// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // The test uses an array to compare against values written to the database. // Keys written to the array are in 1:1 correspondence to the actual values in // the database according to the formula in the function GenerateValue. // Space is reserved in the array from 0 to FLAGS_max_key and values are // randomly written/deleted/read from those positions. During verification we // compare all the positions in the array. To shorten/elongate the running // time, you could change the settings: FLAGS_max_key, FLAGS_ops_per_thread, // (sometimes also FLAGS_threads). // // NOTE that if FLAGS_test_batches_snapshots is set, the test will have // different behavior. See comment of the flag for details. #ifdef GFLAGS #include #include #include #include #include #include #include #include #include #include #include #include "db/db_impl/db_impl.h" #include "db/version_set.h" #include "hdfs/env_hdfs.h" #include "logging/logging.h" #include "monitoring/histogram.h" #include "options/options_helper.h" #include "port/port.h" #include "rocksdb/cache.h" #include "rocksdb/env.h" #include "rocksdb/slice.h" #include "rocksdb/slice_transform.h" #include "rocksdb/statistics.h" #include "rocksdb/utilities/backupable_db.h" #include "rocksdb/utilities/checkpoint.h" #include "rocksdb/utilities/db_ttl.h" #include "rocksdb/utilities/debug.h" #include "rocksdb/utilities/options_util.h" #include "rocksdb/utilities/transaction.h" #include "rocksdb/utilities/transaction_db.h" #include "rocksdb/write_batch.h" #include "util/coding.h" #include "util/compression.h" #include "util/crc32c.h" #include "util/gflags_compat.h" #include "util/mutexlock.h" #include "util/random.h" #include "util/string_util.h" // SyncPoint is not supported in Released Windows Mode. #if !(defined NDEBUG) || !defined(OS_WIN) #include "test_util/sync_point.h" #endif // !(defined NDEBUG) || !defined(OS_WIN) #include "test_util/testutil.h" #include "utilities/merge_operators.h" using GFLAGS_NAMESPACE::ParseCommandLineFlags; using GFLAGS_NAMESPACE::RegisterFlagValidator; using GFLAGS_NAMESPACE::SetUsageMessage; static const long KB = 1024; static const int kRandomValueMaxFactor = 3; static const int kValueMaxLen = 100; static bool ValidateUint32Range(const char* flagname, uint64_t value) { if (value > std::numeric_limits::max()) { fprintf(stderr, "Invalid value for --%s: %lu, overflow\n", flagname, (unsigned long)value); return false; } return true; } DEFINE_uint64(seed, 2341234, "Seed for PRNG"); static const bool FLAGS_seed_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_seed, &ValidateUint32Range); DEFINE_bool(read_only, false, "True if open DB in read-only mode during tests"); DEFINE_int64(max_key, 1 * KB * KB, "Max number of key/values to place in database"); DEFINE_int32(column_families, 10, "Number of column families"); DEFINE_string( options_file, "", "The path to a RocksDB options file. If specified, then db_stress will " "run with the RocksDB options in the default column family of the " "specified options file. Note that, when an options file is provided, " "db_stress will ignore the flag values for all options that may be passed " "via options file."); DEFINE_int64( active_width, 0, "Number of keys in active span of the key-range at any given time. The " "span begins with its left endpoint at key 0, gradually moves rightwards, " "and ends with its right endpoint at max_key. If set to 0, active_width " "will be sanitized to be equal to max_key."); // TODO(noetzli) Add support for single deletes DEFINE_bool(test_batches_snapshots, false, "If set, the test uses MultiGet(), MultiPut() and MultiDelete()" " which read/write/delete multiple keys in a batch. In this mode," " we do not verify db content by comparing the content with the " "pre-allocated array. Instead, we do partial verification inside" " MultiGet() by checking various values in a batch. Benefit of" " this mode:\n" "\t(a) No need to acquire mutexes during writes (less cache " "flushes in multi-core leading to speed up)\n" "\t(b) No long validation at the end (more speed up)\n" "\t(c) Test snapshot and atomicity of batch writes"); DEFINE_bool(atomic_flush, false, "If set, enables atomic flush in the options.\n"); DEFINE_bool(test_cf_consistency, false, "If set, runs the stress test dedicated to verifying writes to " "multiple column families are consistent. Setting this implies " "`atomic_flush=true` is set true if `disable_wal=false`.\n"); DEFINE_int32(threads, 32, "Number of concurrent threads to run."); DEFINE_int32(ttl, -1, "Opens the db with this ttl value if this is not -1. " "Carefully specify a large value such that verifications on " "deleted values don't fail"); DEFINE_int32(value_size_mult, 8, "Size of value will be this number times rand_int(1,3) bytes"); DEFINE_int32(compaction_readahead_size, 0, "Compaction readahead size"); DEFINE_bool(enable_pipelined_write, false, "Pipeline WAL/memtable writes"); DEFINE_bool(verify_before_write, false, "Verify before write"); DEFINE_bool(histogram, false, "Print histogram of operation timings"); DEFINE_bool(destroy_db_initially, true, "Destroys the database dir before start if this is true"); DEFINE_bool(verbose, false, "Verbose"); DEFINE_bool(progress_reports, true, "If true, db_stress