// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "cache/lru_cache.h" #include #include #include #include #include "monitoring/perf_context_imp.h" #include "monitoring/statistics.h" #include "port/lang.h" #include "util/distributed_mutex.h" namespace ROCKSDB_NAMESPACE { namespace lru_cache { namespace { // A distinct pointer value for marking "dummy" cache entries struct DummyValue { char val[12] = "kDummyValue"; }; DummyValue kDummyValue{}; } // namespace LRUHandleTable::LRUHandleTable(int max_upper_hash_bits, MemoryAllocator* allocator) : length_bits_(/* historical starting size*/ 4), list_(new LRUHandle* [size_t{1} << length_bits_] {}), elems_(0), max_length_bits_(max_upper_hash_bits), allocator_(allocator) {} LRUHandleTable::~LRUHandleTable() { auto alloc = allocator_; ApplyToEntriesRange( [alloc](LRUHandle* h) { if (!h->HasRefs()) { h->Free(alloc); } }, 0, size_t{1} << length_bits_); } LRUHandle* LRUHandleTable::Lookup(const Slice& key, uint32_t hash) { return *FindPointer(key, hash); } LRUHandle* LRUHandleTable::Insert(LRUHandle* h) { LRUHandle** ptr = FindPointer(h->key(), h->hash); LRUHandle* old = *ptr; h->next_hash = (old == nullptr ? nullptr : old->next_hash); *ptr = h; if (old == nullptr) { ++elems_; if ((elems_ >> length_bits_) > 0) { // elems_ >= length // Since each cache entry is fairly large, we aim for a small // average linked list length (<= 1). Resize(); } } return old; } LRUHandle* LRUHandleTable::Remove(const Slice& key, uint32_t hash) { LRUHandle** ptr = FindPointer(key, hash); LRUHandle* result = *ptr; if (result != nullptr) { *ptr = result->next_hash; --elems_; } return result; } LRUHandle** LRUHandleTable::FindPointer(const Slice& key, uint32_t hash) { LRUHandle** ptr = &list_[hash >> (32 - length_bits_)]; while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) { ptr = &(*ptr)->next_hash; } return ptr; } void LRUHandleTable::Resize() { if (length_bits_ >= max_length_bits_) { // Due to reaching limit of hash information, if we made the table bigger, // we would allocate more addresses but only the same number would be used. return; } if (length_bits_ >= 31) { // Avoid undefined behavior shifting uint32_t by 32. return; } uint32_t old_length = uint32_t{1} << length_bits_; int new_length_bits = length_bits_ + 1; std::unique_ptr new_list { new LRUHandle* [size_t{1} << new_length_bits] {} }; uint32_t count = 0; for (uint32_t i = 0; i < old_length; i++) { LRUHandle* h = list_[i]; while (h != nullptr) { LRUHandle* next = h->next_hash; uint32_t hash = h->hash; LRUHandle** ptr = &new_list[hash >> (32 - new_length_bits)]; h->next_hash = *ptr; *ptr = h; h = next; count++; } } assert(elems_ == count); list_ = std::move(new_list); length_bits_ = new_length_bits; } LRUCacheShard::LRUCacheShard(size_t capacity, bool strict_capacity_limit, double high_pri_pool_ratio, double low_pri_pool_ratio, bool use_adaptive_mutex, CacheMetadataChargePolicy metadata_charge_policy, int max_upper_hash_bits, MemoryAllocator* allocator, SecondaryCache* secondary_cache) : CacheShardBase(metadata_charge_policy), capacity_(0), high_pri_pool_usage_(0), low_pri_pool_usage_(0), strict_capacity_limit_(strict_capacity_limit), high_pri_pool_ratio_(high_pri_pool_ratio), high_pri_pool_capacity_(0), low_pri_pool_ratio_(low_pri_pool_ratio), low_pri_pool_capacity_(0), table_(max_upper_hash_bits, allocator), usage_(0), lru_usage_(0), mutex_(use_adaptive_mutex), secondary_cache_(secondary_cache) { // Make empty circular linked list. lru_.next = &lru_; lru_.prev = &lru_; lru_low_pri_ = &lru_; lru_bottom_pri_ = &lru_; SetCapacity(capacity); } void LRUCacheShard::EraseUnRefEntries() { autovector