#!/usr/bin/env bash # REQUIRE: db_bench binary exists in the current directory if [ $# -ne 1 ]; then echo -n "./benchmark.sh [bulkload/fillseq/overwrite/filluniquerandom/" echo "readrandom/readwhilewriting/readwhilemerging/updaterandom/" echo "mergerandom/randomtransaction/compact]" exit 0 fi # Make it easier to run only the compaction test. Getting valid data requires # a number of iterations and having an ability to run the test separately from # rest of the benchmarks helps. if [ "$COMPACTION_TEST" == "1" -a "$1" != "universal_compaction" ]; then echo "Skipping $1 because it's not a compaction test." exit 0 fi # size constants K=1024 M=$((1024 * K)) G=$((1024 * M)) if [ -z $DB_DIR ]; then echo "DB_DIR is not defined" exit 0 fi if [ -z $WAL_DIR ]; then echo "WAL_DIR is not defined" exit 0 fi output_dir=${OUTPUT_DIR:-/tmp/} if [ ! -d $output_dir ]; then mkdir -p $output_dir fi # all multithreaded tests run with sync=1 unless # $DB_BENCH_NO_SYNC is defined syncval="1" if [ ! -z $DB_BENCH_NO_SYNC ]; then echo "Turning sync off for all multithreaded tests" syncval="0"; fi num_threads=${NUM_THREADS:-16} mb_written_per_sec=${MB_WRITE_PER_SEC:-0} # Only for tests that do range scans num_nexts_per_seek=${NUM_NEXTS_PER_SEEK:-10} cache_size=${CACHE_SIZE:-$((1 * G))} compression_max_dict_bytes=${COMPRESSION_MAX_DICT_BYTES:-0} compression_type=${COMPRESSION_TYPE:-snappy} duration=${DURATION:-0} num_keys=${NUM_KEYS:-$((1 * G))} key_size=${KEY_SIZE:-20} value_size=${VALUE_SIZE:-400} block_size=${BLOCK_SIZE:-8192} const_params=" --db=$DB_DIR \ --wal_dir=$WAL_DIR \ \ --num=$num_keys \ --num_levels=6 \ --key_size=$key_size \ --value_size=$value_size \ --block_size=$block_size \ --cache_size=$cache_size \ --cache_numshardbits=6 \ --compression_max_dict_bytes=$compression_max_dict_bytes \ --compression_ratio=0.5 \ --compression_type=$compression_type \ --level_compaction_dynamic_level_bytes=true \ --bytes_per_sync=$((8 * M)) \ --cache_index_and_filter_blocks=0 \ --pin_l0_filter_and_index_blocks_in_cache=1 \ --benchmark_write_rate_limit=$(( 1024 * 1024 * $mb_written_per_sec )) \ \ --hard_rate_limit=3 \ --rate_limit_delay_max_milliseconds=1000000 \ --write_buffer_size=$((128 * M)) \ --target_file_size_base=$((128 * M)) \ --max_bytes_for_level_base=$((1 * G)) \ \ --verify_checksum=1 \ --delete_obsolete_files_period_micros=$((60 * M)) \ --max_bytes_for_level_multiplier=8 \ \ --statistics=0 \ --stats_per_interval=1 \ --stats_interval_seconds=60 \ --histogram=1 \ \ --memtablerep=skip_list \ --bloom_bits=10 \ --open_files=-1" l0_config=" --level0_file_num_compaction_trigger=4 \ --level0_slowdown_writes_trigger=12 \ --level0_stop_writes_trigger=20" if [ $duration -gt 0 ]; then const_params="$const_params --duration=$duration" fi params_w="$const_params \ $l0_config \ --max_background_jobs=20 \ --max_write_buffer_number=8" params_bulkload="$const_params \ --max_background_jobs=20 \ --max_write_buffer_number=8 \ --level0_file_num_compaction_trigger=$((10 * M)) \ --level0_slowdown_writes_trigger=$((10 * M)) \ --level0_stop_writes_trigger=$((10 * M))" # # Tune values for level and universal compaction. # For universal compaction, these level0_* options mean total sorted of runs in # LSM. In level-based compaction, it means number of L0 files. # params_level_compact="$const_params \ --max_background_jobs=16 \ --max_write_buffer_number=4 \ --level0_file_num_compaction_trigger=4 \ --level0_slowdown_writes_trigger=16 \ --level0_stop_writes_trigger=20" params_univ_compact="$const_params \ --max_background_jobs=20 \ --max_write_buffer_number=4 \ --level0_file_num_compaction_trigger=8 \ --level0_slowdown_writes_trigger=16 \ --level0_stop_writes_trigger=20" function summarize_result { test_out=$1 test_name=$2 bench_name=$3 # Note that this function assumes that the benchmark executes long enough so # that "Compaction Stats" is written to stdout at least once. If it won't # happen then empty output from grep when searching for "Sum" will cause # syntax errors. uptime=$( grep ^Uptime\(secs $test_out | tail -1 | awk '{ printf "%.0f", $2 }' ) stall_time=$( grep "^Cumulative stall" $test_out | tail -1 | awk '{ print $3 }' ) stall_pct=$( grep "^Cumulative stall" $test_out| tail -1 | awk '{ print $5 }' ) ops_sec=$( grep ^${bench_name} $test_out | awk '{ print $5 }' ) mb_sec=$( grep ^${bench_name} $test_out | awk '{ print $7 }' ) lo_wgb=$( grep "^ L0" $test_out | tail -1 | awk '{ print $9 }' ) sum_wgb=$( grep "^ Sum" $test_out | tail -1 | awk '{ print $9 }' ) sum_size=$( grep "^ Sum" $test_out | tail -1 | awk '{ printf "%.1f", $3 / 1024.0 }' ) wamp=$( echo "scale=1; $sum_wgb / $lo_wgb" | bc ) wmb_ps=$( echo "scale=1; ( $sum_wgb * 1024.0 ) / $uptime" | bc ) usecs_op=$( grep ^${bench_name} $test_out | awk '{ printf "%.1f", $3 }' ) p50=$( grep "^Percentiles:" $test_out | tail -1 | awk '{ printf "%.1f", $3 }' ) p75=$( grep "^Percentiles:" $test_out | tail -1 | awk '{ printf "%.1f", $5 }' ) p99=$( grep "^Percentiles:" $test_out | tail -1 | awk '{ printf "%.0f", $7 }' ) p999=$( grep "^Percentiles:" $test_out | tail -1 | awk '{ printf "%.0f", $9 }' ) p9999=$( grep "^Percentiles:" $test_out | tail -1 | awk '{ printf "%.0f", $11 }' ) echo -e "$ops_sec\t$mb_sec\t$sum_size\t$lo_wgb\t$sum_wgb\t$wamp\t$wmb_ps\t$usecs_op\t$p50\t$p75\t$p99\t$p999\t$p9999\t$uptime\t$stall_time\t$stall_pct\t$test_name" \ >> $output_dir/report.txt } function run_bulkload { # This runs with a vector memtable and the WAL disabled to load faster. It is still crash safe and the # client can discover where to restart a load after a crash. I think this is a good way to load. echo "Bulk loading $num_keys random keys" cmd="./db_bench --benchmarks=fillrandom \ --use_existing_db=0 \ --disable_auto_compactions=1 \ --sync=0 \ $params_bulkload \ --threads=1 \ --memtablerep=vector \ --allow_concurrent_memtable_write=false \ --disable_wal=1 \ --seed=$( date +%s ) \ 2>&1 | tee -a $output_dir/benchmark_bulkload_fillrandom.log" echo $cmd | tee $output_dir/benchmark_bulkload_fillrandom.log eval $cmd summarize_result $output_dir/benchmark_bulkload_fillrandom.log bulkload fillrandom echo "Compacting..." cmd="./db_bench --benchmarks=compact \ --use_existing_db=1 \ --disable_auto_compactions=1 \ --sync=0 \ $params_w \ --threads=1 \ 2>&1 | tee -a $output_dir/benchmark_bulkload_compact.log" echo $cmd | tee $output_dir/benchmark_bulkload_compact.log eval $cmd } # # Parameter description: # # $1 - 1 if I/O statistics should be collected. # $2 - compaction type to use (level=0, universal=1). # $3 - number of subcompactions. # $4 - number of maximum background compactions. # function run_manual_compaction_worker { # This runs with a vector memtable and the WAL disabled to load faster. # It is still crash safe and the client can discover where to restart a # load after a crash. I think this is a good way to load. echo "Bulk loading $num_keys random keys for manual compaction." fillrandom_output_file=$output_dir/benchmark_man_compact_fillrandom_$3.log man_compact_output_log=$output_dir/benchmark_man_compact_$3.log if [ "$2" == "1" ]; then extra_params=$params_univ_compact else extra_params=$params_level_compact fi # Make sure that fillrandom uses the same compaction options as compact. cmd="./db_bench --benchmarks=fillrandom \ --use_existing_db=0 \ --disable_auto_compactions=0 \ --sync=0 \ $extra_params \ --threads=$num_threads \ --compaction_measure_io_stats=$1 \ --compaction_style=$2 \ --subcompactions=$3 \ --memtablerep=vector \ --allow_concurrent_memtable_write=false \ --disable_wal=1 \ --max_background_jobs=$4 \ --seed=$( date +%s ) \ 2>&1 | tee -a $fillrandom_output_file" echo $cmd | tee $fillrandom_output_file eval $cmd summarize_result $fillrandom_output_file man_compact_fillrandom_$3 fillrandom echo "Compacting with $3 subcompactions specified ..." # This is the part we're really interested in. Given that compact benchmark # doesn't output regular statistics then we'll just use the time command to # measure how long this step takes. cmd="{ \ time ./db_bench --benchmarks=compact \ --use_existing_db=1 \ --disable_auto_compactions=0 \ --sync=0 \ $extra_params \ --threads=$num_threads \ --compaction_measure_io_stats=$1 \ --compaction_style=$2 \ --subcompactions=$3 \ --max_background_compactions=$4 \ ;} 2>&1 | tee -a $man_compact_output_log" echo $cmd | tee $man_compact_output_log eval $cmd # Can't use summarize_result here. One way to analyze the results is to run # "grep real" on the resulting log files. } function run_univ_compaction { # Always ask for I/O statistics to be measured. io_stats=1 # Values: kCompactionStyleLevel = 0x0, kCompactionStyleUniversal = 0x1. compaction_style=1 # Define a set of benchmarks. subcompactions=(1 2 4 8 16) max_background_jobs=(20 20 10 5 4) i=0 total=${#subcompactions[@]} # Execute a set of benchmarks to cover variety of scenarios. while [ "$i" -lt "$total" ] do run_manual_compaction_worker $io_stats $compaction_style ${subcompactions[$i]} \ ${max_background_jobs[$i]} ((i++)) done } function run_fillseq { # This runs with a vector memtable. WAL can be either disabled or enabled # depending on the input parameter (1 for disabled, 0 for enabled). The main # benefit behind disabling WAL is to make loading faster. It is still crash # safe and the client can discover where to restart a load after a crash. I # think this is a good way to load. # Make sure that we'll have unique names for all the files so that data won't # be overwritten. if [ $1 == 1 ]; then log_file_name=$output_dir/benchmark_fillseq.wal_disabled.v${value_size}.log test_name=fillseq.wal_disabled.v${value_size} else log_file_name=$output_dir/benchmark_fillseq.wal_enabled.v${value_size}.log test_name=fillseq.wal_enabled.v${value_size} fi echo "Loading $num_keys keys sequentially" cmd="./db_bench --benchmarks=fillseq \ --use_existing_db=0 \ --sync=0 \ $params_w \ --min_level_to_compress=0 \ --threads=1 \ --memtablerep=vector \ --allow_concurrent_memtable_write=false \ --disable_wal=$1 \ --seed=$( date +%s ) \ 2>&1 | tee -a $log_file_name" echo $cmd | tee $log_file_name eval $cmd # The constant "fillseq" which we pass to db_bench is the benchmark name. summarize_result $log_file_name $test_name fillseq } function run_change { operation=$1 echo "Do $num_keys random $operation" out_name="benchmark_${operation}.t${num_threads}.s${syncval}.log" cmd="./db_bench --benchmarks=$operation \ --use_existing_db=1 \ --sync=$syncval \ $params_w \ --threads=$num_threads \ --merge_operator=\"put\" \ --seed=$( date +%s ) \ 2>&1 | tee -a $output_dir/${out_name}" echo $cmd | tee $output_dir/${out_name} eval $cmd summarize_result $output_dir/${out_name} ${operation}.t${num_threads}.s${syncval} $operation } function run_filluniquerandom { echo "Loading $num_keys unique keys randomly" cmd="./db_bench --benchmarks=filluniquerandom \ --use_existing_db=0 \ --sync=0 \ $params_w \ --threads=1 \ --seed=$( date +%s ) \ 2>&1 | tee -a $output_dir/benchmark_filluniquerandom.log" echo $cmd | tee $output_dir/benchmark_filluniquerandom.log eval $cmd summarize_result $output_dir/benchmark_filluniquerandom.log filluniquerandom filluniquerandom } function run_readrandom { echo "Reading $num_keys random keys" out_name="benchmark_readrandom.t${num_threads}.log" cmd="./db_bench --benchmarks=readrandom \ --use_existing_db=1 \ $params_w \ --threads=$num_threads \ --seed=$( date +%s ) \ 2>&1 | tee -a $output_dir/${out_name}" echo $cmd | tee $output_dir/${out_name} eval $cmd summarize_result $output_dir/${out_name} readrandom.t${num_threads} readrandom } function run_readwhile { operation=$1 echo "Reading $num_keys random keys while $operation" out_name="benchmark_readwhile${operation}.t${num_threads}.log" cmd="./db_bench --benchmarks=readwhile${operation} \ --use_existing_db=1 \ --sync=$syncval \ $params_w \ --threads=$num_threads \ --merge_operator=\"put\" \ --seed=$( date +%s ) \ 2>&1 | tee -a $output_dir/${out_name}" echo $cmd | tee $output_dir/${out_name} eval $cmd summarize_result $output_dir/${out_name} readwhile${operation}.t${num_threads} readwhile${operation} } function run_rangewhile { operation=$1 full_name=$2 reverse_arg=$3 out_name="benchmark_${full_name}.t${num_threads}.log" echo "Range scan $num_keys random keys while ${operation} for reverse_iter=${reverse_arg}" cmd="./db_bench --benchmarks=seekrandomwhile${operation} \ --use_existing_db=1 \ --sync=$syncval \ $params_w \ --threads=$num_threads \ --merge_operator=\"put\" \ --seek_nexts=$num_nexts_per_seek \ --reverse_iterator=$reverse_arg \ --seed=$( date +%s ) \ 2>&1 | tee -a $output_dir/${out_name}" echo $cmd | tee $output_dir/${out_name} eval $cmd summarize_result $output_dir/${out_name} ${full_name}.t${num_threads} seekrandomwhile${operation} } function run_range { full_name=$1 reverse_arg=$2 out_name="benchmark_${full_name}.t${num_threads}.log" echo "Range scan $num_keys random keys for reverse_iter=${reverse_arg}" cmd="./db_bench --benchmarks=seekrandom \ --use_existing_db=1 \ $params_w \ --threads=$num_threads \ --seek_nexts=$num_nexts_per_seek \ --reverse_iterator=$reverse_arg \ --seed=$( date +%s ) \ 2>&1 | tee -a $output_dir/${out_name}" echo $cmd | tee $output_dir/${out_name} eval $cmd summarize_result $output_dir/${out_name} ${full_name}.t${num_threads} seekrandom } function run_randomtransaction { echo "..." cmd="./db_bench $params_r --benchmarks=randomtransaction \ --num=$num_keys \ --transaction_db \ --threads=5 \ --transaction_sets=5 \ 2>&1 | tee $output_dir/benchmark_randomtransaction.log" echo $cmd | tee $output_dir/benchmark_rangescanwhilewriting.log eval $cmd } function now() { echo `date +"%s"` } report="$output_dir/report.txt" schedule="$output_dir/schedule.txt" echo "===== Benchmark =====" # Run!!! IFS=',' read -a jobs <<< $1 # shellcheck disable=SC2068 for job in ${jobs[@]}; do if [ $job != debug ]; then echo "Start $job at `date`" | tee -a $schedule fi start=$(now) if [ $job = bulkload ]; then run_bulkload elif [ $job = fillseq_disable_wal ]; then run_fillseq 1 elif [ $job = fillseq_enable_wal ]; then run_fillseq 0 elif [ $job = overwrite ]; then run_change overwrite elif [ $job = updaterandom ]; then run_change updaterandom elif [ $job = mergerandom ]; then run_change mergerandom elif [ $job = filluniquerandom ]; then run_filluniquerandom elif [ $job = readrandom ]; then run_readrandom elif [ $job = fwdrange ]; then run_range $job false elif [ $job = revrange ]; then run_range $job true elif [ $job = readwhilewriting ]; then run_readwhile writing elif [ $job = readwhilemerging ]; then run_readwhile merging elif [ $job = fwdrangewhilewriting ]; then run_rangewhile writing $job false elif [ $job = revrangewhilewriting ]; then run_rangewhile writing $job true elif [ $job = fwdrangewhilemerging ]; then run_rangewhile merging $job false elif [ $job = revrangewhilemerging ]; then run_rangewhile merging $job true elif [ $job = randomtransaction ]; then run_randomtransaction elif [ $job = universal_compaction ]; then run_univ_compaction elif [ $job = debug ]; then num_keys=1000; # debug echo "Setting num_keys to $num_keys" else echo "unknown job $job" exit fi end=$(now) if [ $job != debug ]; then echo "Complete $job in $((end-start)) seconds" | tee -a $schedule fi echo -e "ops/sec\tmb/sec\tSize-GB\tL0_GB\tSum_GB\tW-Amp\tW-MB/s\tusec/op\tp50\tp75\tp99\tp99.9\tp99.99\tUptime\tStall-time\tStall%\tTest" tail -1 $output_dir/report.txt done