// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "cache/clock_cache.h" #include #include #include #include #include "monitoring/perf_context_imp.h" #include "monitoring/statistics.h" #include "port/lang.h" #include "util/distributed_mutex.h" #include "util/hash.h" #include "util/math.h" #include "util/random.h" namespace ROCKSDB_NAMESPACE { namespace clock_cache { ClockHandleTable::ClockHandleTable(int hash_bits) : length_bits_(hash_bits), length_bits_mask_((uint32_t{1} << length_bits_) - 1), occupancy_(0), occupancy_limit_(static_cast((uint32_t{1} << length_bits_) * kStrictLoadFactor)), array_(new ClockHandle[size_t{1} << length_bits_]) { assert(hash_bits <= 32); } ClockHandleTable::~ClockHandleTable() { ApplyToEntriesRange([](ClockHandle* h) { h->FreeData(); }, 0, GetTableSize()); } ClockHandle* ClockHandleTable::Lookup(const Slice& key) { int probe = 0; int slot = FindVisibleElement(key, probe, 0); return (slot == -1) ? nullptr : &array_[slot]; } ClockHandle* ClockHandleTable::Insert(ClockHandle* h, ClockHandle** old) { int probe = 0; int slot = FindVisibleElementOrAvailableSlot(h->key(), probe, 1 /*displacement*/); *old = nullptr; if (slot == -1) { return nullptr; } if (array_[slot].IsEmpty() || array_[slot].IsTombstone()) { bool empty = array_[slot].IsEmpty(); Assign(slot, h); ClockHandle* new_entry = &array_[slot]; if (empty) { // This used to be an empty slot. return new_entry; } // It used to be a tombstone, so there may already be a copy of the // key in the table. slot = FindVisibleElement(h->key(), probe, 0 /*displacement*/); if (slot == -1) { // No existing copy of the key. return new_entry; } *old = &array_[slot]; return new_entry; } else { // There is an existing copy of the key. *old = &array_[slot]; // Find an available slot for the new element. array_[slot].displacements++; slot = FindAvailableSlot(h->key(), probe, 1 /*displacement*/); if (slot == -1) { // No available slots. Roll back displacements. probe = 0; slot = FindVisibleElement(h->key(), probe, -1); array_[slot].displacements--; FindAvailableSlot(h->key(), probe, -1); return nullptr; } Assign(slot, h); return &array_[slot]; } } void ClockHandleTable::Remove(ClockHandle* h) { assert(!h->IsInClockList()); // Already off the clock list. int probe = 0; FindSlot( h->key(), [&h](ClockHandle* e) { return e == h; }, probe, -1 /*displacement*/); h->SetIsVisible(false); h->SetIsElement(false); occupancy_--; } void ClockHandleTable::Assign(int slot, ClockHandle* h) { ClockHandle* dst = &array_[slot]; uint32_t disp = dst->displacements; *dst = *h; dst->displacements = disp; dst->SetIsVisible(true); dst->SetIsElement(true); dst->SetPriority(ClockHandle::ClockPriority::NONE); occupancy_++; } void ClockHandleTable::Exclude(ClockHandle* h) { h->SetIsVisible(false); } int ClockHandleTable::FindVisibleElement(const Slice& key, int& probe, int displacement) { return FindSlot( key, [&](ClockHandle* h) { return h->Matches(key) && h->IsVisible(); }, probe, displacement); } int ClockHandleTable::FindAvailableSlot(const Slice& key, int& probe, int displacement) { return FindSlot( key, [](ClockHandle* h) { return h->IsEmpty() || h->IsTombstone(); }, probe, displacement); } int ClockHandleTable::FindVisibleElementOrAvailableSlot(const Slice& key, int& probe, int displacement) { return FindSlot( key, [&](ClockHandle* h) { return h->IsEmpty() || h->IsTombstone() || (h->Matches(key) && h->IsVisible()); }, probe, displacement); } inline int ClockHandleTable::FindSlot(const Slice& key, std::function cond, int& probe, int displacement) { uint32_t base = ModTableSize(Hash(key.data(), key.size(), kProbingSeed1)); uint32_t increment = ModTableSize((Hash(key.data(), key.size(), kProbingSeed2) << 1) | 1); uint32_t current = ModTableSize(base + probe * increment); while (true) { ClockHandle* h = &array_[current]; probe++; if (current == base && probe > 1) { // We looped back. return -1; } if (cond(h)) { return current; } if (h->IsEmpty()) { // We check emptyness after the condition, because // the condition may be emptyness. return -1; } h->displacements += displacement; current = ModTableSize(current + increment); } } ClockCacheShard::ClockCacheShard( size_t capacity, size_t estimated_value_size, bool strict_capacity_limit, CacheMetadataChargePolicy metadata_charge_policy) : capacity_(capacity), strict_capacity_limit_(strict_capacity_limit), clock_pointer_(0), table_( CalcHashBits(capacity, estimated_value_size, metadata_charge_policy)), usage_(0), clock_usage_(0) { set_metadata_charge_policy(metadata_charge_policy); } void ClockCacheShard::EraseUnRefEntries() { autovector last_reference_list; { DMutexLock l(mutex_); uint32_t slot = 0; do { ClockHandle* old = &(table_.array_[slot]); if (!old->IsInClockList()) { continue; } ClockRemove(old); table_.Remove(old); assert(usage_ >= old->total_charge); usage_ -= old->total_charge; last_reference_list.push_back(*old); slot = table_.ModTableSize(slot + 1); } while (slot != 0); } // Free the entries here outside of mutex for performance reasons. for (auto& h : last_reference_list) { h.FreeData(); } } void ClockCacheShard::ApplyToSomeEntries( const std::function& callback, uint32_t average_entries_per_lock, uint32_t* state) { // The state is essentially going to be the starting hash, which works // nicely even if we resize between calls because we use upper-most // hash bits for table indexes. DMutexLock l(mutex_); uint32_t length_bits = table_.GetLengthBits(); uint32_t length = table_.GetTableSize(); assert(average_entries_per_lock > 0); // Assuming we are called with same average_entries_per_lock repeatedly, // this simplifies some logic (index_end will not overflow). assert(average_entries_per_lock < length || *state == 0); uint32_t index_begin = *state >> (32 - length_bits); uint32_t index_end = index_begin + average_entries_per_lock; if (index_end >= length) { // Going to end index_end = length; *state = UINT32_MAX; } else { *state = index_end << (32 - length_bits); } table_.ApplyToEntriesRange( [callback, metadata_charge_policy = metadata_charge_policy_](ClockHandle* h) { callback(h->key(), h->value, h->GetCharge(metadata_charge_policy), h->deleter); }, index_begin, index_end); } void ClockCacheShard::ClockRemove(ClockHandle* h) { assert(h->IsInClockList()); h->SetPriority(ClockHandle::ClockPriority::NONE); assert(clock_usage_ >= h->total_charge); clock_usage_ -= h->total_charge; } void ClockCacheShard::ClockInsert(ClockHandle* h) { assert(!h->IsInClockList()); h->SetPriority(ClockHandle::ClockPriority::HIGH); clock_usage_ += h->total_charge; } void ClockCacheShard::EvictFromClock(size_t charge, autovector* deleted) { assert(charge <= capacity_); while (clock_usage_ > 0 && (usage_ + charge) > capacity_) { ClockHandle* old = &table_.array_[clock_pointer_]; clock_pointer_ = table_.ModTableSize(clock_pointer_ + 1); // Clock list contains only elements which can be evicted. if (!old->IsInClockList()) { continue; } if (old->GetPriority() == ClockHandle::ClockPriority::LOW) { ClockRemove(old); table_.Remove(old); assert(usage_ >= old->total_charge); usage_ -= old->total_charge; deleted->push_back(*old); return; } old->DecreasePriority(); } } size_t ClockCacheShard::CalcEstimatedHandleCharge( size_t estimated_value_size, CacheMetadataChargePolicy metadata_charge_policy) { ClockHandle h; h.CalcTotalCharge(estimated_value_size, metadata_charge_policy); return h.total_charge; } int ClockCacheShard::CalcHashBits( size_t capacity, size_t estimated_value_size, CacheMetadataChargePolicy metadata_charge_policy) { size_t handle_charge = CalcEstimatedHandleCharge(estimated_value_size, metadata_charge_policy); uint32_t num_entries = static_cast(capacity / (kLoadFactor * handle_charge)); if (num_entries == 0) { return 0; } int hash_bits = FloorLog2(num_entries); return hash_bits + (size_t{1} << hash_bits < num_entries ? 