will report number of finished operations"); DEFINE_uint64(db_write_buffer_size, rocksdb::Options().db_write_buffer_size, "Number of bytes to buffer in all memtables before compacting"); DEFINE_int32(write_buffer_size, static_cast(rocksdb::Options().write_buffer_size), "Number of bytes to buffer in memtable before compacting"); DEFINE_int32(max_write_buffer_number, rocksdb::Options().max_write_buffer_number, "The number of in-memory memtables. " "Each memtable is of size FLAGS_write_buffer_size."); DEFINE_int32(min_write_buffer_number_to_merge, rocksdb::Options().min_write_buffer_number_to_merge, "The minimum number of write buffers that will be merged together " "before writing to storage. This is cheap because it is an " "in-memory merge. If this feature is not enabled, then all these " "write buffers are flushed to L0 as separate files and this " "increases read amplification because a get request has to check " "in all of these files. Also, an in-memory merge may result in " "writing less data to storage if there are duplicate records in" " each of these individual write buffers."); DEFINE_int32(max_write_buffer_number_to_maintain, rocksdb::Options().max_write_buffer_number_to_maintain, "The total maximum number of write buffers to maintain in memory " "including copies of buffers that have already been flushed. " "Unlike max_write_buffer_number, this parameter does not affect " "flushing. This controls the minimum amount of write history " "that will be available in memory for conflict checking when " "Transactions are used. If this value is too low, some " "transactions may fail at commit time due to not being able to " "determine whether there were any write conflicts. Setting this " "value to 0 will cause write buffers to be freed immediately " "after they are flushed. If this value is set to -1, " "'max_write_buffer_number' will be used."); DEFINE_int64(max_write_buffer_size_to_maintain, rocksdb::Options().max_write_buffer_size_to_maintain, "The total maximum size of write buffers to maintain in memory " "including copies of buffers that have already been flushed. " "Unlike max_write_buffer_number, this parameter does not affect " "flushing. This controls the minimum amount of write history " "that will be available in memory for conflict checking when " "Transactions are used. If this value is too low, some " "transactions may fail at commit time due to not being able to " "determine whether there were any write conflicts. Setting this " "value to 0 will cause write buffers to be freed immediately " "after they are flushed. If this value is set to -1, " "'max_write_buffer_number' will be used."); DEFINE_double(memtable_prefix_bloom_size_ratio, rocksdb::Options().memtable_prefix_bloom_size_ratio, "creates prefix blooms for memtables, each with size " "`write_buffer_size * memtable_prefix_bloom_size_ratio`."); DEFINE_bool(memtable_whole_key_filtering, rocksdb::Options().memtable_whole_key_filtering, "Enable whole key filtering in memtables."); DEFINE_int32(open_files, rocksdb::Options().max_open_files, "Maximum number of files to keep open at the same time " "(use default if == 0)"); DEFINE_int64(compressed_cache_size, -1, "Number of bytes to use as a cache of compressed data." " Negative means use default settings."); DEFINE_int32(compaction_style, rocksdb::Options().compaction_style, ""); DEFINE_int32(level0_file_num_compaction_trigger, rocksdb::Options().level0_file_num_compaction_trigger, "Level0 compaction start trigger"); DEFINE_int32(level0_slowdown_writes_trigger, rocksdb::Options().level0_slowdown_writes_trigger, "Number of files in level-0 that will slow down writes"); DEFINE_int32(level0_stop_writes_trigger, rocksdb::Options().level0_stop_writes_trigger, "Number of files in level-0 that will trigger put stop."); DEFINE_int32(block_size, static_cast(rocksdb::BlockBasedTableOptions().block_size), "Number of bytes in a block."); DEFINE_int32( format_version, static_cast(rocksdb::BlockBasedTableOptions().format_version), "Format version of SST files."); DEFINE_int32(index_block_restart_interval, rocksdb::BlockBasedTableOptions().index_block_restart_interval, "Number of keys between restart points " "for delta encoding of keys in index block."); DEFINE_int32(max_background_compactions, rocksdb::Options().max_background_compactions, "The maximum number of concurrent background compactions " "that can occur in parallel."); DEFINE_int32(num_bottom_pri_threads, 0, "The number of threads in the bottom-priority thread pool (used " "by universal compaction only)."); DEFINE_int32(compaction_thread_pool_adjust_interval, 0, "The interval (in milliseconds) to adjust compaction thread pool " "size. Don't change it periodically if the value is 0."); DEFINE_int32(compaction_thread_pool_variations, 2, "Range of background thread pool size variations when adjusted " "periodically."); DEFINE_int32(max_background_flushes, rocksdb::Options().max_background_flushes, "The maximum number of concurrent background flushes " "that can occur in parallel."); DEFINE_int32(universal_size_ratio, 0, "The ratio of file sizes that trigger" " compaction in universal style"); DEFINE_int32(universal_min_merge_width, 0, "The minimum number of files to " "compact in universal style