// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/compaction_picker_universal.h" #ifndef ROCKSDB_LITE #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #include #include #include #include #include #include "db/column_family.h" #include "monitoring/statistics.h" #include "util/filename.h" #include "util/log_buffer.h" #include "util/random.h" #include "util/string_util.h" #include "util/sync_point.h" namespace rocksdb { namespace { // Used in universal compaction when trivial move is enabled. // This structure is used for the construction of min heap // that contains the file meta data, the level of the file // and the index of the file in that level struct InputFileInfo { InputFileInfo() : f(nullptr) {} FileMetaData* f; size_t level; size_t index; }; // Used in universal compaction when trivial move is enabled. // This comparator is used for the construction of min heap // based on the smallest key of the file. struct SmallestKeyHeapComparator { explicit SmallestKeyHeapComparator(const Comparator* ucmp) { ucmp_ = ucmp; } bool operator()(InputFileInfo i1, InputFileInfo i2) const { return (ucmp_->Compare(i1.f->smallest.user_key(), i2.f->smallest.user_key()) > 0); } private: const Comparator* ucmp_; }; typedef std::priority_queue, SmallestKeyHeapComparator> SmallestKeyHeap; // This function creates the heap that is used to find if the files are // overlapping during universal compaction when the allow_trivial_move // is set. SmallestKeyHeap create_level_heap(Compaction* c, const Comparator* ucmp) { SmallestKeyHeap smallest_key_priority_q = SmallestKeyHeap(SmallestKeyHeapComparator(ucmp)); InputFileInfo input_file; for (size_t l = 0; l < c->num_input_levels(); l++) { if (c->num_input_files(l) != 0) { if (l == 0 && c->start_level() == 0) { for (size_t i = 0; i < c->num_input_files(0); i++) { input_file.f = c->input(0, i); input_file.level = 0; input_file.index = i; smallest_key_priority_q.push(std::move(input_file)); } } else { input_file.f = c->input(l, 0); input_file.level = l; input_file.index = 0; smallest_key_priority_q.push(std::move(input_file)); } } } return smallest_key_priority_q; } #ifndef NDEBUG // smallest_seqno and largest_seqno are set iff. `files` is not empty. void GetSmallestLargestSeqno(const std::vector& files, SequenceNumber* smallest_seqno, SequenceNumber* largest_seqno) { bool is_first = true; for (FileMetaData* f : files) { assert(f->smallest_seqno <= f->largest_seqno); if (is_first) { is_first = false; *smallest_seqno = f->smallest_seqno; *largest_seqno = f->largest_seqno; } else { if (f->smallest_seqno < *smallest_seqno) { *smallest_seqno = f->smallest_seqno; } if (f->largest_seqno > *largest_seqno) { *largest_seqno = f->largest_seqno; } } } } #endif } // namespace // Algorithm that checks to see if there are any overlapping // files in the input bool UniversalCompactionPicker::IsInputFilesNonOverlapping(Compaction* c) { auto comparator = icmp_->user_comparator(); int first_iter = 1; InputFileInfo prev, curr, next; SmallestKeyHeap smallest_key_priority_q = create_level_heap(c, icmp_->user_comparator()); while (!smallest_key_priority_q.empty()) { curr = smallest_key_priority_q.top(); smallest_key_priority_q.pop(); if (first_iter) { prev = curr; first_iter = 0; } else { if (comparator->Compare(prev.f->largest.user_key(), curr.f->smallest.user_key()) >= 0) { // found overlapping files, return false return false; } assert(comparator->Compare(curr.f->largest.user_key(), prev.f->largest.user_key()) > 0); prev = curr; } next.f = nullptr; if (curr.level != 0 && curr.index < c->num_input_files(curr.level) - 1) { next.f = c->input(curr.level, curr.index + 1); next.level = curr.level; next.index = curr.index + 1; } if (next.f) { smallest_key_priority_q.push(std::move(next)); } } return true; } bool UniversalCompactionPicker::NeedsCompaction( const VersionStorageInfo* vstorage) const { const int kLevel0 = 0; return vstorage->CompactionScore(kLevel0) >= 1; } void UniversalCompactionPicker::SortedRun::Dump(char* out_buf, size_t out_buf_size, bool print_path) const { if (level == 0) { assert(file != nullptr); if (file->fd.GetPathId() == 0 || !print_path) { snprintf(out_buf, out_buf_size, "file %" PRIu64, file->fd.GetNumber()); } else { snprintf(out_buf, out_buf_size, "file %" PRIu64 "(path " "%" PRIu32 ")", file->fd.GetNumber(), file->fd.GetPathId()); } } else { snprintf(out_buf, out_buf_size, "level %d", level); } } void UniversalCompactionPicker::SortedRun::DumpSizeInfo( char* out_buf, size_t out_buf_size, size_t sorted_run_count) const { if (level == 0) { assert(file != nullptr); snprintf(out_buf, out_buf_size, "file %" PRIu64 "[%" ROCKSDB_PRIszt "] " "with size %" PRIu64 " (compensated size %" PRIu64 ")", file->fd.GetNumber(), sorted_run_count, file->fd.GetFileSize(), file->compensated_file_size); } else { snprintf(out_buf, out_buf_size, "level %d[%" ROCKSDB_PRIszt "] " "with size %" PRIu64 " (compensated size %" PRIu64 ")", level, sorted_run_count, size, compensated_file_size); } } std::vector UniversalCompactionPicker::CalculateSortedRuns( const VersionStorageInfo& vstorage, const ImmutableCFOptions& ioptions) { std::vector ret; for (FileMetaData* f : vstorage.LevelFiles(0)) { ret.emplace_back(0, f, f->fd.GetFileSize(), f->compensated_file_size, f->being_compacted); } for (int level = 1; level < vstorage.num_levels(); level++) { uint64_t total_compensated_size = 0U; uint64_t total_size = 0U; bool being_compacted = false; bool is_first = true; for (FileMetaData* f : vstorage.LevelFiles(level)) { total_compensated_size += f->compensated_file_size; total_size += f->fd.GetFileSize(); if (ioptions.compaction_options_universal.allow_trivial_move == true) { if (f->being_compacted) { being_compacted = f->being_compacted; } } else { // Compaction always includes all files for a non-zero level, so for a // non-zero level, all the files should share the same being_compacted // value. // This assumption is only valid when // ioptions.compaction_options_universal.allow_trivial_move is false assert(is_first || f->being_compacted == being_compacted); } if (is_first) { being_compacted = f->being_compacted; is_first = false; } } if (total_compensated_size > 0) { ret.emplace_back(level, nullptr, total_size, total_compensated_size, being_compacted); } } return ret; } // Universal style of compaction. Pick files that are contiguous in // time-range to compact. // Compaction* UniversalCompactionPicker::PickCompaction( const std::string& cf_name, const MutableCFOptions& mutable_cf_options, VersionStorageInfo* vstorage, LogBuffer* log_buffer) { const int kLevel0 = 0; double score = vstorage->CompactionScore(kLevel0); std::vector sorted_runs = CalculateSortedRuns(*vstorage, ioptions_); if (sorted_runs.size() == 0 || sorted_runs.size() < (unsigned int)mutable_cf_options.level0_file_num_compaction_trigger) { ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: nothing to do\n", cf_name.c_str()); TEST_SYNC_POINT_CALLBACK("UniversalCompactionPicker::PickCompaction:Return", nullptr); return nullptr; } VersionStorageInfo::LevelSummaryStorage tmp; ROCKS_LOG_BUFFER_MAX_SZ( log_buffer, 3072, "[%s] Universal: sorted runs files(%" ROCKSDB_PRIszt "): %s\n", cf_name.c_str(), sorted_runs.size(), vstorage->LevelSummary(&tmp)); // Check for size amplification first. Compaction* c; if ((c = PickCompactionToReduceSizeAmp(cf_name, mutable_cf_options, vstorage, score, sorted_runs, log_buffer)) != nullptr) { ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: compacting for size amp\n", cf_name.c_str()); } else { // Size amplification is within limits. Try reducing read // amplification while maintaining file size ratios. unsigned int ratio = ioptions_.compaction_options_universal.size_ratio; if ((c = PickCompactionToReduceSortedRuns( cf_name, mutable_cf_options, vstorage, score, ratio, UINT_MAX, sorted_runs, log_buffer)) != nullptr) { ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: compacting for size ratio\n", cf_name.c_str()); } else { // Size amplification and file size ratios are within configured limits. // If max read amplification is exceeding configured limits, then force // compaction without looking at filesize ratios and try to reduce // the number of files to fewer than level0_file_num_compaction_trigger. // This is guaranteed by NeedsCompaction() assert(sorted_runs.size() >= static_cast( mutable_cf_options.level0_file_num_compaction_trigger)); // Get the total number of sorted runs that are not being compacted int num_sr_not_compacted = 0; for (size_t i = 0; i < sorted_runs.size(); i++) { if (sorted_runs[i].being_compacted == false) { num_sr_not_compacted++; } } // The number of sorted runs that are not being compacted is greater than // the maximum allowed number of sorted runs if (num_sr_not_compacted > mutable_cf_options.level0_file_num_compaction_trigger) { unsigned int num_files = num_sr_not_compacted - mutable_cf_options.level0_file_num_compaction_trigger + 1; if ((c = PickCompactionToReduceSortedRuns( cf_name, mutable_cf_options, vstorage, score, UINT_MAX, num_files, sorted_runs, log_buffer)) != nullptr) { ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: compacting for file num -- %u\n", cf_name.c_str(), num_files); } } } } if (c == nullptr) { TEST_SYNC_POINT_CALLBACK("UniversalCompactionPicker::PickCompaction:Return", nullptr); return nullptr; } if (ioptions_.compaction_options_universal.allow_trivial_move == true) { c->set_is_trivial_move(IsInputFilesNonOverlapping(c)); } // validate that all the chosen files of L0 are non overlapping in time #ifndef NDEBUG SequenceNumber prev_smallest_seqno = 0U; bool is_first = true; size_t level_index = 0U; if (c->start_level() == 0) { for (auto f : *c->inputs(0)) { assert(f->smallest_seqno <= f->largest_seqno); if (is_first) { is_first = false; } else { assert(prev_smallest_seqno > f->largest_seqno); } prev_smallest_seqno = f->smallest_seqno; } level_index = 1U; } for (; level_index < c->num_input_levels(); level_index++) { if (c->num_input_files(level_index) != 0) { SequenceNumber smallest_seqno = 0U; SequenceNumber largest_seqno = 0U; GetSmallestLargestSeqno(*(c->inputs(level_index)), &smallest_seqno, &largest_seqno); if (is_first) { is_first = false; } else if (prev_smallest_seqno > 0) { // A level is considered as the bottommost level if there are // no files in higher levels or if files in higher levels do // not overlap with the files being compacted. Sequence numbers // of files in bottommost level can be set to 0 to help // compression. As a result, the following assert may not hold // if the prev_smallest_seqno is 0. assert(prev_smallest_seqno > largest_seqno); } prev_smallest_seqno = smallest_seqno; } } #endif // update statistics MeasureTime(ioptions_.statistics, NUM_FILES_IN_SINGLE_COMPACTION, c->inputs(0)->size()); RegisterCompaction(c); TEST_SYNC_POINT_CALLBACK("UniversalCompactionPicker::PickCompaction:Return", c); return c; } uint32_t UniversalCompactionPicker::GetPathId( const ImmutableCFOptions& ioptions, uint64_t file_size) { // Two conditions need to be satisfied: // (1) the target path needs to be able to hold the file's size // (2) Total size left in this and previous paths need to be not // smaller than expected future file size before this new file is // compacted, which is estimated based on size_ratio. // For example, if now we are compacting files of size (1, 1, 2, 4, 8), // we will make sure the target file, probably with size of 16, will be // placed in a path so that eventually when new files are generated and // compacted to (1, 1, 2, 4, 8, 16), all those files can