// Copyright (c) Meta Platforms, Inc. and affiliates. // // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #include "util/udt_util.h" #include #include "db/dbformat.h" #include "test_util/testharness.h" #include "test_util/testutil.h" namespace ROCKSDB_NAMESPACE { namespace { static const std::string kTestKeyWithoutTs = "key"; static const std::string kValuePlaceHolder = "value"; } // namespace class HandleTimestampSizeDifferenceTest : public testing::Test { public: HandleTimestampSizeDifferenceTest() {} // Test handler used to collect the column family id and user keys contained // in a WriteBatch for test verification. And verifies the value part stays // the same if it's available. class KeyCollector : public WriteBatch::Handler { public: explicit KeyCollector() {} ~KeyCollector() override {} Status PutCF(uint32_t cf, const Slice& key, const Slice& value) override { if (value.compare(kValuePlaceHolder) != 0) { return Status::InvalidArgument(); } return AddKey(cf, key); } Status DeleteCF(uint32_t cf, const Slice& key) override { return AddKey(cf, key); } Status SingleDeleteCF(uint32_t cf, const Slice& key) override { return AddKey(cf, key); } Status DeleteRangeCF(uint32_t cf, const Slice& begin_key, const Slice& end_key) override { Status status = AddKey(cf, begin_key); if (!status.ok()) { return status; } return AddKey(cf, end_key); } Status MergeCF(uint32_t cf, const Slice& key, const Slice& value) override { if (value.compare(kValuePlaceHolder) != 0) { return Status::InvalidArgument(); } return AddKey(cf, key); } Status PutBlobIndexCF(uint32_t cf, const Slice& key, const Slice& value) override { if (value.compare(kValuePlaceHolder) != 0) { return Status::InvalidArgument(); } return AddKey(cf, key); } Status MarkBeginPrepare(bool) override { return Status::OK(); } Status MarkEndPrepare(const Slice&) override { return Status::OK(); } Status MarkRollback(const Slice&) override { return Status::OK(); } Status MarkCommit(const Slice&) override { return Status::OK(); } Status MarkCommitWithTimestamp(const Slice&, const Slice&) override { return Status::OK(); } Status MarkNoop(bool) override { return Status::OK(); } const std::vector>& GetKeys() const { return keys_; } private: Status AddKey(uint32_t cf, const Slice& key) { keys_.push_back(std::make_pair(cf, key)); return Status::OK(); } std::vector> keys_; }; void CreateKey(std::string* key_buf, size_t ts_sz) { if (ts_sz > 0) { AppendKeyWithMinTimestamp(key_buf, kTestKeyWithoutTs, ts_sz); } else { key_buf->assign(kTestKeyWithoutTs); } } void CreateWriteBatch( const std::unordered_map& ts_sz_for_batch, std::unique_ptr& batch) { for (const auto& [cf_id, ts_sz] : ts_sz_for_batch) { std::string key; CreateKey(&key, ts_sz); ASSERT_OK( WriteBatchInternal::Put(batch.get(), cf_id, key, kValuePlaceHolder)); ASSERT_OK(WriteBatchInternal::Delete(batch.get(), cf_id, key)); ASSERT_OK(WriteBatchInternal::SingleDelete(batch.get(), cf_id, key)); ASSERT_OK(WriteBatchInternal::DeleteRange(batch.get(), cf_id, key, key)); ASSERT_OK(WriteBatchInternal::Merge(batch.get(), cf_id, key, kValuePlaceHolder)); ASSERT_OK(WriteBatchInternal::PutBlobIndex(batch.get(), cf_id, key, kValuePlaceHolder)); } } void CheckSequenceEqual(const WriteBatch& orig_batch, const WriteBatch& new_batch) { ASSERT_EQ(WriteBatchInternal::Sequence(&orig_batch), WriteBatchInternal::Sequence(&new_batch)); } void CheckCountEqual(const WriteBatch& orig_batch, const WriteBatch& new_batch) { ASSERT_EQ(WriteBatchInternal::Count(&orig_batch), WriteBatchInternal::Count(&new_batch)); } void