compaction"); DEFINE_int32(universal_max_merge_width, 0, "The max number of files to compact" " in universal style compaction"); DEFINE_int32(universal_max_size_amplification_percent, 0, "The max size amplification for universal style compaction"); DEFINE_int32(clear_column_family_one_in, 1000000, "With a chance of 1/N, delete a column family and then recreate " "it again. If N == 0, never drop/create column families. " "When test_batches_snapshots is true, this flag has no effect"); DEFINE_int32(set_options_one_in, 0, "With a chance of 1/N, change some random options"); DEFINE_int32(set_in_place_one_in, 0, "With a chance of 1/N, toggle in place support option"); DEFINE_int64(cache_size, 2LL * KB * KB * KB, "Number of bytes to use as a cache of uncompressed data."); DEFINE_bool(cache_index_and_filter_blocks, false, "True if indexes/filters should be cached in block cache."); DEFINE_bool(use_clock_cache, false, "Replace default LRU block cache with clock cache."); DEFINE_uint64(subcompactions, 1, "Maximum number of subcompactions to divide L0-L1 compactions " "into."); DEFINE_uint64(periodic_compaction_seconds, 1000, "Files older than this value will be picked up for compaction."); DEFINE_uint64(compaction_ttl, 1000, "Files older than TTL will be compacted to the next level."); DEFINE_bool(allow_concurrent_memtable_write, false, "Allow multi-writers to update mem tables in parallel."); DEFINE_bool(enable_write_thread_adaptive_yield, true, "Use a yielding spin loop for brief writer thread waits."); static const bool FLAGS_subcompactions_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_subcompactions, &ValidateUint32Range); static bool ValidateInt32Positive(const char* flagname, int32_t value) { if (value < 0) { fprintf(stderr, "Invalid value for --%s: %d, must be >=0\n", flagname, value); return false; } return true; } DEFINE_int32(reopen, 10, "Number of times database reopens"); static const bool FLAGS_reopen_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_reopen, &ValidateInt32Positive); DEFINE_int32(bloom_bits, 10, "Bloom filter bits per key. " "Negative means use default settings."); DEFINE_bool(use_block_based_filter, false, "use block based filter" "instead of full filter for block based table"); DEFINE_bool(partition_filters, false, "use partitioned filters " "for block-based table"); DEFINE_int32( index_type, static_cast(rocksdb::BlockBasedTableOptions::kBinarySearch), "Type of block-based table index (see `enum IndexType` in table.h)"); DEFINE_string(db, "", "Use the db with the following name."); DEFINE_string(secondaries_base, "", "Use this path as the base path for secondary instances."); DEFINE_bool(enable_secondary, false, "Enable secondary instance."); DEFINE_string( expected_values_path, "", "File where the array of expected uint32_t values will be stored. If " "provided and non-empty, the DB state will be verified against these " "values after recovery. --max_key and --column_family must be kept the " "same across invocations of this program that use the same " "--expected_values_path."); DEFINE_bool(verify_checksum, false, "Verify checksum for every block read from storage"); DEFINE_bool(mmap_read, rocksdb::Options().allow_mmap_reads, "Allow reads to occur via mmap-ing files"); DEFINE_bool(mmap_write, rocksdb::Options().allow_mmap_writes, "Allow writes to occur via mmap-ing files"); DEFINE_bool(use_direct_reads, rocksdb::Options().use_direct_reads, "Use O_DIRECT for reading data"); DEFINE_bool(use_direct_io_for_flush_and_compaction, rocksdb::Options().use_direct_io_for_flush_and_compaction, "Use O_DIRECT for writing data"); // Database statistics static std::shared_ptr dbstats; DEFINE_bool(statistics, false, "Create database statistics"); DEFINE_bool(sync, false, "Sync all writes to disk"); DEFINE_bool(use_fsync, false, "If true, issue fsync instead of fdatasync"); DEFINE_int32(kill_random_test, 0, "If non-zero, kill at various points in source code with " "probability 1/this"); static const bool FLAGS_kill_random_test_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_kill_random_test, &ValidateInt32Positive); extern int rocksdb_kill_odds; DEFINE_string(kill_prefix_blacklist, "", "If non-empty, kill points with prefix in the list given will be" " skipped. Items are comma-separated."); extern std::vector rocksdb_kill_prefix_blacklist; DEFINE_bool(disable_wal, false, "If true, do not write WAL for write."); DEFINE_uint64(recycle_log_file_num, rocksdb::Options().recycle_log_file_num, "Number of old WAL files to keep around for later recycling"); DEFINE_int64(target_file_size_base, rocksdb::Options().target_file_size_base, "Target level-1 file size for compaction"); DEFINE_int32(target_file_size_multiplier, 1, "A multiplier to compute target level-N file size (N >= 2)"); DEFINE_uint64(max_bytes_for_level_base, rocksdb::Options().max_bytes_for_level_base, "Max bytes for level-1"); DEFINE_double(max_bytes_for_level_multiplier, 2, "A multiplier to compute max bytes for level-N (N >= 2)"); DEFINE_int32(range_deletion_width, 10, "The width of the range deletion intervals."); DEFINE_uint64(rate_limiter_bytes_per_sec, 0, "Set options.rate_limiter value."); DEFINE_bool(rate_limit_bg_reads, false, "Use options.rate_limiter on compaction reads"); DEFINE_bool(use_txn, false, "Use TransactionDB. Currently the default write policy is " "TxnDBWritePolicy::WRITE_PREPARED"); DEFINE_int32(backup_one_in, 0, "If non-zero, then CreateNewBackup() will be called once for " "every N operations on average. 