = versions_->GetMetadataForFile(number, &level, &metadata, &cfd); if (!status.ok()) { Log(InfoLogLevel::WARN_LEVEL, db_options_.info_log, "DeleteFile %s failed. File not found\n", name.c_str()); job_context.Clean(); return Status::InvalidArgument("File not found"); } assert(level < cfd->NumberLevels()); // If the file is being compacted no need to delete. if (metadata->being_compacted) { Log(InfoLogLevel::INFO_LEVEL, db_options_.info_log, "DeleteFile %s Skipped. File about to be compacted\n", name.c_str()); job_context.Clean(); return Status::OK(); } // Only the files in the last level can be deleted externally. // This is to make sure that any deletion tombstones are not // lost. Check that the level passed is the last level. auto* vstoreage = cfd->current()->storage_info(); for (int i = level + 1; i < cfd->NumberLevels(); i++) { if (vstoreage->NumLevelFiles(i) != 0) { Log(InfoLogLevel::WARN_LEVEL, db_options_.info_log, "DeleteFile %s FAILED. File not in last level\n", name.c_str()); job_context.Clean(); return Status::InvalidArgument("File not in last level"); } } // if level == 0, it has to be the oldest file if (level == 0 && vstoreage->LevelFiles(0).back()->fd.GetNumber() != number) { Log(InfoLogLevel::WARN_LEVEL, db_options_.info_log, "DeleteFile %s failed ---" " target file in level 0 must be the oldest.", name.c_str()); job_context.Clean(); return Status::InvalidArgument("File in level 0, but not oldest"); } edit.SetColumnFamily(cfd->GetID()); edit.DeleteFile(level, number); status = versions_->LogAndApply(cfd, *cfd->GetLatestMutableCFOptions(), &edit, &mutex_, directories_.GetDbDir()); if (status.ok()) { InstallSuperVersionAndScheduleWorkWrapper( cfd, &job_context, *cfd->GetLatestMutableCFOptions()); } FindObsoleteFiles(&job_context, false); } // lock released here LogFlush(db_options_.info_log); // remove files outside the db-lock if (job_context.HaveSomethingToDelete()) { // Call PurgeObsoleteFiles() without holding mutex. PurgeObsoleteFiles(job_context); } job_context.Clean(); return status; } void DBImpl::GetLiveFilesMetaData(std::vector* metadata) { InstrumentedMutexLock l(&mutex_); versions_->GetLiveFilesMetaData(metadata); } void DBImpl::GetColumnFamilyMetaData( ColumnFamilyHandle* column_family, ColumnFamilyMetaData* cf_meta) { assert(column_family); auto* cfd = reinterpret_cast(column_family)->cfd(); auto* sv = GetAndRefSuperVersion(cfd); sv->current->GetColumnFamilyMetaData(cf_meta); ReturnAndCleanupSuperVersion(cfd, sv); } #endif // ROCKSDB_LITE Status DBImpl::CheckConsistency() { mutex_.AssertHeld(); std::vector metadata; versions_->GetLiveFilesMetaData(&metadata); std::string corruption_messages; for (const auto& md : metadata) { // md.name has a leading "/". std::string file_path = md.db_path + md.name; uint64_t fsize = 0; Status s = env_->GetFileSize(file_path, &fsize); if (!s.ok()) { corruption_messages += "Can't access " + md.name + ": " + s.ToString() + "\n"; } else if (fsize != md.size) { corruption_messages += "Sst file size mismatch: " + file_path + ". Size recorded in manifest " + ToString(md.size) + ", actual size " + ToString(fsize) + "\n"; } } if (corruption_messages.size() == 0) { return Status::OK(); } else { return Status::Corruption(corruption_messages); } } Status DBImpl::GetDbIdentity(std::string& identity) const { std::string idfilename = IdentityFileName(dbname_); const EnvOptions soptions; unique_ptr id_file_reader; Status s; { unique_ptr idfile; s = env_->NewSequentialFile(idfilename, &idfile, soptions); if (!s.ok()) { return s; } id_file_reader.reset(new SequentialFileReader(std::move(idfile))); } uint64_t file_size; s = env_->GetFileSize(idfilename, &file_size); if (!s.ok()) { return s; } char* buffer = reinterpret_cast(alloca(file_size)); Slice id; s = id_file_reader->Read(static_cast(file_size), &id, buffer); if (!s.ok()) { return s; } identity.assign(id.ToString()); // If last character is '\n' remove it from identity if (identity.size() > 0 && identity.back() == '\n') { identity.pop_back(); } return s; } // Default implementations of convenience methods that subclasses of DB // can