be stored in or // before the path we chose. // // TODO(sdong): now the case of multiple column families is not // considered in this algorithm. So the target size can be violated in // that case. We need to improve it. uint64_t accumulated_size = 0; uint64_t future_size = file_size * (100 - ioptions.compaction_options_universal.size_ratio) / 100; uint32_t p = 0; assert(!ioptions.db_paths.empty()); for (; p < ioptions.db_paths.size() - 1; p++) { uint64_t target_size = ioptions.db_paths[p].target_size; if (target_size > file_size && accumulated_size + (target_size - file_size) > future_size) { return p; } accumulated_size += target_size; } return p; } // // Consider compaction files based on their size differences with // the next file in time order. // Compaction* UniversalCompactionPicker::PickCompactionToReduceSortedRuns( const std::string& cf_name, const MutableCFOptions& mutable_cf_options, VersionStorageInfo* vstorage, double score, unsigned int ratio, unsigned int max_number_of_files_to_compact, const std::vector& sorted_runs, LogBuffer* log_buffer) { unsigned int min_merge_width = ioptions_.compaction_options_universal.min_merge_width; unsigned int max_merge_width = ioptions_.compaction_options_universal.max_merge_width; const SortedRun* sr = nullptr; bool done = false; size_t start_index = 0; unsigned int candidate_count = 0; unsigned int max_files_to_compact = std::min(max_merge_width, max_number_of_files_to_compact); min_merge_width = std::max(min_merge_width, 2U); // Caller checks the size before executing this function. This invariant is // important because otherwise we may have a possible integer underflow when // dealing with unsigned types. assert(sorted_runs.size() > 0); // Considers a candidate file only if it is smaller than the // total size accumulated so far. for (size_t loop = 0; loop < sorted_runs.size(); loop++) { candidate_count = 0; // Skip files that are already being compacted for (sr = nullptr; loop < sorted_runs.size(); loop++) { sr = &sorted_runs[loop]; if (!sr->being_compacted) { candidate_count = 1; break; } char file_num_buf[kFormatFileNumberBufSize]; sr->Dump(file_num_buf, sizeof(file_num_buf)); ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: %s" "[%d] being compacted, skipping", cf_name.c_str(), file_num_buf, loop); sr = nullptr; } // This file is not being compacted. Consider it as the // first candidate to be compacted. uint64_t candidate_size = sr != nullptr ? sr->compensated_file_size : 0; if (sr != nullptr) { char file_num_buf[kFormatFileNumberBufSize]; sr->Dump(file_num_buf, sizeof(file_num_buf), true); ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: Possible candidate %s[%d].", cf_name.c_str(), file_num_buf, loop); } // Check if the succeeding files need compaction. for (size_t i = loop + 1; candidate_count < max_files_to_compact && i < sorted_runs.size(); i++) { const SortedRun* succeeding_sr = &sorted_runs[i]; if (succeeding_sr->being_compacted) { break; } // Pick files if the total/last candidate file size (increased by the // specified ratio) is still larger than the next candidate file. // candidate_size is the total size of files picked so far with the // default kCompactionStopStyleTotalSize; with // kCompactionStopStyleSimilarSize, it's simply the size of the last // picked file. double sz = candidate_size * (100.0 + ratio) / 100.0; if (sz < static_cast(succeeding_sr->size)) { break; } if (ioptions_.compaction_options_universal.stop_style == kCompactionStopStyleSimilarSize) { // Similar-size stopping rule: also check the last picked file isn't // far larger than the next candidate file. sz = (succeeding_sr->size * (100.0 + ratio)) / 100.0; if (sz < static_cast(candidate_size)) { // If the small file we've encountered begins a run of similar-size // files, we'll pick them up on a future iteration of the outer // loop. If it's