0 indicates CreateNewBackup() " "is disabled."); DEFINE_int32(checkpoint_one_in, 0, "If non-zero, then CreateCheckpoint() will be called once for " "every N operations on average. 0 indicates CreateCheckpoint() " "is disabled."); DEFINE_int32(ingest_external_file_one_in, 0, "If non-zero, then IngestExternalFile() will be called once for " "every N operations on average. 0 indicates IngestExternalFile() " "is disabled."); DEFINE_int32(ingest_external_file_width, 1000, "The width of the ingested external files."); DEFINE_int32(compact_files_one_in, 0, "If non-zero, then CompactFiles() will be called once for every N " "operations on average. 0 indicates CompactFiles() is disabled."); DEFINE_int32(compact_range_one_in, 0, "If non-zero, then CompactRange() will be called once for every N " "operations on average. 0 indicates CompactRange() is disabled."); DEFINE_int32(flush_one_in, 0, "If non-zero, then Flush() will be called once for every N ops " "on average. 0 indicates calls to Flush() are disabled."); DEFINE_int32(compact_range_width, 10000, "The width of the ranges passed to CompactRange()."); DEFINE_int32(acquire_snapshot_one_in, 0, "If non-zero, then acquires a snapshot once every N operations on " "average."); DEFINE_bool(compare_full_db_state_snapshot, false, "If set we compare state of entire db (in one of the threads) with" "each snapshot."); DEFINE_uint64(snapshot_hold_ops, 0, "If non-zero, then releases snapshots N operations after they're " "acquired."); DEFINE_bool(use_multiget, false, "If set, use the batched MultiGet API for reads"); static bool ValidateInt32Percent(const char* flagname, int32_t value) { if (value < 0 || value > 100) { fprintf(stderr, "Invalid value for --%s: %d, 0<= pct <=100 \n", flagname, value); return false; } return true; } DEFINE_int32(readpercent, 10, "Ratio of reads to total workload (expressed as a percentage)"); static const bool FLAGS_readpercent_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_readpercent, &ValidateInt32Percent); DEFINE_int32(prefixpercent, 20, "Ratio of prefix iterators to total workload (expressed as a" " percentage)"); static const bool FLAGS_prefixpercent_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_prefixpercent, &ValidateInt32Percent); DEFINE_int32(writepercent, 45, "Ratio of writes to total workload (expressed as a percentage)"); static const bool FLAGS_writepercent_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_writepercent, &ValidateInt32Percent); DEFINE_int32(delpercent, 15, "Ratio of deletes to total workload (expressed as a percentage)"); static const bool FLAGS_delpercent_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_delpercent, &ValidateInt32Percent); DEFINE_int32(delrangepercent, 0, "Ratio of range deletions to total workload (expressed as a " "percentage). Cannot be used with test_batches_snapshots"); static const bool FLAGS_delrangepercent_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_delrangepercent, &ValidateInt32Percent); DEFINE_int32(nooverwritepercent, 60, "Ratio of keys without overwrite to total workload (expressed as " " a percentage)"); static const bool FLAGS_nooverwritepercent_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_nooverwritepercent, &ValidateInt32Percent); DEFINE_int32(iterpercent, 10, "Ratio of iterations to total workload" " (expressed as a percentage)"); static const bool FLAGS_iterpercent_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_iterpercent, &ValidateInt32Percent); DEFINE_uint64(num_iterations, 10, "Number of iterations per MultiIterate run"); static const bool FLAGS_num_iterations_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_num_iterations, &ValidateUint32Range); namespace { enum rocksdb::CompressionType StringToCompressionType(const char* ctype) { assert(ctype); if (!strcasecmp(ctype, "none")) return rocksdb::kNoCompression; else if (!strcasecmp(ctype, "snappy")) return rocksdb::kSnappyCompression; else if (!strcasecmp(ctype, "zlib")) return rocksdb::kZlibCompression; else if (!strcasecmp(ctype, "bzip2")) return rocksdb::kBZip2Compression; else if (!strcasecmp(ctype, "lz4")) return rocksdb::kLZ4Compression; else if (!strcasecmp(ctype, "lz4hc")) return rocksdb::kLZ4HCCompression; else if (!strcasecmp(ctype, "xpress")) return rocksdb::kXpressCompression; else if (!strcasecmp(ctype, "zstd")) return rocksdb::kZSTD; fprintf(stderr, "Cannot parse compression type '%s'\n", ctype); return rocksdb::kSnappyCompression; // default value } enum rocksdb::ChecksumType StringToChecksumType(const char* ctype) { assert(ctype); auto iter = rocksdb::checksum_type_string_map.find(ctype); if (iter != rocksdb::checksum_type_string_map.end()) { return iter->second; } fprintf(stderr, "Cannot parse checksum type '%s'\n", ctype); return rocksdb::kCRC32c; } std::string ChecksumTypeToString(rocksdb::ChecksumType ctype) { auto iter = std::find_if( rocksdb::checksum_type_string_map.begin(), rocksdb::checksum_type_string_map.end(), [&](const std::pair& name_and_enum_val) { return name_and_enum_val.second == ctype; }); assert(iter != rocksdb::checksum_type_string_map.end()); return