VerifyKeys( const std::vector>& keys_with_ts, const std::vector>& keys_without_ts, size_t ts_sz, std::optional dropped_cf) { ASSERT_EQ(keys_with_ts.size(), keys_without_ts.size()); const std::string kTsMin(ts_sz, static_cast(0)); for (size_t i = 0; i < keys_with_ts.size(); i++) { // TimestampRecoveryHandler ignores dropped column family and copy it over // as is. Check the keys stay the same. if (dropped_cf.has_value() && keys_with_ts[i].first == dropped_cf.value()) { ASSERT_EQ(keys_with_ts[i].first, keys_without_ts[i].first); ASSERT_EQ(keys_with_ts[i].second, keys_without_ts[i].second); continue; } const Slice& key_with_ts = keys_with_ts[i].second; const Slice& key_without_ts = keys_without_ts[i].second; ASSERT_TRUE(key_with_ts.starts_with(key_without_ts)); ASSERT_EQ(key_with_ts.size() - key_without_ts.size(), ts_sz); ASSERT_TRUE(key_with_ts.ends_with(kTsMin)); } } void CheckContentsWithTimestampStripping(const WriteBatch& orig_batch, const WriteBatch& new_batch, size_t ts_sz, std::optional dropped_cf) { CheckSequenceEqual(orig_batch, new_batch); CheckCountEqual(orig_batch, new_batch); KeyCollector collector_for_orig_batch; ASSERT_OK(orig_batch.Iterate(&collector_for_orig_batch)); KeyCollector collector_for_new_batch; ASSERT_OK(new_batch.Iterate(&collector_for_new_batch)); VerifyKeys(collector_for_orig_batch.GetKeys(), collector_for_new_batch.GetKeys(), ts_sz, dropped_cf); } void CheckContentsWithTimestampPadding(const WriteBatch& orig_batch, const WriteBatch& new_batch, size_t ts_sz) { CheckSequenceEqual(orig_batch, new_batch); CheckCountEqual(orig_batch, new_batch); KeyCollector collector_for_orig_batch; ASSERT_OK(orig_batch.Iterate(&collector_for_orig_batch)); KeyCollector collector_for_new_batch; ASSERT_OK(new_batch.Iterate(&collector_for_new_batch)); VerifyKeys(collector_for_new_batch.GetKeys(), collector_for_orig_batch.GetKeys(), ts_sz, std::nullopt /* dropped_cf */); } }; TEST_F(HandleTimestampSizeDifferenceTest, AllColumnFamiliesConsistent) { std::unordered_map running_ts_sz = {{1, sizeof(uint64_t)}, {2, 0}}; std::unordered_map record_ts_sz = {{1, sizeof(uint64_t)}}; std::unique_ptr batch(new WriteBatch()); CreateWriteBatch(running_ts_sz, batch); const WriteBatch* orig_batch = batch.get(); // All `check_mode` pass with OK status and `batch` not checked or updated. ASSERT_OK(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kVerifyConsistency, batch)); ASSERT_EQ(orig_batch, batch.get()); ASSERT_OK(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kReconcileInconsistency, batch)); ASSERT_EQ(orig_batch, batch.get()); } TEST_F(HandleTimestampSizeDifferenceTest, AllInconsistentColumnFamiliesDropped) { std::unordered_map running_ts_sz = {{2, 0}}; std::unordered_map record_ts_sz = {{1, sizeof(uint64_t)}, {3, sizeof(char)}}; std::unique_ptr batch(new WriteBatch()); CreateWriteBatch(record_ts_sz, batch); const WriteBatch* orig_batch = batch.get(); // All `check_mode` pass with OK status and `batch` not checked or updated. ASSERT_OK(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kVerifyConsistency, batch)); ASSERT_EQ(orig_batch, batch.get()); ASSERT_OK(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kReconcileInconsistency, batch)); ASSERT_EQ(orig_batch, batch.get()); } TEST_F(HandleTimestampSizeDifferenceTest, InvolvedColumnFamiliesConsistent) { std::unordered_map running_ts_sz = {{1, sizeof(uint64_t)}, {2, sizeof(char)}}; std::unordered_map record_ts_sz = {{1, sizeof(uint64_t)}}; std::unique_ptr