some lonely straggler, it'll eventually get picked // by the last-resort read amp strategy which disregards size ratios. break; } candidate_size = succeeding_sr->compensated_file_size; } else { // default kCompactionStopStyleTotalSize candidate_size += succeeding_sr->compensated_file_size; } candidate_count++; } // Found a series of consecutive files that need compaction. if (candidate_count >= (unsigned int)min_merge_width) { start_index = loop; done = true; break; } else { for (size_t i = loop; i < loop + candidate_count && i < sorted_runs.size(); i++) { const SortedRun* skipping_sr = &sorted_runs[i]; char file_num_buf[256]; skipping_sr->DumpSizeInfo(file_num_buf, sizeof(file_num_buf), loop); ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: Skipping %s", cf_name.c_str(), file_num_buf); } } } if (!done || candidate_count <= 1) { return nullptr; } size_t first_index_after = start_index + candidate_count; // Compression is enabled if files compacted earlier already reached // size ratio of compression. bool enable_compression = true; int ratio_to_compress = ioptions_.compaction_options_universal.compression_size_percent; if (ratio_to_compress >= 0) { uint64_t total_size = 0; for (auto& sorted_run : sorted_runs) { total_size += sorted_run.compensated_file_size; } uint64_t older_file_size = 0; for (size_t i = sorted_runs.size() - 1; i >= first_index_after; i--) { older_file_size += sorted_runs[i].size; if (older_file_size * 100L >= total_size * (long)ratio_to_compress) { enable_compression = false; break; } } } uint64_t estimated_total_size = 0; for (unsigned int i = 0; i < first_index_after; i++) { estimated_total_size += sorted_runs[i].size; } uint32_t path_id = GetPathId(ioptions_, estimated_total_size); int start_level = sorted_runs[start_index].level; int output_level; if (first_index_after == sorted_runs.size()) { output_level = vstorage->num_levels() - 1; } else if (sorted_runs[first_index_after].level == 0) { output_level = 0; } else { output_level = sorted_runs[first_index_after].level - 1; } std::vector inputs(vstorage->num_levels()); for (size_t i = 0; i < inputs.size(); ++i) { inputs[i].level = start_level + static_cast(i); } for (size_t i = start_index; i < first_index_after; i++) { auto& picking_sr = sorted_runs[i]; if (picking_sr.level == 0) { FileMetaData* picking_file = picking_sr.file; inputs[0].files.push_back(picking_file); } else { auto& files = inputs[picking_sr.level - start_level].files; for (auto* f : vstorage->LevelFiles(picking_sr.level)) { files.push_back(f); } } char file_num_buf[256]; picking_sr.DumpSizeInfo(file_num_buf, sizeof(file_num_buf), i); ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: Picking %s", cf_name.c_str(), file_num_buf); } CompactionReason compaction_reason; if (max_number_of_files_to_compact == UINT_MAX) { compaction_reason = CompactionReason::kUniversalSortedRunNum; } else { compaction_reason = CompactionReason::kUniversalSizeRatio; } return new Compaction( vstorage, ioptions_, mutable_cf_options, std::move(inputs), output_level, mutable_cf_options.MaxFileSizeForLevel(output_level), LLONG_MAX, path_id, GetCompressionType(ioptions_, vstorage, mutable_cf_options, start_level, 1, enable_compression), /* grandparents */ {}, /* is manual */ false, score, false /* deletion_compaction */, compaction_reason); } // Look at overall size amplification. If size amplification // exceeeds the configured value, then do a compaction // of the candidate files all the way upto the earliest // base file (overrides configured values of file-size ratios, // min_merge_width and max_merge_width). // Compaction* UniversalCompactionPicker::PickCompactionToReduceSizeAmp( const std::string& cf_name, const MutableCFOptions& mutable_cf_options, VersionStorageInfo* vstorage, double score, const std::vector& sorted_runs, LogBuffer* log_buffer) { // percentage