call if they wish Status DB::Put(const WriteOptions& opt, ColumnFamilyHandle* column_family, const Slice& key, const Slice& value) { // Pre-allocate size of write batch conservatively. // 8 bytes are taken by header, 4 bytes for count, 1 byte for type, // and we allocate 11 extra bytes for key length, as well as value length. WriteBatch batch(key.size() + value.size() + 24); batch.Put(column_family, key, value); return Write(opt, &batch); } Status DB::Delete(const WriteOptions& opt, ColumnFamilyHandle* column_family, const Slice& key) { WriteBatch batch; batch.Delete(column_family, key); return Write(opt, &batch); } Status DB::Merge(const WriteOptions& opt, ColumnFamilyHandle* column_family, const Slice& key, const Slice& value) { WriteBatch batch; batch.Merge(column_family, key, value); return Write(opt, &batch); } // Default implementation -- returns not supported status Status DB::CreateColumnFamily(const ColumnFamilyOptions& cf_options, const std::string& column_family_name, ColumnFamilyHandle** handle) { return Status::NotSupported(""); } Status DB::DropColumnFamily(ColumnFamilyHandle* column_family) { return Status::NotSupported(""); } DB::~DB() { } Status DB::Open(const Options& options, const std::string& dbname, DB** dbptr) { DBOptions db_options(options); ColumnFamilyOptions cf_options(options); std::vector column_families; column_families.push_back( ColumnFamilyDescriptor(kDefaultColumnFamilyName, cf_options)); std::vector handles; Status s = DB::Open(db_options, dbname, column_families, &handles, dbptr); if (s.ok()) { assert(handles.size() == 1); // i can delete the handle since DBImpl is always holding a reference to // default column family delete handles[0]; } return s; } Status DB::Open(const DBOptions& db_options, const std::string& dbname, const std::vector& column_families, std::vector* handles, DB** dbptr) { Status s = SanitizeOptionsByTable(db_options, column_families); if (!s.ok()) { return s; } for (auto& cfd : column_families) { s = CheckCompressionSupported(cfd.options); if (!s.ok()) { return s; } if (db_options.db_paths.size() > 1) { if ((cfd.options.compaction_style != kCompactionStyleUniversal) && (cfd.options.compaction_style != kCompactionStyleLevel)) { return Status::NotSupported( "More than one DB paths are only supported in " "universal and level compaction styles. "); } } } if (db_options.db_paths.size() > 4) { return Status::NotSupported( "More than four DB paths are not supported yet. "); } *dbptr = nullptr; handles->clear(); size_t max_write_buffer_size = 0; for (auto cf : column_families) { max_write_buffer_size = std::max(max_write_buffer_size, cf.options.write_buffer_size); } DBImpl* impl = new DBImpl(db_options, dbname); s = impl->env_->CreateDirIfMissing(impl->db_options_.wal_dir); if (s.ok()) { for (auto db_path : impl->db_options_.db_paths) { s = impl->env_->CreateDirIfMissing(db_path.path); if (!s.ok()) { break; } } } if (!s.ok()) { delete impl; return s; } s = impl->CreateArchivalDirectory(); if (!s.ok()) { delete impl; return s; } impl->mutex_.Lock(); // Handles create_if_missing, error_if_exists s = impl->Recover(column_families); if (s.ok()) { uint64_t new_log_number = impl->versions_->NewFileNumber(); unique_ptr lfile; EnvOptions soptions(db_options); EnvOptions opt_env_options = impl->db_options_.env->OptimizeForLogWrite(soptions, impl->db_options_); s = impl->db_options_.env->NewWritableFile( LogFileName(impl->db_options_.wal_dir, new_log_number), &lfile, opt_env_options); if (s.ok()) { lfile->SetPreallocationBlockSize(1.1 * max_write_buffer_size); impl->logfile_number_ = new_log_number; unique_ptr file_writer( new WritableFileWriter(std::move(lfile), opt_env_options)); impl->logs_.emplace_back(new_log_number, new log::Writer(std::move(file_writer))); // set column family handles for (auto cf : column_families) { auto cfd = impl->versions_->GetColumnFamilySet()->GetColumnFamily(cf.name); if (cfd != nullptr) { handles->push_back( new ColumnFamilyHandleImpl(cfd, impl, &impl->mutex_)); impl->NewThreadStatusCfInfo(cfd); } else { if (db_options.create_missing_column_families) { // missing