// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include "util/histogram.h" #include "util/random.h" #include "util/testutil.h" // Comma-separated list of operations to run in the specified order // Actual benchmarks: // // fillseq -- write N values in sequential key order in async mode // fillrandom -- write N values in random key order in async mode // overwrite -- overwrite N values in random key order in async mode // fillseqsync -- write N/100 values in sequential key order in sync mode // fillrandsync -- write N/100 values in random key order in sync mode // fillrand100K -- write N/1000 100K values in random order in async mode // fillseq100K -- write N/1000 100K values in seq order in async mode // readseq -- read N times sequentially // readseq100K -- read N/1000 100K values in sequential order in async mode // readrand100K -- read N/1000 100K values in sequential order in async mode // readrandom -- read N times in random order static const char* FLAGS_benchmarks = "fillseq," "fillseqsync," "fillrandsync," "fillrandom," "overwrite," "readrandom," "readseq," "fillrand100K," "fillseq100K," "readseq100K," "readrand100K," ; // Number of key/values to place in database static int FLAGS_num = 1000000; // Number of read operations to do. If negative, do FLAGS_num reads. static int FLAGS_reads = -1; // Size of each value static int FLAGS_value_size = 100; // Arrange to generate values that shrink to this fraction of // their original size after compression static double FLAGS_compression_ratio = 0.5; // Print histogram of operation timings static bool FLAGS_histogram = false; // Cache size. Default 4 MB static int FLAGS_cache_size = 4194304; // Page size. Default 1 KB static int FLAGS_page_size = 1024; // If true, do not destroy the existing database. If you set this // flag and also specify a benchmark that wants a fresh database, that // benchmark will fail. static bool FLAGS_use_existing_db = false; // Compression flag. If true, compression is on. If false, compression // is off. static bool FLAGS_compression = true; inline static void DBSynchronize(kyotocabinet::TreeDB* db_) { // Synchronize will flush writes to disk if (!db_->synchronize()) { fprintf(stderr, "synchronize error: %s\n", db_->error().name()); } } namespace leveldb { // Helper for quickly generating random data. namespace { class RandomGenerator { private: std::string data_; int pos_; public: RandomGenerator() { // We use a limited amount of data over and over again and ensure // that it is larger than the compression window (32KB), and also // large enough to serve all typical value sizes we want to write. Random rnd(301); std::string piece; while (data_.size() < 1048576) { // Add a short fragment that is as compressible as specified // by FLAGS_compression_ratio. test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece); data_.append(piece); } pos_ = 0; } Slice Generate(int len) { if (pos_ + len > data_.size()) { pos_ = 0; assert(len < data_.size()); } pos_ += len; return Slice(data_.data() + pos_ - len, len); } }; static Slice TrimSpace(Slice s) { int start = 0; while (start < s.size() && isspace(s[start])) { start++; } int limit = s.size(); while (limit > start && isspace(s[limit-1])) { limit--; } return Slice(s.data() + start, limit - start); } } class Benchmark { private: kyotocabinet::TreeDB* db_; int db_num_; int num_; int reads_; double start_; double last_op_finish_; int64_t bytes_; std::string message_; Histogram hist_; RandomGenerator gen_; Random rand_; kyotocabinet::LZOCompressor comp_; // State kept for progress messages int done_; int next_report_; // When to report next void PrintHeader() { const int kKeySize = 16; PrintEnvironment(); fprintf(stdout, "Keys: %d bytes each\n", kKeySize); fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n", FLAGS_value_size, static_cast(FLAGS_value_size * FLAGS_compression_ratio + 0.5)); fprintf(stdout, "Entries: %d\n", num_); fprintf(stdout, "RawSize: %.1f MB (estimated)\n", ((static_cast(kKeySize + FLAGS_value_size) * num_) / 1048576.0)); fprintf(stdout, "FileSize: %.1f MB (estimated)\n", (((kKeySize + FLAGS_value_size * FLAGS_compression_ratio) * num_) / 