1 : 0); } void ClockCacheShard::SetCapacity(size_t capacity) { assert(false); // Not supported. TODO(Guido) Support it? autovector last_reference_list; { DMutexLock l(mutex_); capacity_ = capacity; EvictFromClock(0, &last_reference_list); } // Free the entries here outside of mutex for performance reasons. for (auto& h : last_reference_list) { h.FreeData(); } } void ClockCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) { DMutexLock l(mutex_); strict_capacity_limit_ = strict_capacity_limit; } Status ClockCacheShard::Insert(const Slice& key, uint32_t hash, void* value, size_t charge, Cache::DeleterFn deleter, Cache::Handle** handle, Cache::Priority /*priority*/) { if (key.size() != kCacheKeySize) { return Status::NotSupported("ClockCache only supports key size " + std::to_string(kCacheKeySize) + "B"); } ClockHandle tmp; tmp.value = value; tmp.deleter = deleter; tmp.hash = hash; tmp.CalcTotalCharge(charge, metadata_charge_policy_); for (int i = 0; i < kCacheKeySize; i++) { tmp.key_data[i] = key.data()[i]; } Status s = Status::OK(); autovector last_reference_list; { DMutexLock l(mutex_); assert(table_.GetOccupancy() <= table_.GetOccupancyLimit()); // Free the space following strict clock policy until enough space // is freed or the clock list is empty. EvictFromClock(tmp.total_charge, &last_reference_list); if ((usage_ + tmp.total_charge > capacity_ && (strict_capacity_limit_ || handle == nullptr)) || table_.GetOccupancy() == table_.GetOccupancyLimit()) { if (handle == nullptr) { // Don't insert the entry but still return ok, as if the entry inserted // into cache and get evicted immediately. last_reference_list.push_back(tmp); } else { if (table_.GetOccupancy() == table_.GetOccupancyLimit()) { s = Status::Incomplete( "Insert failed because all slots in the hash table are full."); // TODO(Guido) Use the correct statuses. } else { s = Status::Incomplete( "Insert failed because the total charge has exceeded the " "capacity."); } } } else { // Insert into the cache. Note that the cache might get larger than its // capacity if not enough space was freed up. ClockHandle* old; ClockHandle* h = table_.Insert(&tmp, &old); assert(h != nullptr); // We're below occupancy, so this insertion should // never fail. usage_ += h->total_charge; if (old != nullptr) { s = Status::OkOverwritten(); assert(old->IsVisible()); table_.Exclude(old); if (!old->HasRefs()) { // old is in clock because it's in cache and its reference count is 0. ClockRemove(old); table_.Remove(old); assert(usage_ >= old->total_charge); usage_ -= old->total_charge; last_reference_list.push_back(*old); } } if (handle == nullptr) { ClockInsert(h); } else { // If caller already holds a ref, no need to take one here. if (!h->HasRefs()) { h->Ref(); } *handle = reinterpret_cast(h); } } } // Free the entries here outside of mutex for performance reasons. for (auto& h : last_reference_list) { h.FreeData(); } return s; } Cache::Handle* ClockCacheShard::Lookup(const Slice& key, uint32_t /* hash */) { ClockHandle* h = nullptr; { DMutexLock l(mutex_); h = table_.Lookup(key); if (h != nullptr) { assert(h->IsVisible()); if (!h->HasRefs()) { // The entry is in clock since it's in the hash table and has no // external references. ClockRemove(h); } h->Ref(); } } return reinterpret_cast(h); } bool ClockCacheShard::Ref(Cache::Handle* h) { ClockHandle* e = reinterpret_cast(h); DMutexLock l(mutex_); // To create another reference - entry must be already externally referenced. assert(e->HasRefs()); e->Ref(); return true; } bool ClockCacheShard::Release(Cache::Handle* handle, bool erase_if_last_ref) { if (handle == nullptr) { return false; } ClockHandle* h = reinterpret_cast(handle); ClockHandle copy; bool last_reference = false; assert(!h->IsInClockList()); { DMutexLock l(mutex_); last_reference = h->Unref(); if (last_reference && h->IsVisible()) { // The item is still in cache, and nobody else holds a reference to it. if (usage_ > capacity_ || erase_if_last_ref) { // The clock list must be empty since the cache is full. assert(clock_usage_ == 0 || erase_if_last_ref); // Take this opportunity and remove the item. table_.Remove(h); } else { // Put the item back on the clock list, and don't free it. ClockInsert(h); last_reference = false; } } // If it was the last reference, then decrement the cache usage. if (last_reference) { assert(usage_ >= h->total_charge); usage_ -= h->total_charge; copy = *h; } } // Free the entry here outside of mutex for performance reasons. if (last_reference) { copy.FreeData(); } return last_reference; } void ClockCacheShard::Erase(const Slice& key, uint32_t /* hash */) { ClockHandle copy; bool last_reference = false; { DMutexLock l(mutex_); ClockHandle* h = table_.Lookup(key); if (h != nullptr) { table_.Exclude(h); if (!h->HasRefs()) { // The entry is in Clock since it's in cache and has no external // references. ClockRemove(h); table_.Remove(h); assert(usage_ >= h->total_charge); usage_ -= h->total_charge; last_reference = true; copy = *h; } } } // Free the entry here outside of mutex for performance reasons. // last_reference will only be true if e != nullptr. if (last_reference) { copy.FreeData(); } } size_t ClockCacheShard::GetUsage() const { DMutexLock l(mutex_); return usage_; } size_t ClockCacheShard::GetPinnedUsage() const { DMutexLock l(mutex_); assert(usage_ >= clock_usage_); return usage_ - clock_usage_; } std::string ClockCacheShard::GetPrintableOptions() const { return std::string{}; } ClockCache::ClockCache(size_t capacity, size_t estimated_value_size, int num_shard_bits, bool strict_capacity_limit, CacheMetadataChargePolicy metadata_charge_policy) : ShardedCache(capacity, num_shard_bits, strict_capacity_limit) { num_shards_ = 1 << num_shard_bits; shards_ = reinterpret_cast( port::cacheline_aligned_alloc(sizeof(ClockCacheShard) * num_shards_)); size_t per_shard = (capacity + (num_shards_ - 1)) / num_shards_; for (int i = 0; i < num_shards_; i++) { new (&shards_[i]) ClockCacheShard(per_shard, estimated_value_size, strict_capacity_limit, metadata_charge_policy); } } ClockCache::~ClockCache() { if (shards_ != nullptr) { assert(num_shards_ > 0); for (int i = 0; i < num_shards_; i++) { shards_[i].~ClockCacheShard(); } port::cacheline_aligned_free(shards_); } } CacheShard* ClockCache::GetShard(uint32_t shard) { return reinterpret_cast(&shards_[shard]); } const CacheShard* ClockCache::GetShard(uint32_t shard) const { return reinterpret_cast(&shards_[shard]); } void* ClockCache::Value(Handle* handle) { return reinterpret_cast(handle)->value; } size_t ClockCache::GetCharge(Handle* handle) const { CacheMetadataChargePolicy metadata_charge_policy = kDontChargeCacheMetadata; if (num_shards_ > 0) { metadata_charge_policy = shards_[0].metadata_charge_policy_; } return reinterpret_cast(handle)->GetCharge( metadata_charge_policy); } Cache::DeleterFn ClockCache::GetDeleter(Handle* handle) const { auto h = reinterpret_cast(handle); return h->deleter; } uint32_t ClockCache::GetHash(Handle* handle) const { return reinterpret_cast(handle)->hash; } void ClockCache::DisownData() { // Leak data only if that won't generate an ASAN/valgrind warning. if (!kMustFreeHeapAllocations) { shards_ = nullptr; num_shards_ = 0; } } } // namespace clock_cache std::shared_ptr NewClockCache( size_t capacity, size_t estimated_value_size, int num_shard_bits, bool strict_capacity_limit, CacheMetadataChargePolicy metadata_charge_policy) { if (num_shard_bits >= 20) { return nullptr; // The cache cannot be sharded into too many fine pieces. } if (num_shard_bits < 0) { num_shard_bits = GetDefaultCacheShardBits(capacity); } return std::make_shared( capacity, estimated_value_size, num_shard_bits, strict_capacity_limit, metadata_charge_policy); } } // namespace ROCKSDB_NAMESPACE