# Copyright (c) 2011-present, Facebook, Inc. All rights reserved. # This source code is licensed under both the GPLv2 (found in the # COPYING file in the root directory) and Apache 2.0 License # (found in the LICENSE.Apache file in the root directory). import copy import random from advisor.db_log_parser import NO_COL_FAMILY from advisor.db_options_parser import DatabaseOptions from advisor.rule_parser import Suggestion class ConfigOptimizer: SCOPE = "scope" SUGG_VAL = "suggested values" @staticmethod def apply_action_on_value(old_value, action, suggested_values): chosen_sugg_val = None if suggested_values: chosen_sugg_val = random.choice(list(suggested_values)) new_value = None if action is Suggestion.Action.set or not old_value: assert chosen_sugg_val new_value = chosen_sugg_val else: # For increase/decrease actions, currently the code tries to make # a 30% change in the option's value per iteration. An addend is # also present (+1 or -1) to handle the cases when the option's # old value was 0 or the final int() conversion suppressed the 30% # change made to the option old_value = float(old_value) mul = 0 add = 0 if action is Suggestion.Action.increase: if old_value < 0: mul = 0.7 add = 2 else: mul = 1.3 add = 2 elif action is Suggestion.Action.decrease: if old_value < 0: mul = 1.3 add = -2 else: mul = 0.7 add = -2 new_value = int(old_value * mul + add) return new_value @staticmethod def improve_db_config(options, rule, suggestions_dict): # this method takes ONE 'rule' and applies all its suggestions on the # appropriate options required_options = [] rule_suggestions = [] for sugg_name in rule.get_suggestions(): option = suggestions_dict[sugg_name].option action = suggestions_dict[sugg_name].action # A Suggestion in the rules spec must have the 'option' and # 'action' fields defined, always call perform_checks() method # after parsing the rules file using RulesSpec assert option assert action required_options.append(option) rule_suggestions.append(suggestions_dict[sugg_name]) current_config = options.get_options(required_options) # Create the updated configuration from the rule's suggestions updated_config = {} for sugg in rule_suggestions: # case: when the option is not present in the current configuration if sugg.option not in current_config: try: new_value = ConfigOptimizer.apply_action_on_value( None, sugg.action, sugg.suggested_values ) if sugg.option not in updated_config: updated_config[sugg.option] = {} if DatabaseOptions.is_misc_option(sugg.option): # this suggestion is on an option that is not yet # supported by the Rocksdb OPTIONS file and so it is # not prefixed by a section type. updated_config[sugg.option][NO_COL_FAMILY] = new_value else: for col_fam in rule.get_trigger_column_families(): updated_config[sugg.option][col_fam] = new_value except AssertionError: print( "WARNING(ConfigOptimizer): provide suggested_values " + "for " + sugg.option ) continue # case: when the option is present in the current configuration if NO_COL_FAMILY in current_config[sugg.option]: old_value = current_config[sugg.option][NO_COL_FAMILY] try: new_value = ConfigOptimizer.apply_action_on_value( old_value, sugg.action, sugg.suggested_values ) if sugg.option not in updated_config: updated_config[sugg.option] = {} updated_config[sugg.option][NO_COL_FAMILY] = new_value except AssertionError: print( "WARNING(ConfigOptimizer): provide suggested_values " + "for " + sugg.option ) else: for col_fam in rule.get_trigger_column_families(): old_value = None if col_fam in current_config[sugg.option]: old_value = current_config[sugg.option][col_fam] try: new_value = ConfigOptimizer.apply_action_on_value( old_value, sugg.action, sugg.suggested_values ) if sugg.option not in updated_config: updated_config[sugg.option] = {} updated_config[sugg.option][col_fam] = new_value except AssertionError: print( "WARNING(ConfigOptimizer): provide " + "suggested_values for " + sugg.option ) return current_config, updated_config @staticmethod def pick_rule_to_apply(rules, last_rule_name, rules_tried, backtrack): if not rules: print("\nNo more rules triggered!") return None # if the last rule provided an improvement in the database performance, # and it was triggered again (i.e. it is present in 'rules'), then pick # the same rule for this iteration too. if last_rule_name