1048576.0)); PrintWarnings(); fprintf(stdout, "------------------------------------------------\n"); } void PrintWarnings() { #if defined(__GNUC__) && !defined(__OPTIMIZE__) fprintf(stdout, "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n" ); #endif #ifndef NDEBUG fprintf(stdout, "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n"); #endif } void PrintEnvironment() { fprintf(stderr, "Kyoto Cabinet: version %s, lib ver %d, lib rev %d\n", kyotocabinet::VERSION, kyotocabinet::LIBVER, kyotocabinet::LIBREV); #if defined(__linux) time_t now = time(NULL); fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline FILE* cpuinfo = fopen("/proc/cpuinfo", "r"); if (cpuinfo != NULL) { char line[1000]; int num_cpus = 0; std::string cpu_type; std::string cache_size; while (fgets(line, sizeof(line), cpuinfo) != NULL) { const char* sep = strchr(line, ':'); if (sep == NULL) { continue; } Slice key = TrimSpace(Slice(line, sep - 1 - line)); Slice val = TrimSpace(Slice(sep + 1)); if (key == "model name") { ++num_cpus; cpu_type = val.ToString(); } else if (key == "cache size") { cache_size = val.ToString(); } } fclose(cpuinfo); fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str()); fprintf(stderr, "CPUCache: %s\n", cache_size.c_str()); } #endif } void Start() { start_ = Env::Default()->NowMicros() * 1e-6; bytes_ = 0; message_.clear(); last_op_finish_ = start_; hist_.Clear(); done_ = 0; next_report_ = 100; } void FinishedSingleOp() { if (FLAGS_histogram) { double now = Env::Default()->NowMicros() * 1e-6; double micros = (now - last_op_finish_) * 1e6; hist_.Add(micros); if (micros > 20000) { fprintf(stderr, "long op: %.1f micros%30s\r", micros, ""); fflush(stderr); } last_op_finish_ = now; } done_++; if (done_ >= next_report_) { if (next_report_ < 1000) next_report_ += 100; else if (next_report_ < 5000) next_report_ += 500; else if (next_report_ < 10000) next_report_ += 1000; else if (next_report_ < 50000) next_report_ += 5000; else if (next_report_ < 100000) next_report_ += 10000; else if (next_report_ < 500000) next_report_ += 50000; else next_report_ += 100000; fprintf(stderr, "... finished %d ops%30s\r", done_, ""); fflush(stderr); } } void Stop(const Slice& name) { double finish = Env::Default()->NowMicros() * 1e-6; // Pretend at least one op was done in case we are running a benchmark // that does not call FinishedSingleOp(). if (done_ < 1) done_ = 1; if (bytes_ > 0) { char rate[100]; snprintf(rate, sizeof(rate), "%6.1f MB/s", (bytes_ / 1048576.0) / (finish - start_)); if (!message_.empty()) { message_ = std::string(rate) + " " + message_; } else { message_ = rate; } } fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n", name.ToString().c_str(), (finish - start_) * 1e6 / done_, (message_.empty() ? "" : " "), message_.c_str()); if (FLAGS_histogram) { fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str()); } fflush(stdout); } public: enum Order { SEQUENTIAL, RANDOM }; enum DBState { FRESH, EXISTING }; Benchmark() : db_(NULL), num_(FLAGS_num), reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads), bytes_(0), rand_(301) { std::vector files; Env::Default()->GetChildren("/tmp", &files); if (!FLAGS_use_existing_db) { for (int i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("dbbench_polyDB")) { Env::Default()->DeleteFile("/tmp/" + files[i]); } } } } ~Benchmark() { if (!db_->close()) { fprintf(stderr, "close error: %s\n", db_->error().name()); } } void Run() { PrintHeader(); Open(false); const char* benchmarks = FLAGS_benchmarks; while (benchmarks != NULL) { const char* sep = strchr(benchmarks, ','); Slice name; if (sep == NULL) { name = benchmarks; benchmarks = NULL; } else { name = Slice(benchmarks, sep - benchmarks); benchmarks = sep + 1; } Start(); bool known = true; bool write_sync = false; if (name == Slice("fillseq")) { Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1); } else if (name == Slice("fillrandom")) { Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1); DBSynchronize(db_); } else if (name == Slice("overwrite")) { Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1); DBSynchronize(db_); } else if (name == Slice("fillrandsync")) { write_sync = true; Write(write_sync, RANDOM, FRESH, num_ / 100, FLAGS_value_size, 1); DBSynchronize(db_); } else if (name == Slice("fillseqsync")) { write_sync = true; Write(write_sync, SEQUENTIAL, FRESH, num_ / 100, FLAGS_value_size, 1); DBSynchronize(db_); } else if (name == Slice("fillrand100K")) { Write(write_sync, RANDOM, FRESH, num_ / 1000, 100 * 1000, 1); DBSynchronize(db_); } else if (name == Slice("fillseq100K")) { Write(write_sync, SEQUENTIAL, FRESH, num_ / 1000, 100 * 1000, 1); DBSynchronize(db_); } else if (name == Slice("readseq")) { ReadSequential(); } else if (name == Slice("readrandom")) { ReadRandom(); } else if (name == Slice("readrand100K")) { int n = reads_; reads_ /= 1000; ReadRandom(); reads_ = n; } else if (name == Slice("readseq100K")) { int n = reads_; reads_ /= 1000; ReadSequential(); reads_ = n; } else { known = false; if (name != Slice()) { // No error message for empty name fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str()); } } if (known) { Stop(name); } } } private: void Open(bool sync) { assert(db_ == NULL); // Initialize db_ db_ = new kyotocabinet::TreeDB(); char file_name[100]; db_num_++; snprintf(file_name, sizeof(file_name), "/tmp/dbbench_polyDB-%d.kct", db_num_); // Create tuning options and open the database int open_options = kyotocabinet::PolyDB::OWRITER | kyotocabinet::PolyDB::OCREATE; int tune_options = kyotocabinet::TreeDB::TSMALL | kyotocabinet::TreeDB::TLINEAR; if (FLAGS_compression) { tune_options |= kyotocabinet::TreeDB::TCOMPRESS; db_->tune_compressor(&comp_); } db_->tune_options(tune_options); db_->tune_page_cache(FLAGS_cache_size); db_->tune_page(FLAGS_page_size); db_->tune_map(256LL<<20); if (sync) { open_options |= kyotocabinet::PolyDB::OAUTOSYNC; } if (!db_->open(file_name, open_options)) { fprintf(stderr, "open error: %s\n", db_->error().name()); } } void Write(bool sync, Order order, DBState state, int num_entries, int value_size, int entries_per_batch) { // Create new database if state == FRESH if (state == FRESH) { if (FLAGS_use_existing_db) { message_ = "skipping (--use_existing_db is true)"; return; } delete db_; db_ = NULL; Open(sync); Start(); // Do not count time taken to destroy/open } if (num_entries != num_) { char msg[100]; snprintf(msg, sizeof(msg), "(%d ops)", num_entries); message_ = msg; } // Write to database for (int i = 0; i < num_entries; i++) { const int k = (order == SEQUENTIAL) ? i : (rand_.Next() % num_entries); char key[100]; snprintf(key, sizeof(key), "%016d", k); bytes_ += value_size + strlen(key); std::string cpp_key = key; if (!db_->set(cpp_key, gen_.Generate(value_size).ToString())) { fprintf(stderr, "set error: %s\n", db_->error().name()); } FinishedSingleOp(); } } void ReadSequential() { kyotocabinet::DB::Cursor* cur = db_->cursor(); cur->jump(); std::string ckey, cvalue; while (cur->get(&ckey, &cvalue, true)) { bytes_ += ckey.size() + cvalue.size(); FinishedSingleOp(); } delete cur; } void ReadRandom() { std::string value; for (int i = 0; i < reads_; i++) { char key[100]; const int k = rand_.Next() % reads_; snprintf(key, sizeof(key), "%016d", k); db_->get(key, &value); FinishedSingleOp(); } } }; } int main(int argc, char** argv) { for (int i = 1; i < argc; i++) { double d; int n; char junk; if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) { FLAGS_benchmarks = argv[i] + strlen("--benchmarks="); } else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) { FLAGS_compression_ratio = d; } else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_histogram = n; } else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) { FLAGS_num = n; } else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) { FLAGS_reads = n; } else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) { FLAGS_value_size = n; } else if (sscanf(argv[i], "--cache_size=%d%c", &n, &junk) == 1) { FLAGS_cache_size = n; } else if (sscanf(argv[i], "--page_size=%d%c", &n, &junk) == 1) { FLAGS_page_size = n; } else if (sscanf(argv[i], "--compression=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_compression = (n == 1) ? true : false; } else { fprintf(stderr, "Invalid flag '%s'\n", argv[i]); exit(1); } } leveldb::Benchmark benchmark; benchmark.Run(); return 0; }