flexibilty while reducing size amplification uint64_t ratio = ioptions_.compaction_options_universal.max_size_amplification_percent; unsigned int candidate_count = 0; uint64_t candidate_size = 0; size_t start_index = 0; const SortedRun* sr = nullptr; // Skip files that are already being compacted for (size_t loop = 0; loop < sorted_runs.size() - 1; loop++) { sr = &sorted_runs[loop]; if (!sr->being_compacted) { start_index = loop; // Consider this as the first candidate. break; } char file_num_buf[kFormatFileNumberBufSize]; sr->Dump(file_num_buf, sizeof(file_num_buf), true); ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: skipping %s[%d] compacted %s", cf_name.c_str(), file_num_buf, loop, " cannot be a candidate to reduce size amp.\n"); sr = nullptr; } if (sr == nullptr) { return nullptr; // no candidate files } { char file_num_buf[kFormatFileNumberBufSize]; sr->Dump(file_num_buf, sizeof(file_num_buf), true); ROCKS_LOG_BUFFER( log_buffer, "[%s] Universal: First candidate %s[%" ROCKSDB_PRIszt "] %s", cf_name.c_str(), file_num_buf, start_index, " to reduce size amp.\n"); } // keep adding up all the remaining files for (size_t loop = start_index; loop < sorted_runs.size() - 1; loop++) { sr = &sorted_runs[loop]; if (sr->being_compacted) { char file_num_buf[kFormatFileNumberBufSize]; sr->Dump(file_num_buf, sizeof(file_num_buf), true); ROCKS_LOG_BUFFER( log_buffer, "[%s] Universal: Possible candidate %s[%d] %s", cf_name.c_str(), file_num_buf, start_index, " is already being compacted. No size amp reduction possible.\n"); return nullptr; } candidate_size += sr->compensated_file_size; candidate_count++; } if (candidate_count == 0) { return nullptr; } // size of earliest file uint64_t earliest_file_size = sorted_runs.back().size; // size amplification = percentage of additional size if (candidate_size * 100 < ratio * earliest_file_size) { ROCKS_LOG_BUFFER( log_buffer, "[%s] Universal: size amp not needed. newer-files-total-size %" PRIu64 " earliest-file-size %" PRIu64, cf_name.c_str(), candidate_size, earliest_file_size); return nullptr; } else { ROCKS_LOG_BUFFER( log_buffer, "[%s] Universal: size amp needed. newer-files-total-size %" PRIu64 " earliest-file-size %" PRIu64, cf_name.c_str(), candidate_size, earliest_file_size); } assert(start_index < sorted_runs.size() - 1); // Estimate total file size uint64_t estimated_total_size = 0; for (size_t loop = start_index; loop < sorted_runs.size(); loop++) { estimated_total_size += sorted_runs[loop].size; } uint32_t path_id = GetPathId(ioptions_, estimated_total_size); int start_level = sorted_runs[start_index].level; std::vector inputs(vstorage->num_levels()); for (size_t i = 0; i < inputs.size(); ++i) { inputs[i].level = start_level + static_cast(i); } // We always compact all the files, so always compress. for (size_t loop = start_index; loop < sorted_runs.size(); loop++) { auto& picking_sr = sorted_runs[loop]; if (picking_sr.level == 0) { FileMetaData* f = picking_sr.file; inputs[0].files.push_back(f); } else { auto& files = inputs[picking_sr.level - start_level].files; for (auto* f : vstorage->LevelFiles(picking_sr.level)) { files.push_back(f); } } char file_num_buf[256]; picking_sr.DumpSizeInfo(file_num_buf, sizeof(file_num_buf), loop); ROCKS_LOG_BUFFER(log_buffer, "[%s] Universal: size amp picking %s", cf_name.c_str(), file_num_buf); } return new Compaction( vstorage, ioptions_, mutable_cf_options, std::move(inputs), vstorage->num_levels() - 1, mutable_cf_options.MaxFileSizeForLevel(vstorage->num_levels() - 1), /* max_grandparent_overlap_bytes */ LLONG_MAX, path_id, GetCompressionType(ioptions_, vstorage, mutable_cf_options, vstorage->num_levels() - 1, 1), /* grandparents */ {}, /* is manual */ false, score, false /* deletion_compaction */, CompactionReason::kUniversalSizeAmplification); } } // namespace rocksdb #endif // !ROCKSDB_LITE