iter->first; } std::vector SplitString(std::string src) { std::vector ret; if (src.empty()) { return ret; } size_t pos = 0; size_t pos_comma; while ((pos_comma = src.find(',', pos)) != std::string::npos) { ret.push_back(src.substr(pos, pos_comma - pos)); pos = pos_comma + 1; } ret.push_back(src.substr(pos, src.length())); return ret; } } // namespace DEFINE_string(compression_type, "snappy", "Algorithm to use to compress the database"); static enum rocksdb::CompressionType FLAGS_compression_type_e = rocksdb::kSnappyCompression; DEFINE_int32(compression_max_dict_bytes, 0, "Maximum size of dictionary used to prime the compression " "library."); DEFINE_int32(compression_zstd_max_train_bytes, 0, "Maximum size of training data passed to zstd's dictionary " "trainer."); DEFINE_string(checksum_type, "kCRC32c", "Algorithm to use to checksum blocks"); static enum rocksdb::ChecksumType FLAGS_checksum_type_e = rocksdb::kCRC32c; DEFINE_string(hdfs, "", "Name of hdfs environment"); DEFINE_string(env_uri, "", "URI for env lookup. Mutually exclusive with --hdfs"); static std::shared_ptr env_guard; // posix or hdfs environment static rocksdb::Env* FLAGS_env = rocksdb::Env::Default(); DEFINE_uint64(ops_per_thread, 1200000, "Number of operations per thread."); static const bool FLAGS_ops_per_thread_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_ops_per_thread, &ValidateUint32Range); DEFINE_uint64(log2_keys_per_lock, 2, "Log2 of number of keys per lock"); static const bool FLAGS_log2_keys_per_lock_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_log2_keys_per_lock, &ValidateUint32Range); DEFINE_uint64(max_manifest_file_size, 16384, "Maximum size of a MANIFEST file"); DEFINE_bool(in_place_update, false, "On true, does inplace update in memtable"); DEFINE_int32(secondary_catch_up_one_in, 0, "If non-zero, the secondaries attemp to catch up with the primary " "once for every N operations on average. 0 indicates the " "secondaries do not try to catch up after open."); static std::shared_ptr dbstats_secondaries; enum RepFactory { kSkipList, kHashSkipList, kVectorRep }; namespace { enum RepFactory StringToRepFactory(const char* ctype) { assert(ctype); if (!strcasecmp(ctype, "skip_list")) return kSkipList; else if (!strcasecmp(ctype, "prefix_hash")) return kHashSkipList; else if (!strcasecmp(ctype, "vector")) return kVectorRep; fprintf(stdout, "Cannot parse memreptable %s\n", ctype); return kSkipList; } #ifdef _MSC_VER #pragma warning(push) // truncation of constant value on static_cast #pragma warning(disable : 4309) #endif bool GetNextPrefix(const rocksdb::Slice& src, std::string* v) { std::string ret = src.ToString(); for (int i = static_cast(ret.size()) - 1; i >= 0; i--) { if (ret[i] != static_cast(255)) { ret[i] = ret[i] + 1; break; } else if (i != 0) { ret[i] = 0; } else { // all FF. No next prefix return false; } } *v = ret; return true; } #ifdef _MSC_VER #pragma warning(pop) #endif } // namespace static enum RepFactory FLAGS_rep_factory; DEFINE_string(memtablerep, "skip_list", ""); static bool ValidatePrefixSize(const char* flagname, int32_t value) { if (value < -1 || value > 8) { fprintf(stderr, "Invalid value for --%s: %d. -1 <= PrefixSize <= 8\n", flagname, value); return false; } return true; } DEFINE_int32(prefix_size, 7, "Control the prefix size for HashSkipListRep. " "-1 is disabled."); static const bool FLAGS_prefix_size_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_prefix_size, &ValidatePrefixSize); DEFINE_bool(use_merge, false, "On true, replaces all writes with a Merge " "that behaves like a Put"); DEFINE_bool(use_full_merge_v1, false, "On true, use a merge operator that implement the deprecated " "version of FullMerge"); namespace rocksdb { // convert long to a big-endian slice key static std::string Key(int64_t val) { std::string little_endian_key; std::string big_endian_key; PutFixed64(&little_endian_key, val); assert(little_endian_key.size() == sizeof(val)); big_endian_key.resize(sizeof(val)); for (size_t i = 0; i < sizeof(val); ++i) { big_endian_key[i] = little_endian_key[sizeof(val) - 1 - i]; } return big_endian_key; } static bool GetIntVal(std::string big_endian_key, uint64_t* key_p) { unsigned int size_key = sizeof(*key_p); assert(big_endian_key.size() == size_key); std::string little_endian_key; little_endian_key.resize(size_key); for (size_t i = 0; i < size_key; ++i) { little_endian_key[i] = big_endian_key[size_key - 1 - i]; } Slice little_endian_slice = Slice(little_endian_key); return GetFixed64(&little_endian_slice, key_p); } static std::string StringToHex(const std::string& str) { std::string result = "0x"; result.append(Slice(str).ToString(true)); return result; } class StressTest; namespace { class Stats { private: uint64_t start_; uint64_t finish_; double seconds_; long done_; long gets_; long prefixes_; long writes_; long deletes_; size_t single_deletes_; long iterator_size_sums_; long founds_; long iterations_; long range_deletions_; long covered_by_range_deletions_; long errors_; long num_compact_files_succeed_; long num_compact_files_failed_; int next_report_; size_t bytes_; uint64_t last_op_finish_; HistogramImpl hist_; public: Stats() {} void Start() { next_report_ = 100; hist_.Clear(); done_ = 0; gets_ = 0; prefixes_ = 0; writes_ = 