and not backtrack: for rule in rules: if rule.name == last_rule_name: return rule # there was no previous rule OR the previous rule did not improve db # performance OR it was not triggered for this iteration, # then pick another rule that has not been tried yet for rule in rules: if rule.name not in rules_tried: return rule print("\nAll rules have been exhausted") return None @staticmethod def apply_suggestions( triggered_rules, current_rule_name, rules_tried, backtrack, curr_options, suggestions_dict, ): curr_rule = ConfigOptimizer.pick_rule_to_apply( triggered_rules, current_rule_name, rules_tried, backtrack ) if not curr_rule: return tuple([None] * 4) # if a rule has been picked for improving db_config, update rules_tried rules_tried.add(curr_rule.name) # get updated config based on the picked rule curr_conf, updated_conf = ConfigOptimizer.improve_db_config( curr_options, curr_rule, suggestions_dict ) conf_diff = DatabaseOptions.get_options_diff(curr_conf, updated_conf) if not conf_diff: # the current and updated configs are the same ( curr_rule, rules_tried, curr_conf, updated_conf, ) = ConfigOptimizer.apply_suggestions( triggered_rules, None, rules_tried, backtrack, curr_options, suggestions_dict, ) print("returning from apply_suggestions") return (curr_rule, rules_tried, curr_conf, updated_conf) # TODO(poojam23): check if this method is required or can we directly set # the config equal to the curr_config @staticmethod def get_backtrack_config(curr_config, updated_config): diff = DatabaseOptions.get_options_diff(curr_config, updated_config) bt_config = {} for option in diff: bt_config[option] = {} for col_fam in diff[option]: bt_config[option][col_fam] = diff[option][col_fam][0] print(bt_config) return bt_config def __init__(self, bench_runner, db_options, rule_parser, base_db): self.bench_runner = bench_runner self.db_options = db_options self.rule_parser = rule_parser self.base_db_path = base_db def run(self): # In every iteration of this method's optimization loop we pick ONE # RULE from all the triggered rules and apply all its suggestions to # the appropriate options. # bootstrapping the optimizer print("Bootstrapping optimizer:") options = copy.deepcopy(self.db_options) old_data_sources, old_metric = self.bench_runner.run_experiment( options, self.base_db_path ) print("Initial metric: " + str(old_metric)) self.rule_parser.load_rules_from_spec() self.rule_parser.perform_section_checks() triggered_rules = self.rule_parser.get_triggered_rules( old_data_sources, options.get_column_families() ) print("\nTriggered:") self.rule_parser.print_rules(triggered_rules) backtrack = False rules_tried = set() ( curr_rule, rules_tried, curr_conf, updated_conf, ) = ConfigOptimizer.apply_suggestions( triggered_rules, None, rules_tried, backtrack, options, self.rule_parser.get_suggestions_dict(), ) # the optimizer loop while curr_rule: print("\nRule picked for next iteration:") print(curr_rule.name) print("\ncurrent config:") print(curr_conf) print("updated config:") print(updated_conf) options.update_options(updated_conf) # run bench_runner with updated config new_data_sources, new_metric = self.bench_runner.run_experiment( options, self.base_db_path ) print("\nnew metric: " + str(new_metric)) backtrack = not self.bench_runner.is_metric_better(new_metric, old_metric) # update triggered_rules, metric, data_sources, if required if backtrack: # revert changes to options config print("\nBacktracking to previous configuration") backtrack_conf = ConfigOptimizer.get_backtrack_config( curr_conf, updated_conf ) options.update_options(backtrack_conf) else: # run advisor on new data sources self.rule_parser.load_rules_from_spec() # reboot the advisor self.rule_parser.perform_section_checks() triggered_rules = self.rule_parser.get_triggered_rules( new_data_sources, options.get_column_families() ) print("\nTriggered:") self.rule_parser.print_rules(triggered_rules) old_metric = new_metric old_data_sources = new_data_sources rules_tried = set() # pick rule to work on and set curr_rule to that ( curr_rule, rules_tried, curr_conf, updated_conf, ) = ConfigOptimizer.apply_suggestions( triggered_rules, curr_rule.name, rules_tried, backtrack, options, self.rule_parser.get_suggestions_dict(), ) # return the final database options configuration return options