column family, create it ColumnFamilyHandle* handle; impl->mutex_.Unlock(); s = impl->CreateColumnFamily(cf.options, cf.name, &handle); impl->mutex_.Lock(); if (s.ok()) { handles->push_back(handle); } else { break; } } else { s = Status::InvalidArgument("Column family not found: ", cf.name); break; } } } } if (s.ok()) { for (auto cfd : *impl->versions_->GetColumnFamilySet()) { delete impl->InstallSuperVersionAndScheduleWork( cfd, nullptr, *cfd->GetLatestMutableCFOptions()); } impl->alive_log_files_.push_back( DBImpl::LogFileNumberSize(impl->logfile_number_)); impl->DeleteObsoleteFiles(); s = impl->directories_.GetDbDir()->Fsync(); } } if (s.ok()) { for (auto cfd : *impl->versions_->GetColumnFamilySet()) { if (cfd->ioptions()->compaction_style == kCompactionStyleFIFO) { auto* vstorage = cfd->current()->storage_info(); for (int i = 1; i < vstorage->num_levels(); ++i) { int num_files = vstorage->NumLevelFiles(i); if (num_files > 0) { s = Status::InvalidArgument( "Not all files are at level 0. Cannot " "open with FIFO compaction style."); break; } } } if (!cfd->mem()->IsSnapshotSupported()) { impl->is_snapshot_supported_ = false; } if (cfd->ioptions()->merge_operator != nullptr && !cfd->mem()->IsMergeOperatorSupported()) { s = Status::InvalidArgument( "The memtable of column family %s does not support merge operator " "its options.merge_operator is non-null", cfd->GetName().c_str()); } if (!s.ok()) { break; } } } TEST_SYNC_POINT("DBImpl::Open:Opened"); if (s.ok()) { impl->opened_successfully_ = true; impl->MaybeScheduleFlushOrCompaction(); } impl->mutex_.Unlock(); if (s.ok()) { Log(InfoLogLevel::INFO_LEVEL, impl->db_options_.info_log, "DB pointer %p", impl); *dbptr = impl; } else { for (auto* h : *handles) { delete h; } handles->clear(); delete impl; } return s; } Status DB::ListColumnFamilies(const DBOptions& db_options, const std::string& name, std::vector* column_families) { return VersionSet::ListColumnFamilies(column_families, name, db_options.env); } Snapshot::~Snapshot() { } Status DestroyDB(const std::string& dbname, const Options& options) { const InternalKeyComparator comparator(options.comparator); const Options& soptions(SanitizeOptions(dbname, &comparator, options)); Env* env = soptions.env; std::vector filenames; // Ignore error in case directory does not exist env->GetChildren(dbname, &filenames); FileLock* lock; const std::string lockname = LockFileName(dbname); Status result = env->LockFile(lockname, &lock); if (result.ok()) { uint64_t number; FileType type; InfoLogPrefix info_log_prefix(!options.db_log_dir.empty(), dbname); for (size_t i = 0; i < filenames.size(); i++) { if (ParseFileName(filenames[i], &number, info_log_prefix.prefix, &type) && type != kDBLockFile) { // Lock file will be deleted at end Status del; std::string path_to_delete = dbname + "/" + filenames[i]; if (type == kMetaDatabase) { del = DestroyDB(path_to_delete, options); } else if (type == kTableFile) { del = DeleteOrMoveToTrash(&options, path_to_delete); } else { del = env->DeleteFile(path_to_delete); } if (result.ok() && !del.ok()) { result = del; } } } for (size_t path_id = 0; path_id < options.db_paths.size(); path_id++) { const auto& db_path = options.db_paths[path_id]; env->GetChildren(db_path.path, &filenames); for (size_t i = 0; i < filenames.size(); i++) { if (ParseFileName(filenames[i], &number, &type) && type == kTableFile) { // Lock file will be deleted at end Status del; std::string table_path = db_path.path + "/" + filenames[i]; if (path_id == 0) { del = DeleteOrMoveToTrash(&options, table_path); } else { del = env->DeleteFile(table_path); } if (result.ok() && !del.ok()) { result = del; } } } } std::vector walDirFiles; std::string archivedir = ArchivalDirectory(dbname); if (dbname != soptions.wal_dir) { env->GetChildren(soptions.wal_dir, &walDirFiles); archivedir = ArchivalDirectory(soptions.wal_dir); } // Delete log files in the WAL dir for (const auto& file : walDirFiles) { if (ParseFileName(file, &number, &type) && type == kLogFile) { Status del = env->DeleteFile(soptions.wal_dir + "/" + file); if (result.ok() && !del.ok()) { result = del; } } } std::vector archiveFiles; env->GetChildren(archivedir, &archiveFiles); // Delete archival files. for (size_t i = 0; i < archiveFiles.size(); ++i) { if (ParseFileName(archiveFiles[i], &number, &type) && type == kLogFile) { Status del = env->DeleteFile(archivedir + "/" + archiveFiles[i]); if (result.ok() && !del.ok()) { result = del; } } } // ignore case where no archival directory is present. env->DeleteDir(archivedir); env->UnlockFile(lock); // Ignore error since state is already gone env->DeleteFile(lockname); env->DeleteDir(dbname); // Ignore error in case dir contains other files env->DeleteDir(soptions.wal_dir); } return result; } #if ROCKSDB_USING_THREAD_STATUS void DBImpl::NewThreadStatusCfInfo( ColumnFamilyData* cfd) const { if (db_options_.enable_thread_tracking) { ThreadStatusUtil::NewColumnFamilyInfo(this, cfd); } } void DBImpl::EraseThreadStatusCfInfo( ColumnFamilyData* cfd) const { if (db_options_.enable_thread_tracking) { ThreadStatusUtil::EraseColumnFamilyInfo(cfd); } } void DBImpl::EraseThreadStatusDbInfo() const { if (db_options_.enable_thread_tracking) { ThreadStatusUtil::EraseDatabaseInfo(this); } } #else void DBImpl::NewThreadStatusCfInfo( ColumnFamilyData* cfd) const { } void DBImpl::EraseThreadStatusCfInfo( ColumnFamilyData* cfd) const { } void DBImpl::EraseThreadStatusDbInfo() const { } #endif // ROCKSDB_USING_THREAD_STATUS // // A global method that can dump out the build version void DumpRocksDBBuildVersion(Logger * log) { #if !defined(IOS_CROSS_COMPILE) // if we compile with Xcode, we don't run build_detect_vesion, so we don't // generate util/build_version.cc Warn(log, "RocksDB version: %d.%d.%d\n", ROCKSDB_MAJOR, ROCKSDB_MINOR, ROCKSDB_PATCH); Warn(log, "Git sha %s", rocksdb_build_git_sha); Warn(log, "Compile date %s", rocksdb_build_compile_date); #endif } #ifndef ROCKSDB_LITE SequenceNumber DBImpl::GetEarliestMemTableSequenceNumber(SuperVersion* sv, bool include_history) { // Find the earliest sequence number that we know we can rely on reading // from the memtable without needing to check sst files. SequenceNumber earliest_seq = sv->imm->GetEarliestSequenceNumber(include_history); if (earliest_seq == kMaxSequenceNumber) { earliest_seq = sv->mem->GetEarliestSequenceNumber(); } assert(sv->mem->GetEarliestSequenceNumber() >= earliest_seq); return earliest_seq; } #endif // ROCKSDB_LITE #ifndef ROCKSDB_LITE Status DBImpl::GetLatestSequenceForKeyFromMemtable(SuperVersion* sv, const Slice& key, SequenceNumber* seq) { Status s; std::string value; MergeContext merge_context; SequenceNumber current_seq = versions_->LastSequence(); LookupKey lkey(key, current_seq); *seq = kMaxSequenceNumber; // Check if there is a record for this key in the latest memtable sv->mem->Get(lkey, &value, &s, &merge_context, seq); if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) { // unexpected error reading memtable. Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "Unexpected status returned from MemTable::Get: %s\n", s.ToString().c_str()); return s; } if (*seq != kMaxSequenceNumber) { // Found a sequence number, no need to check immutable memtables return Status::OK(); } // Check if there is a record for this key in the immutable memtables sv->imm->Get(lkey, &value, &s, &merge_context, seq); if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) { // unexpected error reading memtable. Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "Unexpected status returned from MemTableList::Get: %s\n", s.ToString().c_str()); return s; } if (*seq != kMaxSequenceNumber) { // Found a sequence number, no need to check memtable history return Status::OK(); } // Check if there is a record for this key in the immutable memtables sv->imm->GetFromHistory(lkey, &value, &s, &merge_context, seq); if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) { // unexpected error reading memtable. Log(InfoLogLevel::ERROR_LEVEL, db_options_.info_log, "Unexpected status returned from MemTableList::GetFromHistory: %s\n", s.ToString().c_str()); return s; } return Status::OK(); } #endif // ROCKSDB_LITE } // namespace rocksdb