batch(new WriteBatch()); CreateWriteBatch(record_ts_sz, batch); const WriteBatch* orig_batch = batch.get(); // All `check_mode` pass with OK status and `batch` not updated. ASSERT_OK(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kVerifyConsistency, batch)); ASSERT_EQ(orig_batch, batch.get()); ASSERT_OK(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kReconcileInconsistency, batch)); ASSERT_EQ(orig_batch, batch.get()); } TEST_F(HandleTimestampSizeDifferenceTest, InconsistentColumnFamilyNeedsTimestampStripping) { std::unordered_map running_ts_sz = {{1, 0}, {2, sizeof(char)}}; std::unordered_map record_ts_sz = {{1, sizeof(uint64_t)}}; std::unique_ptr batch(new WriteBatch()); CreateWriteBatch(record_ts_sz, batch); const WriteBatch* orig_batch = batch.get(); WriteBatch orig_batch_copy(*batch); // kVerifyConsistency doesn't tolerate inconsistency for running column // families. ASSERT_TRUE(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kVerifyConsistency, batch) .IsInvalidArgument()); ASSERT_OK(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kReconcileInconsistency, batch)); ASSERT_NE(orig_batch, batch.get()); CheckContentsWithTimestampStripping(orig_batch_copy, *batch, sizeof(uint64_t), std::nullopt /* dropped_cf */); } TEST_F(HandleTimestampSizeDifferenceTest, InconsistentColumnFamilyNeedsTimestampPadding) { std::unordered_map running_ts_sz = {{1, sizeof(uint64_t)}}; // Make `record_ts_sz` not contain zero timestamp size entries to follow the // behavior of actual WAL log timestamp size record. std::unordered_map record_ts_sz; std::unique_ptr batch(new WriteBatch()); CreateWriteBatch({{1, 0}}, batch); const WriteBatch* orig_batch = batch.get(); WriteBatch orig_batch_copy(*batch); // kVerifyConsistency doesn't tolerate inconsistency for running column // families. ASSERT_TRUE(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kVerifyConsistency, batch) .IsInvalidArgument()); ASSERT_OK(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kReconcileInconsistency, batch)); ASSERT_NE(orig_batch, batch.get()); CheckContentsWithTimestampPadding(orig_batch_copy, *batch, sizeof(uint64_t)); } TEST_F(HandleTimestampSizeDifferenceTest, InconsistencyReconcileCopyOverDroppedColumnFamily) { std::unordered_map running_ts_sz = {{1, 0}}; std::unordered_map record_ts_sz = {{1, sizeof(uint64_t)}, {2, sizeof(char)}}; std::unique_ptr batch(new WriteBatch()); CreateWriteBatch(record_ts_sz, batch); const WriteBatch* orig_batch = batch.get(); WriteBatch orig_batch_copy(*batch); // kReconcileInconsistency tolerate inconsistency for dropped column family // and all related entries copied over to the new WriteBatch. ASSERT_OK(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kReconcileInconsistency, batch)); ASSERT_NE(orig_batch, batch.get()); CheckContentsWithTimestampStripping(orig_batch_copy, *batch, sizeof(uint64_t), std::optional(2)); } TEST_F(HandleTimestampSizeDifferenceTest, UnrecoverableInconsistency) { std::unordered_map running_ts_sz = {{1, sizeof(char)}}; std::unordered_map record_ts_sz = {{1, sizeof(uint64_t)}}; std::unique_ptr batch(new WriteBatch()); CreateWriteBatch(record_ts_sz, batch); ASSERT_TRUE(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kVerifyConsistency, batch) .IsInvalidArgument()); ASSERT_TRUE(HandleWriteBatchTimestampSizeDifference( running_ts_sz, record_ts_sz, TimestampSizeConsistencyMode::kReconcileInconsistency, batch) .IsInvalidArgument()); } } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }