// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifdef GFLAGS #include "db_stress_tool/db_stress_common.h" #include "rocksdb/utilities/transaction_db.h" #include "utilities/fault_injection_fs.h" namespace ROCKSDB_NAMESPACE { class NonBatchedOpsStressTest : public StressTest { public: NonBatchedOpsStressTest() {} virtual ~NonBatchedOpsStressTest() {} void VerifyDb(ThreadState* thread) const override { // This `ReadOptions` is for validation purposes. Ignore // `FLAGS_rate_limit_user_ops` to avoid slowing any validation. ReadOptions options(FLAGS_verify_checksum, true); std::string ts_str; Slice ts; if (FLAGS_user_timestamp_size > 0) { ts_str = GetNowNanos(); ts = ts_str; options.timestamp = &ts; } auto shared = thread->shared; const int64_t max_key = shared->GetMaxKey(); const int64_t keys_per_thread = max_key / shared->GetNumThreads(); int64_t start = keys_per_thread * thread->tid; int64_t end = start + keys_per_thread; uint64_t prefix_to_use = (FLAGS_prefix_size < 0) ? 1 : static_cast(FLAGS_prefix_size); if (thread->tid == shared->GetNumThreads() - 1) { end = max_key; } for (size_t cf = 0; cf < column_families_.size(); ++cf) { if (thread->shared->HasVerificationFailedYet()) { break; } enum class VerificationMethod { kIterator, kGet, kMultiGet, kGetMergeOperands, // Add any new items above kNumberOfMethods kNumberOfMethods }; constexpr int num_methods = static_cast(VerificationMethod::kNumberOfMethods); const VerificationMethod method = static_cast(thread->rand.Uniform( (FLAGS_user_timestamp_size > 0) ? num_methods - 1 : num_methods)); if (method == VerificationMethod::kIterator) { std::unique_ptr iter( db_->NewIterator(options, column_families_[cf])); std::string seek_key = Key(start); iter->Seek(seek_key); Slice prefix(seek_key.data(), prefix_to_use); for (int64_t i = start; i < end; ++i) { if (thread->shared->HasVerificationFailedYet()) { break; } const std::string key = Key(i); const Slice k(key); const Slice pfx(key.data(), prefix_to_use); // Reseek when the prefix changes if (prefix_to_use > 0 && prefix.compare(pfx) != 0) { iter->Seek(k); seek_key = key; prefix = Slice(seek_key.data(), prefix_to_use); } Status s = iter->status(); std::string from_db; if (iter->Valid()) { const int diff = iter->key().compare(k); if (diff > 0) { s = Status::NotFound(); } else if (diff == 0) { const WideColumns expected_columns = GenerateExpectedWideColumns( GetValueBase(iter->value()), iter->value()); if (iter->columns() != expected_columns) { VerificationAbort(shared, static_cast(cf), i, iter->value(), iter->columns(), expected_columns); break; } from_db = iter->value().ToString(); iter->Next(); } else { assert(diff < 0); VerificationAbort(shared, "An out of range key was found", static_cast(cf), i); } } else { // The iterator found no value for the key in question, so do not // move to the next item in the iterator s = Status::NotFound(); } VerifyOrSyncValue(static_cast(cf), i, options, shared, from_db, /* msg_prefix */ "Iterator verification", s, /* strict */ true); if (!from_db.empty()) { PrintKeyValue(static_cast(cf), static_cast(i), from_db.data(), from_db.size()); } } } else if (method == VerificationMethod::kGet) { for (int64_t i = start; i < end; ++i) { if (thread->shared->HasVerificationFailedYet()) { break; } const std::string key = Key(i); std::string from_db; Status s = db_->Get(options, column_families_[cf], key, &from_db); VerifyOrSyncValue(static_cast(cf), i, options, shared, from_db, /* msg_prefix */ "Get verification", s, /* strict */ true); if (!from_db.empty()) { PrintKeyValue(static_cast(cf), static_cast(i), from_db.data(), from_db.size()); } } } else if (method == VerificationMethod::kMultiGet) { for (int64_t i = start; i < end;) { if (thread->shared->HasVerificationFailedYet()) { break; } // Keep the batch size to some reasonable value size_t batch_size = thread->rand.Uniform(128) + 1; batch_size = std::min(batch_size, end - i); std::vector keystrs(batch_size); std::vector keys(batch_size); std::vector values(batch_size); std::vector statuses(batch_size); for (size_t j = 0; j < batch_size; ++j) { keystrs[j] = Key(i + j); keys[j] = Slice(keystrs[j].data(), keystrs[j].size()); } db_->MultiGet(options, column_families_[cf], batch_size, keys.data(), values.data(), statuses.data()); for (size_t j = 0; j < batch_size; ++j) { const std::string from_db = values[j].ToString(); VerifyOrSyncValue(static_cast(cf), i + j, options, shared, from_db, /* msg_prefix */ "MultiGet verification", statuses[j], /* strict */ true); if (!from_db.empty()) { PrintKeyValue(static_cast(cf), static_cast(i + j), from_db.data(), from_db.size()); } } i += batch_size; } } else { assert(method == VerificationMethod::kGetMergeOperands); // Start off with small size that will be increased later if necessary std::vector values(4); GetMergeOperandsOptions merge_operands_info; merge_operands_info.expected_max_number_of_operands = static_cast(values.size()); for (int64_t i = start; i < end; ++i) { if (thread->shared->HasVerificationFailedYet()) { break; } const std::string key = Key(i); const Slice k(key); std::string from_db; int number_of_operands = 0; Status s = db_->GetMergeOperands(options, column_families_[cf], k, values.data(), &merge_operands_info, &number_of_operands); if (s.IsIncomplete()) { // Need to resize values as there are more than values.size() merge // operands on this key. Should only happen a few times when we // encounter a key that had more merge operands than any key seen so // far values.resize(number_of_operands); merge_operands_info.expected_max_number_of_operands = static_cast(number_of_operands); s = db_->GetMergeOperands(options, column_families_[cf], k, values.data(), &merge_operands_info, &number_of_operands); } // Assumed here that GetMergeOperands always sets number_of_operand if (number_of_operands) { from_db = values[number_of_operands - 1].ToString(); } VerifyOrSyncValue(static_cast(cf), i, options, shared, from_db, /* msg_prefix */ "GetMergeOperands verification", s, /* strict */ true); if (!from_db.empty()) { PrintKeyValue(static_cast(cf), static_cast(i), from_db.data(), from_db.size()); } } } } } void ContinuouslyVerifyDb(ThreadState* thread) const override { if (!cmp_db_) { return; } assert(cmp_db_); assert(!cmp_cfhs_.empty()); Status s = cmp_db_->TryCatchUpWithPrimary(); if (!s.ok()) { assert(false); exit(1); } const auto checksum_column_family = [](Iterator* iter, uint32_t* checksum) -> Status { assert(nullptr != checksum); uint32_t ret = 0; for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { ret = crc32c::Extend(ret, iter->key().data(), iter->key().size()); ret = crc32c::Extend(ret, iter->value().data(), iter->value().size()); } *checksum = ret; return iter->status(); }; auto* shared = thread->shared; assert(shared); const int64_t max_key = shared->GetMaxKey(); ReadOptions read_opts(FLAGS_verify_checksum, true); std::string ts_str; Slice ts; if (FLAGS_user_timestamp_size > 0) { ts_str = GetNowNanos(); ts = ts_str; read_opts.timestamp = &ts; } static Random64 rand64(shared->GetSeed()); { uint32_t crc = 0; std::unique_ptr it(cmp_db_->NewIterator(read_opts)); s = checksum_column_family(it.get(), &crc); if (!s.ok()) { fprintf(stderr, "Computing checksum of default cf: %s\n", s.ToString().c_str()); assert(false); } } for (auto* handle : cmp_cfhs_) { if (thread->rand.OneInOpt(3)) { // Use Get() uint64_t key = rand64.Uniform(static_cast(max_key)); std::string key_str = Key(key); std::string value; std::string key_ts; s = cmp_db_->Get(read_opts, handle, key_str, &value, FLAGS_user_timestamp_size > 0 ? &key_ts : nullptr); s.PermitUncheckedError(); } else { // Use range scan std::unique_ptr iter(cmp_db_->NewIterator(read_opts, handle)); uint32_t rnd = (thread->rand.Next()) % 4; if (0 == rnd) { // SeekToFirst() + Next()*5 read_opts.total_order_seek = true; iter->SeekToFirst(); for (int i = 0; i < 5 && iter->Valid(); ++i, iter->Next()) { } } else if (1 == rnd) { // SeekToLast() + Prev()*5 read_opts.total_order_seek = true; iter->SeekToLast(); for (int i = 0; i < 5 && iter->Valid(); ++i, iter->Prev()) { } } else if (2 == rnd) { // Seek() +Next()*5 uint64_t key = rand64.Uniform(static_cast(max_key)); std::string key_str = Key(key); iter->Seek(key_str); for (int i = 0; i < 5 && iter->Valid(); ++i, iter->Next()) { } } else { // SeekForPrev() + Prev()*5 uint64_t key = rand64.Uniform(static_cast(max_key)); std::string key_str = Key(key); iter->SeekForPrev(key_str); for (int i = 0; i < 5 && iter->Valid(); ++i, iter->Prev()) { } } } } } void MaybeClearOneColumnFamily(ThreadState* thread) override { if (FLAGS_column_families > 1) { if (thread->rand.OneInOpt(FLAGS_clear_column_family_one_in)) { // drop column family and then create it again (can't drop default) int cf = thread->rand.Next() % (FLAGS_column_families - 1) + 1; std::string new_name = std::to_string(new_column_family_name_.fetch_add(1)); { MutexLock l(thread->shared->GetMutex()); fprintf( stdout, "[CF %d] Dropping and recreating column family. new name: %s\n", cf, new_name.c_str()); } thread->shared->LockColumnFamily(cf); Status s = db_->DropColumnFamily(column_families_[cf]); delete column_families_[cf]; if (!s.ok()) { fprintf(stderr, "dropping column family error: %s\n", s.ToString().c_str()); std::terminate(); } s = db_->CreateColumnFamily(ColumnFamilyOptions(options_), new_name, &column_families_[cf]); column_family_names_[cf] = new_name; thread->shared->ClearColumnFamily(cf); if (!s.ok()) { fprintf(stderr, "creating column family error: %s\n", s.ToString().c_str()); std::terminate(); } thread->shared->UnlockColumnFamily(cf); } } } bool ShouldAcquireMutexOnKey() const override { return true; } bool IsStateTracked() const override { return true; } Status TestGet(ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) override { auto cfh = column_families_[rand_column_families[0]]; std::string key_str = Key(rand_keys[0]); Slice key = key_str; std::string from_db; int error_count = 0; if (fault_fs_guard) { fault_fs_guard->EnableErrorInjection(); SharedState::ignore_read_error = false; } std::unique_ptr lock(new MutexLock( thread->shared->GetMutexForKey(rand_column_families[0], rand_keys[0]))); ReadOptions read_opts_copy = read_opts; std::string read_ts_str; Slice read_ts_slice; bool read_older_ts = MaybeUseOlderTimestampForPointLookup( thread, read_ts_str, read_ts_slice, read_opts_copy); Status s = db_->Get(read_opts_copy, cfh, key, &from_db); if (fault_fs_guard) { error_count = fault_fs_guard->GetAndResetErrorCount(); } if (s.ok()) { if (fault_fs_guard) { if (error_count && !SharedState::ignore_read_error) { // Grab mutex so multiple thread don't try to print the // stack trace at the same time MutexLock l(thread->shared->GetMutex()); fprintf(stderr, "Didn't get expected error from Get\n"); fprintf(stderr, "Callstack that injected the fault\n"); fault_fs_guard->PrintFaultBacktrace(); std::terminate(); } } // found case thread->stats.AddGets(1, 1); // we only have the latest expected state if (!FLAGS_skip_verifydb && !read_opts_copy.timestamp && thread->shared->Get(rand_column_families[0], rand_keys[0]) == SharedState::DELETION_SENTINEL) { thread->shared->SetVerificationFailure(); fprintf(stderr, "error : inconsistent values for key %s: Get returns %s, " "expected state does not have the key.\n", key.ToString(true).c_str(), StringToHex(from_db).c_str()); } } else if (s.IsNotFound()) { // not found case thread->stats.AddGets(1, 0); if (!FLAGS_skip_verifydb && !read_older_ts) { auto expected = thread->shared->Get(rand_column_families[0], rand_keys[0]); if (expected != SharedState::DELETION_SENTINEL && expected != SharedState::UNKNOWN_SENTINEL) { thread->shared->SetVerificationFailure(); fprintf(stderr, "error : inconsistent values for key %s: expected state has " "the key, Get() returns NotFound.\n", key.ToString(true).c_str()); } } } else { if (error_count == 0) { // errors case thread->stats.AddErrors(1); } else { thread->stats.AddVerifiedErrors(1); } } if (fault_fs_guard) { fault_fs_guard->DisableErrorInjection(); } return s; } std::vector TestMultiGet( ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) override { size_t num_keys = rand_keys.size(); std::vector key_str; std::vector keys; key_str.reserve(num_keys); keys.reserve(num_keys); std::vector values(num_keys); std::vector statuses(num_keys); ColumnFamilyHandle* cfh = column_families_[rand_column_families[0]]; int error_count = 0; // Do a consistency check between Get and MultiGet. Don't do it too // often as it will slow db_stress down bool do_consistency_check = thread->rand.OneIn(4); ReadOptions readoptionscopy = read_opts; if (do_consistency_check) { readoptionscopy.snapshot = db_->GetSnapshot(); } std::string read_ts_str; Slice read_ts_slice; MaybeUseOlderTimestampForPointLookup(thread, read_ts_str, read_ts_slice, readoptionscopy); readoptionscopy.rate_limiter_priority = FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL; // To appease clang analyzer const bool use_txn = FLAGS_use_txn; // Create a transaction in order to write some data. The purpose is to // exercise WriteBatchWithIndex::MultiGetFromBatchAndDB. The transaction // will be rolled back once MultiGet returns. Transaction* txn = nullptr; if (use_txn) { WriteOptions wo; if (FLAGS_rate_limit_auto_wal_flush) { wo.rate_limiter_priority = Env::IO_USER; } Status s = NewTxn(wo, &txn); if (!s.ok()) { fprintf(stderr, "NewTxn: %s\n", s.ToString().c_str()); std::terminate(); } } for (size_t i = 0; i < num_keys; ++i) { key_str.emplace_back(Key(rand_keys[i])); keys.emplace_back(key_str.back()); if (use_txn) { // With a 1 in 10 probability, insert the just added key in the batch // into the transaction. This will create an overlap with the MultiGet // keys and exercise some corner cases in the code if (thread->rand.OneIn(10)) { int op = thread->rand.Uniform(2); Status s; switch (op) { case 0: case 1: { uint32_t value_base = thread->rand.Next() % thread->shared->UNKNOWN_SENTINEL; char value[100]; size_t sz = GenerateValue(value_base, value, sizeof(value)); Slice v(value, sz); if (op == 0) { s = txn->Put(cfh, keys.back(), v); } else { s = txn->Merge(cfh, keys.back(), v); } break; } case 2: s = txn->Delete(cfh, keys.back()); break; default: assert(false); } if (!s.ok()) { fprintf(stderr, "Transaction put: %s\n", s.ToString().c_str()); std::terminate(); } } } } if (!use_txn) { if (fault_fs_guard) { fault_fs_guard->EnableErrorInjection(); SharedState::ignore_read_error = false; } db_->MultiGet(readoptionscopy, cfh, num_keys, keys.data(), values.data(), statuses.data()); if (fault_fs_guard) { error_count = fault_fs_guard->GetAndResetErrorCount(); } } else { txn->MultiGet(readoptionscopy, cfh, num_keys, keys.data(), values.data(), statuses.data()); } if (fault_fs_guard && error_count && !SharedState::ignore_read_error) { int stat_nok = 0; for (const auto& s : statuses) { if (!s.ok() && !s.IsNotFound()) { stat_nok++; } } if (stat_nok < error_count) { // Grab mutex so multiple thread don't try to print the // stack trace at the same time MutexLock l(thread->shared->GetMutex()); fprintf(stderr, "Didn't get expected error from MultiGet. \n"); fprintf(stderr, "num_keys %zu Expected %d errors, seen %d\n", num_keys, error_count, stat_nok); fprintf(stderr, "Callstack that injected the fault\n"); fault_fs_guard->PrintFaultBacktrace(); std::terminate(); } } if (fault_fs_guard) { fault_fs_guard->DisableErrorInjection(); } for (size_t i = 0; i < statuses.size(); ++i) { Status s = statuses[i]; bool is_consistent = true; // Only do the consistency check if no error was injected and MultiGet // didn't return an unexpected error if (do_consistency_check && !error_count && (s.ok() || s.IsNotFound())) { Status tmp_s; std::string value; if (use_txn) { tmp_s = txn->Get(readoptionscopy, cfh, keys[i], &value); } else { tmp_s = db_->Get(readoptionscopy, cfh, keys[i], &value); } if (!tmp_s.ok() && !tmp_s.IsNotFound()) { fprintf(stderr, "Get error: %s\n", s.ToString().c_str()); is_consistent = false; } else if (!s.ok() && tmp_s.ok()) { fprintf(stderr, "MultiGet returned different results with key %s\n", keys[i].ToString(true).c_str()); fprintf(stderr, "Get returned ok, MultiGet returned not found\n"); is_consistent = false; } else if (s.ok() && tmp_s.IsNotFound()) { fprintf(stderr, "MultiGet returned different results with key %s\n", keys[i].ToString(true).c_str()); fprintf(stderr, "MultiGet returned ok, Get returned not found\n"); is_consistent = false; } else if (s.ok() && value != values[i].ToString()) { fprintf(stderr, "MultiGet returned different results with key %s\n", keys[i].ToString(true).c_str()); fprintf(stderr, "MultiGet returned value %s\n", values[i].ToString(true).c_str()); fprintf(stderr, "Get returned value %s\n", Slice(value).ToString(true /* hex */).c_str()); is_consistent = false; } } if (!is_consistent) { fprintf(stderr, "TestMultiGet error: is_consistent is false\n"); thread->stats.AddErrors(1); // Fail fast to preserve the DB state thread->shared->SetVerificationFailure(); break; } else if (s.ok()) { // found case thread->stats.AddGets(1, 1); } else if (s.IsNotFound()) { // not found case thread->stats.AddGets(1, 0); } else if (s.IsMergeInProgress() && use_txn) { // With txn this is sometimes expected. thread->stats.AddGets(1, 1); } else { if (error_count == 0) { // errors case fprintf(stderr, "MultiGet error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); } else { thread->stats.AddVerifiedErrors(1); } } } if (readoptionscopy.snapshot) { db_->ReleaseSnapshot(readoptionscopy.snapshot); } if (use_txn) { RollbackTxn(txn); } return statuses; } Status TestPrefixScan(ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) override { assert(!rand_column_families.empty()); assert(!rand_keys.empty()); ColumnFamilyHandle* const cfh = column_families_[rand_column_families[0]]; assert(cfh); const std::string key = Key(rand_keys[0]); const Slice prefix(key.data(), FLAGS_prefix_size); std::string upper_bound; Slice ub_slice; ReadOptions ro_copy = read_opts; // Get the next prefix first and then see if we want to set upper bound. // We'll use the next prefix in an assertion later on if (GetNextPrefix(prefix, &upper_bound) && thread->rand.OneIn(2)) { // For half of the time, set the upper bound to the next prefix ub_slice = Slice(upper_bound); ro_copy.iterate_upper_bound = &ub_slice; } std::string read_ts_str; Slice read_ts_slice; MaybeUseOlderTimestampForRangeScan(thread, read_ts_str, read_ts_slice, ro_copy); std::unique_ptr iter(db_->NewIterator(ro_copy, cfh)); uint64_t count = 0; Status s; if (fault_fs_guard) { fault_fs_guard->EnableErrorInjection(); SharedState::ignore_read_error = false; } for (iter->Seek(prefix); iter->Valid() && iter->key().starts_with(prefix); iter->Next()) { ++count; // When iter_start_ts is set, iterator exposes internal keys, including // tombstones; however, we want to perform column validation only for // value-like types. if (ro_copy.iter_start_ts) { const ValueType value_type = ExtractValueType(iter->key()); if (value_type != kTypeValue && value_type != kTypeBlobIndex && value_type != kTypeWideColumnEntity) { continue; } } const WideColumns expected_columns = GenerateExpectedWideColumns( GetValueBase(iter->value()), iter->value()); if (iter->columns() != expected_columns) { s = Status::Corruption( "Value and columns inconsistent", DebugString(iter->value(), iter->columns(), expected_columns)); break; } } if (ro_copy.iter_start_ts == nullptr) { assert(count <= GetPrefixKeyCount(prefix.ToString(), upper_bound)); } if (s.ok()) { s = iter->status(); } uint64_t error_count = 0; if (fault_fs_guard) { error_count = fault_fs_guard->GetAndResetErrorCount(); } if (!s.ok() && (!fault_fs_guard || (fault_fs_guard && !error_count))) { fprintf(stderr, "TestPrefixScan error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); return s; } if (fault_fs_guard) { fault_fs_guard->DisableErrorInjection(); } thread->stats.AddPrefixes(1, count); return Status::OK(); } Status TestPut(ThreadState* thread, WriteOptions& write_opts, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys, char (&value)[100]) override { assert(!rand_column_families.empty()); assert(!rand_keys.empty()); auto shared = thread->shared; assert(shared); const int64_t max_key = shared->GetMaxKey(); int64_t rand_key = rand_keys[0]; int rand_column_family = rand_column_families[0]; std::string write_ts; std::unique_ptr lock( new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key))); while (!shared->AllowsOverwrite(rand_key) && (FLAGS_use_merge || shared->Exists(rand_column_family, rand_key))) { lock.reset(); rand_key = thread->rand.Next() % max_key; rand_column_family = thread->rand.Next() % FLAGS_column_families; lock.reset( new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key))); if (FLAGS_user_timestamp_size > 0) { write_ts = GetNowNanos(); } } if (write_ts.empty() && FLAGS_user_timestamp_size) { write_ts = GetNowNanos(); } const std::string k = Key(rand_key); ColumnFamilyHandle* const cfh = column_families_[rand_column_family]; assert(cfh); if (FLAGS_verify_before_write) { std::string from_db; Status s = db_->Get(read_opts, cfh, k, &from_db); if (!VerifyOrSyncValue(rand_column_family, rand_key, read_opts, shared, /* msg_prefix */ "Pre-Put Get verification", from_db, s, /* strict */ true)) { return s; } } const uint32_t value_base = thread->rand.Next() % shared->UNKNOWN_SENTINEL; const size_t sz = GenerateValue(value_base, value, sizeof(value)); const Slice v(value, sz); shared->Put(rand_column_family, rand_key, value_base, true /* pending */); Status s; if (FLAGS_use_merge) { if (!FLAGS_use_txn) { if (FLAGS_user_timestamp_size == 0) { s = db_->Merge(write_opts, cfh, k, v); } else { s = db_->Merge(write_opts, cfh, k, write_ts, v); } } else { Transaction* txn; s = NewTxn(write_opts, &txn); if (s.ok()) { s = txn->Merge(cfh, k, v); if (s.ok()) { s = CommitTxn(txn, thread); } } } } else if (FLAGS_use_put_entity_one_in > 0 && (value_base % FLAGS_use_put_entity_one_in) == 0) { s = db_->PutEntity(write_opts, cfh, k, GenerateWideColumns(value_base, v)); } else { if (!FLAGS_use_txn) { if (FLAGS_user_timestamp_size == 0) { s = db_->Put(write_opts, cfh, k, v); } else { s = db_->Put(write_opts, cfh, k, write_ts, v); } } else { Transaction* txn; s = NewTxn(write_opts, &txn); if (s.ok()) { s = txn->Put(cfh, k, v); if (s.ok()) { s = CommitTxn(txn, thread); } } } } shared->Put(rand_column_family, rand_key, value_base, false /* pending */); if (!s.ok()) { if (FLAGS_injest_error_severity >= 2) { if (!is_db_stopped_ && s.severity() >= Status::Severity::kFatalError) { is_db_stopped_ = true; } else if (!is_db_stopped_ || s.severity() < Status::Severity::kFatalError) { fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str()); std::terminate(); } } else { fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str()); std::terminate(); } } thread->stats.AddBytesForWrites(1, sz); PrintKeyValue(rand_column_family, static_cast(rand_key), value, sz); return s; } Status TestDelete(ThreadState* thread, WriteOptions& write_opts, const std::vector& rand_column_families, const std::vector& rand_keys) override { int64_t rand_key = rand_keys[0]; int rand_column_family = rand_column_families[0]; auto shared = thread->shared; std::unique_ptr lock( new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key))); // OPERATION delete std::string write_ts_str = GetNowNanos(); Slice write_ts = write_ts_str; std::string key_str = Key(rand_key); Slice key = key_str; auto cfh = column_families_[rand_column_family]; // Use delete if the key may be overwritten and a single deletion // otherwise. Status s; if (shared->AllowsOverwrite(rand_key)) { shared->Delete(rand_column_family, rand_key, true /* pending */); if (!FLAGS_use_txn) { if (FLAGS_user_timestamp_size == 0) { s = db_->Delete(write_opts, cfh, key); } else { s = db_->Delete(write_opts, cfh, key, write_ts); } } else { Transaction* txn; s = NewTxn(write_opts, &txn); if (s.ok()) { s = txn->Delete(cfh, key); if (s.ok()) { s = CommitTxn(txn, thread); } } } shared->Delete(rand_column_family, rand_key, false /* pending */); thread->stats.AddDeletes(1); if (!s.ok()) { if (FLAGS_injest_error_severity >= 2) { if (!is_db_stopped_ && s.severity() >= Status::Severity::kFatalError) { is_db_stopped_ = true; } else if (!is_db_stopped_ || s.severity() < Status::Severity::kFatalError) { fprintf(stderr, "delete error: %s\n", s.ToString().c_str()); std::terminate(); } } else { fprintf(stderr, "delete error: %s\n", s.ToString().c_str()); std::terminate(); } } } else { shared->SingleDelete(rand_column_family, rand_key, true /* pending */); if (!FLAGS_use_txn) { if (FLAGS_user_timestamp_size == 0) { s = db_->SingleDelete(write_opts, cfh, key); } else { s = db_->SingleDelete(write_opts, cfh, key, write_ts); } } else { Transaction* txn; s = NewTxn(write_opts, &txn); if (s.ok()) { s = txn->SingleDelete(cfh, key); if (s.ok()) { s = CommitTxn(txn, thread); } } } shared->SingleDelete(rand_column_family, rand_key, false /* pending */); thread->stats.AddSingleDeletes(1); if (!s.ok()) { if (FLAGS_injest_error_severity >= 2) { if (!is_db_stopped_ && s.severity() >= Status::Severity::kFatalError) { is_db_stopped_ = true; } else if (!is_db_stopped_ || s.severity() < Status::Severity::kFatalError) { fprintf(stderr, "single delete error: %s\n", s.ToString().c_str()); std::terminate(); } } else { fprintf(stderr, "single delete error: %s\n", s.ToString().c_str()); std::terminate(); } } } return s; } Status TestDeleteRange(ThreadState* thread, WriteOptions& write_opts, const std::vector& rand_column_families, const std::vector& rand_keys) override { // OPERATION delete range std::vector> range_locks; // delete range does not respect disallowed overwrites. the keys for // which overwrites are disallowed are randomly distributed so it // could be expensive to find a range where each key allows // overwrites. int64_t rand_key = rand_keys[0]; int rand_column_family = rand_column_families[0]; auto shared = thread->shared; int64_t max_key = shared->GetMaxKey(); if (rand_key > max_key - FLAGS_range_deletion_width) { rand_key = thread->rand.Next() % (max_key - FLAGS_range_deletion_width + 1); } for (int j = 0; j < FLAGS_range_deletion_width; ++j) { if (j == 0 || ((rand_key + j) & ((1 << FLAGS_log2_keys_per_lock) - 1)) == 0) { range_locks.emplace_back(new MutexLock( shared->GetMutexForKey(rand_column_family, rand_key + j))); } } shared->DeleteRange(rand_column_family, rand_key, rand_key + FLAGS_range_deletion_width, true /* pending */); std::string keystr = Key(rand_key); Slice key = keystr; auto cfh = column_families_[rand_column_family]; std::string end_keystr = Key(rand_key + FLAGS_range_deletion_width); Slice end_key = end_keystr; std::string write_ts_str; Slice write_ts; Status s; if (FLAGS_user_timestamp_size) { write_ts_str = GetNowNanos(); write_ts = write_ts_str; s = db_->DeleteRange(write_opts, cfh, key, end_key, write_ts); } else { s = db_->DeleteRange(write_opts, cfh, key, end_key); } if (!s.ok()) { if (FLAGS_injest_error_severity >= 2) { if (!is_db_stopped_ && s.severity() >= Status::Severity::kFatalError) { is_db_stopped_ = true; } else if (!is_db_stopped_ || s.severity() < Status::Severity::kFatalError) { fprintf(stderr, "delete range error: %s\n", s.ToString().c_str()); std::terminate(); } } else { fprintf(stderr, "delete range error: %s\n", s.ToString().c_str()); std::terminate(); } } int covered = shared->DeleteRange(rand_column_family, rand_key, rand_key + FLAGS_range_deletion_width, false /* pending */); thread->stats.AddRangeDeletions(1); thread->stats.AddCoveredByRangeDeletions(covered); return s; } void TestIngestExternalFile(ThreadState* thread, const std::vector& rand_column_families, const std::vector& rand_keys) override { const std::string sst_filename = FLAGS_db + "/." + std::to_string(thread->tid) + ".sst"; Status s; if (db_stress_env->FileExists(sst_filename).ok()) { // Maybe we terminated abnormally before, so cleanup to give this file // ingestion a clean slate s = db_stress_env->DeleteFile(sst_filename); } SstFileWriter sst_file_writer(EnvOptions(options_), options_); if (s.ok()) { s = sst_file_writer.Open(sst_filename); } int64_t key_base = rand_keys[0]; int column_family = rand_column_families[0]; std::vector> range_locks; range_locks.reserve(FLAGS_ingest_external_file_width); std::vector keys; keys.reserve(FLAGS_ingest_external_file_width); std::vector values; values.reserve(FLAGS_ingest_external_file_width); SharedState* shared = thread->shared; assert(FLAGS_nooverwritepercent < 100); // Grab locks, set pending state on expected values, and add keys for (int64_t key = key_base; s.ok() && key < shared->GetMaxKey() && static_cast(keys.size()) < FLAGS_ingest_external_file_width; ++key) { if (key == key_base || (key & ((1 << FLAGS_log2_keys_per_lock) - 1)) == 0) { range_locks.emplace_back( new MutexLock(shared->GetMutexForKey(column_family, key))); } if (!shared->AllowsOverwrite(key)) { // We could alternatively include `key` on the condition its current // value is `DELETION_SENTINEL`. continue; } keys.push_back(key); uint32_t value_base = thread->rand.Next() % shared->UNKNOWN_SENTINEL; values.push_back(value_base); shared->Put(column_family, key, value_base, true /* pending */); char value[100]; size_t value_len = GenerateValue(value_base, value, sizeof(value)); auto key_str = Key(key); s = sst_file_writer.Put(Slice(key_str), Slice(value, value_len)); } if (s.ok() && keys.empty()) { return; } if (s.ok()) { s = sst_file_writer.Finish(); } if (s.ok()) { s = db_->IngestExternalFile(column_families_[column_family], {sst_filename}, IngestExternalFileOptions()); } if (!s.ok()) { fprintf(stderr, "file ingestion error: %s\n", s.ToString().c_str()); std::terminate(); } for (size_t i = 0; i < keys.size(); ++i) { shared->Put(column_family, keys[i], values[i], false /* pending */); } } // Given a key K, this creates an iterator which scans the range // [K, K + FLAGS_num_iterations) forward and backward. // Then does a random sequence of Next/Prev operations. Status TestIterateAgainstExpected( ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) override { assert(thread); assert(!rand_column_families.empty()); assert(!rand_keys.empty()); auto shared = thread->shared; assert(shared); int64_t max_key = shared->GetMaxKey(); const int64_t num_iter = static_cast(FLAGS_num_iterations); int64_t lb = rand_keys[0]; if (lb > max_key - num_iter) { lb = thread->rand.Next() % (max_key - num_iter + 1); } const int64_t ub = lb + num_iter; // Lock the whole range over which we might iterate to ensure it doesn't // change under us. const int rand_column_family = rand_column_families[0]; std::vector> range_locks = shared->GetLocksForKeyRange(rand_column_family, lb, ub); ReadOptions ro(read_opts); ro.total_order_seek = true; std::string read_ts_str; Slice read_ts; if (FLAGS_user_timestamp_size > 0) { read_ts_str = GetNowNanos(); read_ts = read_ts_str; ro.timestamp = &read_ts; } std::string max_key_str; Slice max_key_slice; if (!FLAGS_destroy_db_initially) { max_key_str = Key(max_key); max_key_slice = max_key_str; // to restrict iterator from reading keys written in batched_op_stress // that do not have expected state updated and may not be parseable by // GetIntVal(). ro.iterate_upper_bound = &max_key_slice; } ColumnFamilyHandle* const cfh = column_families_[rand_column_family]; assert(cfh); std::unique_ptr iter(db_->NewIterator(ro, cfh)); std::string op_logs; auto check_columns = [&]() { assert(iter); assert(iter->Valid()); const WideColumns expected_columns = GenerateExpectedWideColumns( GetValueBase(iter->value()), iter->value()); if (iter->columns() != expected_columns) { shared->SetVerificationFailure(); fprintf(stderr, "Verification failed for key %s: " "Value and columns inconsistent: %s\n", Slice(iter->key()).ToString(/* hex */ true).c_str(), DebugString(iter->value(), iter->columns(), expected_columns) .c_str()); fprintf(stderr, "Column family: %s, op_logs: %s\n", cfh->GetName().c_str(), op_logs.c_str()); thread->stats.AddErrors(1); return false; } return true; }; auto check_no_key_in_range = [&](int64_t start, int64_t end) { for (auto j = std::max(start, lb); j < std::min(end, ub); ++j) { auto expected_value = shared->Get(rand_column_family, static_cast(j)); if (expected_value != shared->DELETION_SENTINEL && expected_value != shared->UNKNOWN_SENTINEL) { // Fail fast to preserve the DB state. thread->shared->SetVerificationFailure(); if (iter->Valid()) { fprintf(stderr, "Expected state has key %s, iterator is at key %s\n", Slice(Key(j)).ToString(true).c_str(), iter->key().ToString(true).c_str()); } else { fprintf(stderr, "Expected state has key %s, iterator is invalid\n", Slice(Key(j)).ToString(true).c_str()); } fprintf(stderr, "Column family: %s, op_logs: %s\n", cfh->GetName().c_str(), op_logs.c_str()); thread->stats.AddErrors(1); return false; } } return true; }; // Forward and backward scan to ensure we cover the entire range [lb, ub). // The random sequence Next and Prev test below tends to be very short // ranged. int64_t last_key = lb - 1; std::string key_str = Key(lb); iter->Seek(key_str); op_logs += "S " + Slice(key_str).ToString(true) + " "; uint64_t curr = 0; while (true) { if (!iter->Valid()) { if (!iter->status().ok()) { thread->shared->SetVerificationFailure(); fprintf(stderr, "TestIterate against expected state error: %s\n", iter->status().ToString().c_str()); fprintf(stderr, "Column family: %s, op_logs: %s\n", cfh->GetName().c_str(), op_logs.c_str()); thread->stats.AddErrors(1); return iter->status(); } if (!check_no_key_in_range(last_key + 1, ub)) { return Status::OK(); } break; } if (!check_columns()) { return Status::OK(); } // iter is valid, the range (last_key, current key) was skipped GetIntVal(iter->key().ToString(), &curr); if (!check_no_key_in_range(last_key + 1, static_cast(curr))) { return Status::OK(); } last_key = static_cast(curr); if (last_key >= ub - 1) { break; } iter->Next(); op_logs += "N"; } // backward scan key_str = Key(ub - 1); iter->SeekForPrev(key_str); op_logs += " SFP " + Slice(key_str).ToString(true) + " "; last_key = ub; while (true) { if (!iter->Valid()) { if (!iter->status().ok()) { thread->shared->SetVerificationFailure(); fprintf(stderr, "TestIterate against expected state error: %s\n", iter->status().ToString().c_str()); fprintf(stderr, "Column family: %s, op_logs: %s\n", cfh->GetName().c_str(), op_logs.c_str()); thread->stats.AddErrors(1); return iter->status(); } if (!check_no_key_in_range(lb, last_key)) { return Status::OK(); } break; } if (!check_columns()) { return Status::OK(); } // the range (current key, last key) was skipped GetIntVal(iter->key().ToString(), &curr); if (!check_no_key_in_range(static_cast(curr + 1), last_key)) { return Status::OK(); } last_key = static_cast(curr); if (last_key <= lb) { break; } iter->Prev(); op_logs += "P"; } if (thread->rand.OneIn(2)) { // Refresh after forward/backward scan to allow higher chance of SV // change. It is safe to refresh since the testing key range is locked. iter->Refresh(); } // start from middle of [lb, ub) otherwise it is easy to iterate out of // locked range const int64_t mid = lb + num_iter / 2; key_str = Key(mid); const Slice key(key_str); if (thread->rand.OneIn(2)) { iter->Seek(key); op_logs += " S " + key.ToString(true) + " "; if (!iter->Valid() && iter->status().ok()) { if (!check_no_key_in_range(mid, ub)) { return Status::OK(); } } } else { iter->SeekForPrev(key); op_logs += " SFP " + key.ToString(true) + " "; if (!iter->Valid() && iter->status().ok()) { // iterator says nothing <= mid if (!check_no_key_in_range(lb, mid + 1)) { return Status::OK(); } } } for (int64_t i = 0; i < num_iter && iter->Valid(); ++i) { if (!check_columns()) { return Status::OK(); } GetIntVal(iter->key().ToString(), &curr); if (static_cast(curr) < lb) { iter->Next(); op_logs += "N"; } else if (static_cast(curr) >= ub) { iter->Prev(); op_logs += "P"; } else { const uint32_t expected_value = shared->Get(rand_column_family, static_cast(curr)); if (expected_value == shared->DELETION_SENTINEL) { // Fail fast to preserve the DB state. thread->shared->SetVerificationFailure(); fprintf(stderr, "Iterator has key %s, but expected state does not.\n", iter->key().ToString(true).c_str()); fprintf(stderr, "Column family: %s, op_logs: %s\n", cfh->GetName().c_str(), op_logs.c_str()); thread->stats.AddErrors(1); break; } if (thread->rand.OneIn(2)) { iter->Next(); op_logs += "N"; if (!iter->Valid()) { break; } uint64_t next = 0; GetIntVal(iter->key().ToString(), &next); if (!check_no_key_in_range(static_cast(curr + 1), static_cast(next))) { return Status::OK(); } } else { iter->Prev(); op_logs += "P"; if (!iter->Valid()) { break; } uint64_t prev = 0; GetIntVal(iter->key().ToString(), &prev); if (!check_no_key_in_range(static_cast(prev + 1), static_cast(curr))) { return Status::OK(); } } } } if (!iter->status().ok()) { thread->shared->SetVerificationFailure(); fprintf(stderr, "TestIterate against expected state error: %s\n", iter->status().ToString().c_str()); fprintf(stderr, "Column family: %s, op_logs: %s\n", cfh->GetName().c_str(), op_logs.c_str()); thread->stats.AddErrors(1); return iter->status(); } thread->stats.AddIterations(1); return Status::OK(); } bool VerifyOrSyncValue(int cf, int64_t key, const ReadOptions& /*opts*/, SharedState* shared, const std::string& value_from_db, std::string msg_prefix, const Status& s, bool strict = false) const { if (shared->HasVerificationFailedYet()) { return false; } // compare value_from_db with the value in the shared state uint32_t value_base = shared->Get(cf, key); if (value_base == SharedState::UNKNOWN_SENTINEL) { if (s.ok()) { // Value exists in db, update state to reflect that Slice slice(value_from_db); value_base = GetValueBase(slice); shared->Put(cf, key, value_base, false); } else if (s.IsNotFound()) { // Value doesn't exist in db, update state to reflect that shared->SingleDelete(cf, key, false); } return true; } if (value_base == SharedState::DELETION_SENTINEL && !strict) { return true; } if (s.ok()) { char value[kValueMaxLen]; if (value_base == SharedState::DELETION_SENTINEL) { VerificationAbort(shared, msg_prefix + ": Unexpected value found", cf, key, value_from_db, ""); return false; } size_t sz = GenerateValue(value_base, value, sizeof(value)); if (value_from_db.length() != sz) { VerificationAbort(shared, msg_prefix + ": Length of value read is not equal", cf, key, value_from_db, Slice(value, sz)); return false; } if (memcmp(value_from_db.data(), value, sz) != 0) { VerificationAbort(shared, msg_prefix + ": Contents of value read don't match", cf, key, value_from_db, Slice(value, sz)); return false; } } else { if (value_base != SharedState::DELETION_SENTINEL) { char value[kValueMaxLen]; size_t sz = GenerateValue(value_base, value, sizeof(value)); VerificationAbort(shared, msg_prefix + ": Value not found: " + s.ToString(), cf, key, "", Slice(value, sz)); return false; } } return true; } void PrepareTxnDbOptions(SharedState* shared, TransactionDBOptions& txn_db_opts) override { txn_db_opts.rollback_deletion_type_callback = [shared](TransactionDB*, ColumnFamilyHandle*, const Slice& key) { assert(shared); uint64_t key_num = 0; bool ok = GetIntVal(key.ToString(), &key_num); assert(ok); (void)ok; return !shared->AllowsOverwrite(key_num); }; } }; StressTest* CreateNonBatchedOpsStressTest() { return new NonBatchedOpsStressTest(); } } // namespace ROCKSDB_NAMESPACE #endif // GFLAGS