0; deletes_ = 0; single_deletes_ = 0; iterator_size_sums_ = 0; founds_ = 0; iterations_ = 0; range_deletions_ = 0; covered_by_range_deletions_ = 0; errors_ = 0; bytes_ = 0; seconds_ = 0; num_compact_files_succeed_ = 0; num_compact_files_failed_ = 0; start_ = FLAGS_env->NowMicros(); last_op_finish_ = start_; finish_ = start_; } void Merge(const Stats& other) { hist_.Merge(other.hist_); done_ += other.done_; gets_ += other.gets_; prefixes_ += other.prefixes_; writes_ += other.writes_; deletes_ += other.deletes_; single_deletes_ += other.single_deletes_; iterator_size_sums_ += other.iterator_size_sums_; founds_ += other.founds_; iterations_ += other.iterations_; range_deletions_ += other.range_deletions_; covered_by_range_deletions_ = other.covered_by_range_deletions_; errors_ += other.errors_; bytes_ += other.bytes_; seconds_ += other.seconds_; num_compact_files_succeed_ += other.num_compact_files_succeed_; num_compact_files_failed_ += other.num_compact_files_failed_; if (other.start_ < start_) start_ = other.start_; if (other.finish_ > finish_) finish_ = other.finish_; } void Stop() { finish_ = FLAGS_env->NowMicros(); seconds_ = (finish_ - start_) * 1e-6; } void FinishedSingleOp() { if (FLAGS_histogram) { auto now = FLAGS_env->NowMicros(); auto micros = now - last_op_finish_; hist_.Add(micros); if (micros > 20000) { fprintf(stdout, "long op: %" PRIu64 " micros%30s\r", micros, ""); } last_op_finish_ = now; } done_++; if (FLAGS_progress_reports) { if (done_ >= next_report_) { if (next_report_ < 1000) next_report_ += 100; else if (next_report_ < 5000) next_report_ += 500; else if (next_report_ < 10000) next_report_ += 1000; else if (next_report_ < 50000) next_report_ += 5000; else if (next_report_ < 100000) next_report_ += 10000; else if (next_report_ < 500000) next_report_ += 50000; else next_report_ += 100000; fprintf(stdout, "... finished %ld ops%30s\r", done_, ""); } } } void AddBytesForWrites(long nwrites, size_t nbytes) { writes_ += nwrites; bytes_ += nbytes; } void AddGets(long ngets, long nfounds) { founds_ += nfounds; gets_ += ngets; } void AddPrefixes(long nprefixes, long count) { prefixes_ += nprefixes; iterator_size_sums_ += count; } void AddIterations(long n) { iterations_ += n; } void AddDeletes(long n) { deletes_ += n; } void AddSingleDeletes(size_t n) { single_deletes_ += n; } void AddRangeDeletions(long n) { range_deletions_ += n; } void AddCoveredByRangeDeletions(long n) { covered_by_range_deletions_ += n; } void AddErrors(long n) { errors_ += n; } void AddNumCompactFilesSucceed(long n) { num_compact_files_succeed_ += n; } void AddNumCompactFilesFailed(long n) { num_compact_files_failed_ += n; } void Report(const char* name) { std::string extra; if (bytes_ < 1 || done_ < 1) { fprintf(stderr, "No writes or ops?\n"); return; } double elapsed = (finish_ - start_) * 1e-6; double bytes_mb = bytes_ / 1048576.0; double rate = bytes_mb / elapsed; double throughput = (double)done_ / elapsed; fprintf(stdout, "%-12s: ", name); fprintf(stdout, "%.3f micros/op %ld ops/sec\n", seconds_ * 1e6 / done_, (long)throughput); fprintf(stdout, "%-12s: Wrote %.2f MB (%.2f MB/sec) (%ld%% of %ld ops)\n", "", bytes_mb, rate, (100 * writes_) / done_, done_); fprintf(stdout, "%-12s: Wrote %ld times\n", "", writes_); fprintf(stdout, "%-12s: Deleted %ld times\n", "", deletes_); fprintf(stdout, "%-12s: Single deleted %" ROCKSDB_PRIszt " times\n", "", single_deletes_); fprintf(stdout, "%-12s: %ld read and %ld found the key\n", "", gets_, founds_); fprintf(stdout, "%-12s: Prefix scanned %ld times\n", "", prefixes_); fprintf(stdout, "%-12s: Iterator size sum is %ld\n", "", iterator_size_sums_); fprintf(stdout, "%-12s: Iterated %ld times\n", "", iterations_); fprintf(stdout, "%-12s: Deleted %ld key-ranges\n", "", range_deletions_); fprintf(stdout, "%-12s: Range deletions covered %ld keys\n", "", covered_by_range_deletions_); fprintf(stdout, "%-12s: Got errors %ld times\n", "", errors_); fprintf(stdout, "%-12s: %ld CompactFiles() succeed\n", "", num_compact_files_succeed_); fprintf(stdout, "%-12s: %ld CompactFiles() did not succeed\n", "", num_compact_files_failed_); if (FLAGS_histogram) { fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str()); } fflush(stdout); } }; // State shared by all concurrent executions of the same benchmark. class SharedState { public: // indicates a key may have any value (or not be present) as an operation on // it is incomplete. static const uint32_t UNKNOWN_SENTINEL; // indicates a key should definitely be deleted static const uint32_t DELETION_SENTINEL; explicit SharedState(StressTest* stress_test) : cv_(&mu_), seed_(static_cast(FLAGS_seed)), max_key_(FLAGS_max_key), log2_keys_per_lock_(static_cast(FLAGS_log2_keys_per_lock)), num_threads_(FLAGS_threads), num_initialized_(0), num_populated_(0), vote_reopen_(0), num_done_(0), start_(false), start_verify_(false), should_stop_bg_thread_(false), bg_thread_finished_(false), stress_test_(stress_test), verification_failure_(false), no_overwrite_ids_(FLAGS_column_families), values_(nullptr), printing_verification_results_(false) { // Pick random keys in each column family that will not experience // overwrite printf("Choosing random keys with no overwrite\n"); Random64 rnd(seed_); // Start with the identity permutation. Subsequent iterations