last_reference_list; { DMutexLock l(mutex_); while (lru_.next != &lru_) { LRUHandle* old = lru_.next; // LRU list contains only elements which can be evicted. assert(old->InCache() && !old->HasRefs()); LRU_Remove(old); table_.Remove(old->key(), old->hash); old->SetInCache(false); assert(usage_ >= old->total_charge); usage_ -= old->total_charge; last_reference_list.push_back(old); } } for (auto entry : last_reference_list) { entry->Free(table_.GetAllocator()); } } void LRUCacheShard::ApplyToSomeEntries( const std::function& callback, size_t average_entries_per_lock, size_t* state) { // The state is essentially going to be the starting hash, which works // nicely even if we resize between calls because we use upper-most // hash bits for table indexes. DMutexLock l(mutex_); int length_bits = table_.GetLengthBits(); size_t length = size_t{1} << length_bits; assert(average_entries_per_lock > 0); // Assuming we are called with same average_entries_per_lock repeatedly, // this simplifies some logic (index_end will not overflow). assert(average_entries_per_lock < length || *state == 0); size_t index_begin = *state >> (sizeof(size_t) * 8u - length_bits); size_t index_end = index_begin + average_entries_per_lock; if (index_end >= length) { // Going to end index_end = length; *state = SIZE_MAX; } else { *state = index_end << (sizeof(size_t) * 8u - length_bits); } table_.ApplyToEntriesRange( [callback, metadata_charge_policy = metadata_charge_policy_](LRUHandle* h) { callback(h->key(), h->value, h->GetCharge(metadata_charge_policy), h->helper); }, index_begin, index_end); } void LRUCacheShard::TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri, LRUHandle** lru_bottom_pri) { DMutexLock l(mutex_); *lru = &lru_; *lru_low_pri = lru_low_pri_; *lru_bottom_pri = lru_bottom_pri_; } size_t LRUCacheShard::TEST_GetLRUSize() { DMutexLock l(mutex_); LRUHandle* lru_handle = lru_.next; size_t lru_size = 0; while (lru_handle != &lru_) { lru_size++; lru_handle = lru_handle->next; } return lru_size; } double LRUCacheShard::GetHighPriPoolRatio() { DMutexLock l(mutex_); return high_pri_pool_ratio_; } double LRUCacheShard::GetLowPriPoolRatio() { DMutexLock l(mutex_); return low_pri_pool_ratio_; } void LRUCacheShard::LRU_Remove(LRUHandle* e) { assert(e->next != nullptr); assert(e->prev != nullptr); if (lru_low_pri_ == e) { lru_low_pri_ = e->prev; } if (lru_bottom_pri_ == e) { lru_bottom_pri_ = e->prev; } e->next->prev = e->prev; e->prev->next = e->next; e->prev = e->next = nullptr; assert(lru_usage_ >= e->total_charge); lru_usage_ -= e->total_charge; assert(!e->InHighPriPool() || !e->InLowPriPool()); if (e->InHighPriPool()) { assert(high_pri_pool_usage_ >= e->total_charge); high_pri_pool_usage_ -= e->total_charge; } else if (e->InLowPriPool()) { assert(low_pri_pool_usage_ >= e->total_charge); low_pri_pool_usage_ -= e->total_charge; } } void LRUCacheShard::LRU_Insert(LRUHandle* e) { assert(e->next == nullptr); assert(e->prev == nullptr); if (high_pri_pool_ratio_ > 0 && (e->IsHighPri() || e->HasHit())) { // Inset "e" to head of LRU list. e->next = &lru_; e->prev = lru_.prev; e->prev->next = e; e->next->prev = e; e->SetInHighPriPool(true); e->SetInLowPriPool(false); high_pri_pool_usage_ += e->total_charge; MaintainPoolSize(); } else if (low_pri_pool_ratio_ > 0 && (e->IsHighPri() || e->IsLowPri() || e->HasHit())) { // Insert "e" to the head of low-pri pool. e->next = lru_low_pri_->next; e->prev = lru_low_pri_; e->prev->next = e; e->next->prev = e; e->SetInHighPriPool(false); e->SetInLowPriPool(true); low_pri_pool_usage_ += e->total_charge; MaintainPoolSize(); lru_low_pri_ = e; } else { // Insert "e" to