of // for loop below will start with perm of previous for loop int64_t* permutation = new int64_t[max_key_]; for (int64_t i = 0; i < max_key_; i++) { permutation[i] = i; } // Now do the Knuth shuffle int64_t num_no_overwrite_keys = (max_key_ * FLAGS_nooverwritepercent) / 100; // Only need to figure out first num_no_overwrite_keys of permutation no_overwrite_ids_.reserve(num_no_overwrite_keys); for (int64_t i = 0; i < num_no_overwrite_keys; i++) { int64_t rand_index = i + rnd.Next() % (max_key_ - i); // Swap i and rand_index; int64_t temp = permutation[i]; permutation[i] = permutation[rand_index]; permutation[rand_index] = temp; // Fill no_overwrite_ids_ with the first num_no_overwrite_keys of // permutation no_overwrite_ids_.insert(permutation[i]); } delete[] permutation; size_t expected_values_size = sizeof(std::atomic) * FLAGS_column_families * max_key_; bool values_init_needed = false; Status status; if (!FLAGS_expected_values_path.empty()) { if (!std::atomic{}.is_lock_free()) { status = Status::InvalidArgument( "Cannot use --expected_values_path on platforms without lock-free " "std::atomic"); } if (status.ok() && FLAGS_clear_column_family_one_in > 0) { status = Status::InvalidArgument( "Cannot use --expected_values_path on when " "--clear_column_family_one_in is greater than zero."); } uint64_t size = 0; if (status.ok()) { status = FLAGS_env->GetFileSize(FLAGS_expected_values_path, &size); } std::unique_ptr wfile; if (status.ok() && size == 0) { const EnvOptions soptions; status = FLAGS_env->NewWritableFile(FLAGS_expected_values_path, &wfile, soptions); } if (status.ok() && size == 0) { std::string buf(expected_values_size, '\0'); status = wfile->Append(buf); values_init_needed = true; } if (status.ok()) { status = FLAGS_env->NewMemoryMappedFileBuffer( FLAGS_expected_values_path, &expected_mmap_buffer_); } if (status.ok()) { assert(expected_mmap_buffer_->GetLen() == expected_values_size); values_ = static_cast*>( expected_mmap_buffer_->GetBase()); assert(values_ != nullptr); } else { fprintf(stderr, "Failed opening shared file '%s' with error: %s\n", FLAGS_expected_values_path.c_str(), status.ToString().c_str()); assert(values_ == nullptr); } } if (values_ == nullptr) { values_allocation_.reset( new std::atomic[FLAGS_column_families * max_key_]); values_ = &values_allocation_[0]; values_init_needed = true; } assert(values_ != nullptr); if (values_init_needed) { for (int i = 0; i < FLAGS_column_families; ++i) { for (int j = 0; j < max_key_; ++j) { Delete(i, j, false /* pending */); } } } if (FLAGS_test_batches_snapshots) { fprintf(stdout, "No lock creation because test_batches_snapshots set\n"); return; } long num_locks = static_cast(max_key_ >> log2_keys_per_lock_); if (max_key_ & ((1 << log2_keys_per_lock_) - 1)) { num_locks++; } fprintf(stdout, "Creating %ld locks\n", num_locks * FLAGS_column_families); key_locks_.resize(FLAGS_column_families); for (int i = 0; i < FLAGS_column_families; ++i) { key_locks_[i].resize(num_locks); for (auto& ptr : key_locks_[i]) { ptr.reset(new port::Mutex); } } } ~SharedState() {} port::Mutex* GetMutex() { return &mu_; } port::CondVar* GetCondVar() { return &cv_; } StressTest* GetStressTest() const { return stress_test_; } int64_t GetMaxKey() const { return max_key_; } uint32_t GetNumThreads() const { return num_threads_; } void IncInitialized() { num_initialized_++; } void IncOperated() { num_populated_++; } void IncDone() { num_done_++; } void IncVotedReopen() { vote_reopen_ = (vote_reopen_ + 1) % num_threads_; } bool AllInitialized() const { return num_initialized_ >= num_threads_; } bool AllOperated() const { return num_populated_ >= num_threads_; } bool AllDone() const { return num_done_ >= num_threads_; } bool AllVotedReopen() { return (vote_reopen_ == 0); } void SetStart() { start_ = true; } void SetStartVerify() { start_verify_ = true; } bool Started() const { return start_; } bool VerifyStarted() const { return start_verify_; } void SetVerificationFailure() { verification_failure_.store(true); } bool HasVerificationFailedYet() { return verification_failure_.load(); } port::Mutex* GetMutexForKey(int cf, int64_t key) { return key_locks_[cf][key >> log2_keys_per_lock_].get(); } void LockColumnFamily(int cf) { for (auto& mutex : key_locks_[cf]) { mutex->Lock(); } } void UnlockColumnFamily(int cf) { for (auto& mutex : key_locks_[cf]) { mutex->Unlock(); } } std::atomic& Value(int cf, int64_t key) const { return values_[cf * max_key_ + key]; } void ClearColumnFamily(int cf) { std::fill(&Value(cf, 0 /* key */), &Value(cf + 1, 0 /* key */), DELETION_SENTINEL); } // @param pending True if the update may have started but is not yet // guaranteed finished. This is useful for crash-recovery testing when the // process may crash before updating the expected values array. void Put(int cf, int64_t key, uint32_t value_base, bool pending) { if (!pending) { // prevent expected-value update from reordering before Write std::atomic_thread_fence(std::memory_order_release); } Value(cf, key).store(pending ? UNKNOWN_SENTINEL : value_base, std::memory_order_relaxed); if (pending) { // prevent Write from reordering before expected-value update std::atomic_thread_fence(std::memory_order_release); } } uint32_t Get(int cf, int64_t key) const { return Value(cf, key); } // @param