the head of bottom-pri pool. e->next = lru_bottom_pri_->next; e->prev = lru_bottom_pri_; e->prev->next = e; e->next->prev = e; e->SetInHighPriPool(false); e->SetInLowPriPool(false); // if the low-pri pool is empty, lru_low_pri_ also needs to be updated. if (lru_bottom_pri_ == lru_low_pri_) { lru_low_pri_ = e; } lru_bottom_pri_ = e; } lru_usage_ += e->total_charge; } void LRUCacheShard::MaintainPoolSize() { while (high_pri_pool_usage_ > high_pri_pool_capacity_) { // Overflow last entry in high-pri pool to low-pri pool. lru_low_pri_ = lru_low_pri_->next; assert(lru_low_pri_ != &lru_); lru_low_pri_->SetInHighPriPool(false); lru_low_pri_->SetInLowPriPool(true); assert(high_pri_pool_usage_ >= lru_low_pri_->total_charge); high_pri_pool_usage_ -= lru_low_pri_->total_charge; low_pri_pool_usage_ += lru_low_pri_->total_charge; } while (low_pri_pool_usage_ > low_pri_pool_capacity_) { // Overflow last entry in low-pri pool to bottom-pri pool. lru_bottom_pri_ = lru_bottom_pri_->next; assert(lru_bottom_pri_ != &lru_); lru_bottom_pri_->SetInHighPriPool(false); lru_bottom_pri_->SetInLowPriPool(false); assert(low_pri_pool_usage_ >= lru_bottom_pri_->total_charge); low_pri_pool_usage_ -= lru_bottom_pri_->total_charge; } } void LRUCacheShard::EvictFromLRU(size_t charge, autovector* deleted) { while ((usage_ + charge) > capacity_ && lru_.next != &lru_) { LRUHandle* old = lru_.next; // LRU list contains only elements which can be evicted. assert(old->InCache() && !old->HasRefs()); LRU_Remove(old); table_.Remove(old->key(), old->hash); old->SetInCache(false); assert(usage_ >= old->total_charge); usage_ -= old->total_charge; deleted->push_back(old); } } void LRUCacheShard::TryInsertIntoSecondaryCache( autovector evicted_handles) { for (auto entry : evicted_handles) { if (secondary_cache_ && entry->IsSecondaryCacheCompatible() && !entry->IsInSecondaryCache()) { secondary_cache_->Insert(entry->key(), entry->value, entry->helper) .PermitUncheckedError(); } // Free the entries here outside of mutex for performance reasons. entry->Free(table_.GetAllocator()); } } void LRUCacheShard::SetCapacity(size_t capacity) { autovector last_reference_list; { DMutexLock l(mutex_); capacity_ = capacity; high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_; low_pri_pool_capacity_ = capacity_ * low_pri_pool_ratio_; EvictFromLRU(0, &last_reference_list); } TryInsertIntoSecondaryCache(last_reference_list); } void LRUCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) { DMutexLock l(mutex_); strict_capacity_limit_ = strict_capacity_limit; } Status LRUCacheShard::InsertItem(LRUHandle* e, LRUHandle** handle, bool free_handle_on_fail) { Status s = Status::OK(); autovector last_reference_list; { DMutexLock l(mutex_); // Free the space following strict LRU policy until enough space // is freed or the lru list is empty. EvictFromLRU(e->total_charge, &last_reference_list); if ((usage_ + e->total_charge) > capacity_ && (strict_capacity_limit_ || handle == nullptr)) { e->SetInCache(false); if (handle == nullptr) { // Don't insert the entry but still return ok, as if the entry inserted // into cache and get evicted immediately. last_reference_list.push_back(e); } else { if (free_handle_on_fail) { free(e); *handle = nullptr; } s = Status::MemoryLimit("Insert failed due to LRU cache being full."); } } else { // Insert into the cache. Note that the cache might get larger than its // capacity if not enough space was freed up. LRUHandle* old = table_.Insert(e); usage_ += e->total_charge; if (old != nullptr) { s = Status::OkOverwritten(); assert(old->InCache()); old->SetInCache(false); if (!old->HasRefs()) { // old is on LRU because it's in cache and its reference count is 0. LRU_Remove(old); assert(usage_ >= old->total_charge); usage_ -= old->total_charge; last_reference_list.push_back(old); } } if (handle == nullptr) { LRU_Insert(e); } else { // If caller already holds a ref, no need to take one here. if (!e->HasRefs()) { e->Ref(); } *handle = e; } } } TryInsertIntoSecondaryCache(last_reference_list); return s; } void LRUCacheShard::Promote(LRUHandle* e) { SecondaryCacheResultHandle* secondary_handle = e->sec_handle; assert(secondary_handle->IsReady()); // e is not thread-shared here; OK to modify "immutable" fields as well as // "mutable" (normally requiring mutex) e->SetIsPending(false); e->value = secondary_handle->Value(); assert(e->total_charge == 0); size_t value_size = secondary_handle->Size(); delete secondary_handle; if (e->value) { e->CalcTotalCharge(value_size, metadata_charge_policy_); Status s; if (e->IsStandalone()) { assert(secondary_cache_ && secondary_cache_->SupportForceErase()); // Insert a dummy handle and return a standalone handle to caller. // Charge the standalone handle. autovector last_reference_list; bool free_standalone_handle{false}; { DMutexLock l(mutex_); // Free the space following strict LRU policy until enough space // is freed or the lru list is empty. EvictFromLRU(e->total_charge, &last_reference_list); if ((usage_ + e->total_charge) > capacity_ && strict_capacity_limit_) { free_standalone_handle = true; } else { usage_ += e->total_charge; } } TryInsertIntoSecondaryCache(last_reference_list); if (free_standalone_handle) { e->Unref(); e->Free(table_.GetAllocator()); e = nullptr; } else { PERF_COUNTER_ADD(block_cache_standalone_handle_count, 1); } // Insert a dummy handle into the primary cache. This dummy handle is // not IsSecondaryCacheCompatible(). // FIXME? This should not overwrite an existing non-dummy entry in the // rare case that one exists Cache::Priority priority = e->IsHighPri() ? Cache::Priority::HIGH : Cache::Priority::LOW; s = Insert(e->key(), e->hash, &kDummyValue, &kNoopCacheItemHelper, /*charge=*/0, /*handle=*/nullptr, priority); } else { e->SetInCache(true); LRUHandle* handle = e; // This InsertItem() could fail if the cache is over capacity and // strict_capacity_limit_ is true. In such a case, we don't want // InsertItem() to free the handle, since the item is already in memory // and the caller will most likely just read it from disk if we erase it // here. s = InsertItem(e, &handle, /*free_handle_on_fail=*/false); if (s.ok()) { PERF_COUNTER_ADD(block_cache_real_handle_count, 1); } } if (!s.ok()) { // Item is in memory, but not accounted against the cache capacity. // When the handle is released, the item should get deleted. assert(!e->InCache()); } } else { // Secondary cache lookup failed. The caller will take care of detecting // this and eventually releasing e. assert(!e->value); assert(!e->InCache()); } } LRUHandle* LRUCacheShard::Lookup(const Slice& key, uint32_t hash, const Cache::CacheItemHelper* helper, Cache::CreateContext* create_context, Cache::Priority priority, bool wait, Statistics* stats) { LRUHandle* e = nullptr; bool found_dummy_entry{false}; { DMutexLock l(mutex_); e = table_.Lookup(key, hash); if (e != nullptr) { assert(e->InCache()); if (e->value == &kDummyValue) { // For a dummy handle, if it was retrieved from secondary cache, // it may still exist in secondary cache. // If the handle exists in secondary cache, the value should be // erased from sec cache and be inserted into primary cache. found_dummy_entry = true; // Let the dummy entry be overwritten e = nullptr; } else { if (!e->HasRefs()) { // The entry is in LRU since it's in hash and has no external // references. LRU_Remove(e); } e->Ref(); e->SetHit(); } } } // If handle table lookup failed or the handle is a dummy one, allocate // a handle outside the mutex if we re going to lookup in the secondary cache. // // When a block is firstly Lookup from CompressedSecondaryCache, we just // insert a dummy block into the primary cache (charging the actual size of // the block) and don't erase the block from CompressedSecondaryCache. A // standalone handle is returned to the caller. Only if the block is hit // again, we erase it from CompressedSecondaryCache and add it into the // primary cache. if (!e && secondary_cache_ && helper && helper->create_cb) { bool is_in_sec_cache{false}; std::unique_ptr secondary_handle = secondary_cache_->Lookup(key, helper, create_context, wait, found_dummy_entry, is_in_sec_cache); if (secondary_handle != nullptr) { e = static_cast(malloc(sizeof(LRUHandle) - 1 + key.size())); e->m_flags = 0; e->im_flags = 0; e->helper = helper; e->key_length = key.size(); e->hash = hash; e->refs = 0; e->next = e->prev = nullptr; e->SetPriority(priority); memcpy(e->key_data, key.data(), key.size()); e->value = nullptr; e->sec_handle = secondary_handle.release(); e->total_charge = 0; e->Ref(); e->SetIsInSecondaryCache(is_in_sec_cache); e->SetIsStandalone(secondary_cache_->SupportForceErase() && !found_dummy_entry); if (wait) { Promote(e); if (e) { if (!e->value) { // The secondary cache returned a handle, but the lookup failed. e->Unref(); e->Free(table_.GetAllocator()); e = nullptr; } } } else { // If wait is false, we always return a handle and let the caller // release the handle after checking for success or failure. e->SetIsPending(true); } if (e) { // This may be slightly inaccurate, if the lookup eventually fails. // But the probability is very low. switch (helper->role) { case CacheEntryRole::kFilterBlock: RecordTick(stats, SECONDARY_CACHE_FILTER_HITS); break; case CacheEntryRole::kIndexBlock: RecordTick(stats, SECONDARY_CACHE_INDEX_HITS); break; case CacheEntryRole::kDataBlock: RecordTick(stats, SECONDARY_CACHE_DATA_HITS); break; default: break; } PERF_COUNTER_ADD(secondary_cache_hit_count, 1); RecordTick(stats, SECONDARY_CACHE_HITS); } } else { // Caller will most likely overwrite the dummy entry with an Insert // after this Lookup fails assert(e == nullptr); } } return e; } bool LRUCacheShard::Ref(LRUHandle* e) { DMutexLock l(mutex_); // To create another reference - entry must be already externally referenced. assert(e->HasRefs()); // Pending handles are not for sharing assert(!e->IsPending()); e->Ref(); return true; } void LRUCacheShard::SetHighPriorityPoolRatio(double high_pri_pool_ratio) { DMutexLock l(mutex_); high_pri_pool_ratio_ = high_pri_pool_ratio; high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_; MaintainPoolSize(); } void LRUCacheShard::SetLowPriorityPoolRatio(double low_pri_pool_ratio) { DMutexLock l(mutex_); low_pri_pool_ratio_ = low_pri_pool_ratio; low_pri_pool_capacity_ = capacity_ * low_pri_pool_ratio_; MaintainPoolSize(); } bool LRUCacheShard::Release(LRUHandle* e, bool /*useful*/, bool erase_if_last_ref) { if (e == nullptr) { return false; } bool last_reference = false; // Must Wait or WaitAll first on pending handles. Otherwise, would leak // a secondary cache handle. assert(!e->IsPending()); { DMutexLock l(mutex_); last_reference = e->Unref(); if (last_reference && e->InCache()) { // The item is still in cache, and nobody else holds a reference to it. if (usage_ > capacity_ || erase_if_last_ref) { // The LRU list must be empty since the cache is full. assert(lru_.next == &lru_ || erase_if_last_ref); // Take this opportunity and remove the item. table_.Remove(e->key(), e->hash); e->SetInCache(false); } else { // Put the item back on the LRU list, and don't free it. LRU_Insert(e); last_reference = false; } } // If it was the last reference, then decrement the cache usage. if (last_reference) { assert(usage_ >= e->total_charge); usage_ -= e->total_charge; } } // Free the entry here outside of mutex for performance reasons. if (last_reference) { e->Free(table_.GetAllocator()); } return last_reference; } Status LRUCacheShard::Insert(const Slice& key, uint32_t hash, Cache::ObjectPtr value, const Cache::CacheItemHelper* helper, size_t charge, LRUHandle** handle, Cache::Priority priority) { assert(helper); // Allocate the memory here outside of the mutex. // If the cache is full, we'll have to release it. // It shouldn't happen very often though. LRUHandle* e = static_cast(malloc(sizeof(LRUHandle) - 1 + key.size())); e->value = value; e->m_flags = 0; e->im_flags = 0; e->helper = helper; e->key_length = key.size(); e->hash = hash; e->refs = 0; e->next = e->prev = nullptr; e->SetInCache(true); e->SetPriority(priority); memcpy(e->key_data, key.data(), key.size()); e->CalcTotalCharge(charge, metadata_charge_policy_); // value == nullptr is reserved for indicating failure for when secondary // cache compatible assert(!(e->IsSecondaryCacheCompatible() && value == nullptr)); return InsertItem(e, handle, /* free_handle_on_fail */ true); } void LRUCacheShard::Erase(const Slice& key, uint32_t hash) { LRUHandle* e; bool last_reference = false; { DMutexLock l(mutex_); e = table_.Remove(key, hash); if (e != nullptr) { assert(e->InCache()); e->SetInCache(false); if (!e->HasRefs()) { // The entry is in LRU since it's in hash and has no external references LRU_Remove(e); assert(usage_ >= e->total_charge); usage_ -= e->total_charge; last_reference = true; } } } // Free the entry here outside of mutex for performance reasons. // last_reference will only be true if e != nullptr. if (last_reference) { e->Free(table_.GetAllocator()); } } bool LRUCacheShard::IsReady(LRUHandle* e) { bool ready = true; if (e->IsPending()) { assert(secondary_cache_); assert(e->sec_handle); ready = e->sec_handle->IsReady(); } return ready; } size_t LRUCacheShard::GetUsage() const { DMutexLock l(mutex_); return usage_; } size_t LRUCacheShard::GetPinnedUsage() const { DMutexLock l(mutex_); assert(usage_ >= lru_usage_); return usage_ - lru_usage_; } size_t LRUCacheShard::GetOccupancyCount() const { DMutexLock l(mutex_); return table_.GetOccupancyCount(); } size_t LRUCacheShard::GetTableAddressCount() const { DMutexLock l(mutex_); return size_t{1} << table_.GetLengthBits(); } void LRUCacheShard::AppendPrintableOptions(std::string& str) const { const int kBufferSize = 200; char buffer[kBufferSize]; { DMutexLock l(mutex_); snprintf(buffer, kBufferSize, " high_pri_pool_ratio: %.3lf\n", high_pri_pool_ratio_); snprintf(buffer + strlen(buffer), kBufferSize - strlen(buffer), " low_pri_pool_ratio: %.3lf\n", low_pri_pool_ratio_); } str.append(buffer); } LRUCache::LRUCache(size_t capacity, int num_shard_bits, bool strict_capacity_limit, double high_pri_pool_ratio, double low_pri_pool_ratio, std::shared_ptr allocator, bool use_adaptive_mutex, CacheMetadataChargePolicy metadata_charge_policy, std::shared_ptr _secondary_cache) : ShardedCache(capacity, num_shard_bits, strict_capacity_limit, std::move(allocator)), secondary_cache_(std::move(_secondary_cache)) { size_t per_shard = GetPerShardCapacity(); SecondaryCache* secondary_cache = secondary_cache_.get(); MemoryAllocator* alloc = memory_allocator(); InitShards([=](LRUCacheShard* cs) { new (cs) LRUCacheShard( per_shard, strict_capacity_limit, high_pri_pool_ratio, low_pri_pool_ratio, use_adaptive_mutex, metadata_charge_policy, /* max_upper_hash_bits */ 32 - num_shard_bits, alloc, secondary_cache); }); } Cache::ObjectPtr LRUCache::Value(Handle* handle) { auto h = reinterpret_cast(handle); assert(!h->IsPending() || h->value == nullptr); assert(h->value != &kDummyValue); return h->value; } size_t LRUCache::GetCharge(Handle* handle) const { return reinterpret_cast(handle)->GetCharge( GetShard(0).metadata_charge_policy_); } const Cache::CacheItemHelper* LRUCache::GetCacheItemHelper( Handle* handle) const { auto h = reinterpret_cast(handle); return h->helper; } size_t LRUCache::TEST_GetLRUSize() { return SumOverShards([](LRUCacheShard& cs) { return cs.TEST_GetLRUSize(); }); } double LRUCache::GetHighPriPoolRatio() { return GetShard(0).GetHighPriPoolRatio(); } void LRUCache::WaitAll(std::vector& handles) { if (secondary_cache_) { std::vector sec_handles; sec_handles.reserve(handles.size()); for (Handle* handle : handles) { if (!handle) { continue; } LRUHandle* lru_handle = reinterpret_cast(handle); if (!lru_handle->IsPending()) { continue; } sec_handles.emplace_back(lru_handle->sec_handle); } secondary_cache_->WaitAll(sec_handles); for (Handle* handle : handles) { if (!handle) { continue; } LRUHandle* lru_handle = reinterpret_cast(handle); if (!lru_handle->IsPending()) { continue; } GetShard(lru_handle->hash).Promote(lru_handle); } } } void LRUCache::AppendPrintableOptions(std::string& str) const { ShardedCache::AppendPrintableOptions(str); // options from shard if (secondary_cache_) { str.append(" secondary_cache:\n"); str.append(secondary_cache_->GetPrintableOptions()); } } } // namespace lru_cache std::shared_ptr NewLRUCache( size_t capacity, int num_shard_bits, bool strict_capacity_limit, double high_pri_pool_ratio, std::shared_ptr memory_allocator, bool use_adaptive_mutex, CacheMetadataChargePolicy metadata_charge_policy, const std::shared_ptr& secondary_cache, double low_pri_pool_ratio) { if (num_shard_bits >= 20) { return nullptr; // The cache cannot be sharded into too many fine pieces. } if (high_pri_pool_ratio < 0.0 || high_pri_pool_ratio > 1.0) { // Invalid high_pri_pool_ratio return nullptr; } if (low_pri_pool_ratio < 0.0 || low_pri_pool_ratio > 1.0) { // Invalid low_pri_pool_ratio return nullptr; } if (low_pri_pool_ratio + high_pri_pool_ratio > 1.0) { // Invalid high_pri_pool_ratio and low_pri_pool_ratio combination return nullptr; } if (num_shard_bits < 0) { num_shard_bits = GetDefaultCacheShardBits(capacity); } return std::make_shared( capacity, num_shard_bits, strict_capacity_limit, high_pri_pool_ratio, low_pri_pool_ratio, std::move(memory_allocator), use_adaptive_mutex, metadata_charge_policy, secondary_cache); } std::shared_ptr NewLRUCache(const LRUCacheOptions& cache_opts) { return NewLRUCache(cache_opts.capacity, cache_opts.num_shard_bits, cache_opts.strict_capacity_limit, cache_opts.high_pri_pool_ratio, cache_opts.memory_allocator, cache_opts.use_adaptive_mutex, cache_opts.metadata_charge_policy, cache_opts.secondary_cache, cache_opts.low_pri_pool_ratio); } std::shared_ptr NewLRUCache( size_t capacity, int num_shard_bits, bool strict_capacity_limit, double high_pri_pool_ratio, std::shared_ptr memory_allocator, bool use_adaptive_mutex, CacheMetadataChargePolicy metadata_charge_policy, double low_pri_pool_ratio) { return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit, high_pri_pool_ratio, memory_allocator, use_adaptive_mutex, metadata_charge_policy, nullptr, low_pri_pool_ratio); } } // namespace ROCKSDB_NAMESPACE