pending See comment above Put() // Returns true if the key was not yet deleted. bool Delete(int cf, int64_t key, bool pending) { if (Value(cf, key) == DELETION_SENTINEL) { return false; } Put(cf, key, DELETION_SENTINEL, pending); return true; } // @param pending See comment above Put() // Returns true if the key was not yet deleted. bool SingleDelete(int cf, int64_t key, bool pending) { return Delete(cf, key, pending); } // @param pending See comment above Put() // Returns number of keys deleted by the call. int DeleteRange(int cf, int64_t begin_key, int64_t end_key, bool pending) { int covered = 0; for (int64_t key = begin_key; key < end_key; ++key) { if (Delete(cf, key, pending)) { ++covered; } } return covered; } bool AllowsOverwrite(int64_t key) { return no_overwrite_ids_.find(key) == no_overwrite_ids_.end(); } bool Exists(int cf, int64_t key) { // UNKNOWN_SENTINEL counts as exists. That assures a key for which overwrite // is disallowed can't be accidentally added a second time, in which case // SingleDelete wouldn't be able to properly delete the key. It does allow // the case where a SingleDelete might be added which covers nothing, but // that's not a correctness issue. uint32_t expected_value = Value(cf, key).load(); return expected_value != DELETION_SENTINEL; } uint32_t GetSeed() const { return seed_; } void SetShouldStopBgThread() { should_stop_bg_thread_ = true; } bool ShoudStopBgThread() { return should_stop_bg_thread_; } void SetBgThreadFinish() { bg_thread_finished_ = true; } bool BgThreadFinished() const { return bg_thread_finished_; } bool ShouldVerifyAtBeginning() const { return expected_mmap_buffer_.get() != nullptr; } bool PrintingVerificationResults() { bool tmp = false; return !printing_verification_results_.compare_exchange_strong( tmp, true, std::memory_order_relaxed); } void FinishPrintingVerificationResults() { printing_verification_results_.store(false, std::memory_order_relaxed); } private: port::Mutex mu_; port::CondVar cv_; const uint32_t seed_; const int64_t max_key_; const uint32_t log2_keys_per_lock_; const int num_threads_; long num_initialized_; long num_populated_; long vote_reopen_; long num_done_; bool start_; bool start_verify_; bool should_stop_bg_thread_; bool bg_thread_finished_; StressTest* stress_test_; std::atomic verification_failure_; // Keys that should not be overwritten std::unordered_set no_overwrite_ids_; std::atomic* values_; std::unique_ptr[]> values_allocation_; // Has to make it owned by a smart ptr as port::Mutex is not copyable // and storing it in the container may require copying depending on the impl. std::vector>> key_locks_; std::unique_ptr expected_mmap_buffer_; std::atomic printing_verification_results_; }; const uint32_t SharedState::UNKNOWN_SENTINEL = 0xfffffffe; const uint32_t SharedState::DELETION_SENTINEL = 0xffffffff; // Per-thread state for concurrent executions of the same benchmark. struct ThreadState { uint32_t tid; // 0..n-1 Random rand; // Has different seeds for different threads SharedState* shared; Stats stats; struct SnapshotState { const Snapshot* snapshot; // The cf from which we did a Get at this snapshot int cf_at; // The name of the cf at the time that we did a read std::string cf_at_name; // The key with which we did a Get at this snapshot std::string key; // The status of the Get Status status; // The value of the Get std::string value; // optional state of all keys in the db std::vector* key_vec; }; std::queue> snapshot_queue; ThreadState(uint32_t index, SharedState* _shared) : tid(index), rand(1000 + index + _shared->GetSeed()), shared(_shared) {} }; class DbStressListener : public EventListener { public: DbStressListener(const std::string& db_name, const std::vector& db_paths, const std::vector& column_families) : db_name_(db_name), db_paths_(db_paths), column_families_(column_families), num_pending_file_creations_(0) {} virtual ~DbStressListener() { assert(num_pending_file_creations_ == 0); } #ifndef ROCKSDB_LITE virtual void OnFlushCompleted(DB* /*db*/, const FlushJobInfo& info) override { assert(IsValidColumnFamilyName(info.cf_name)); VerifyFilePath(info.file_path); // pretending doing some work here std::this_thread::sleep_for( std::chrono::microseconds(Random::GetTLSInstance()->Uniform(5000))); } virtual void OnCompactionCompleted(DB* /*db*/, const CompactionJobInfo& ci) override { assert(IsValidColumnFamilyName(ci.cf_name)); assert(ci.input_files.size() + ci.output_files.size() > 0U); for (const auto& file_path : ci.input_files) { VerifyFilePath(file_path); } for (const auto& file_path : ci.output_files) { VerifyFilePath(file_path); } // pretending doing some work here std::this_thread::sleep_for( std::chrono::microseconds(Random::GetTLSInstance()->Uniform(5000))); } virtual void OnTableFileCreationStarted( const TableFileCreationBriefInfo& /*info*/) override { ++num_pending_file_creations_; } virtual void OnTableFileCreated(const TableFileCreationInfo& info) override { assert(info.db_name == db_name_); assert(IsValidColumnFamilyName(info.cf_name)); if (info.file_size) { VerifyFilePath(info.file_path); } assert(info.job_id > 0 || FLAGS_compact_files_one_in > 0); if (info.status.ok() && info.file_size > 0) { assert(info.table_properties.data_size > 0 || info.table_properties.num_range_deletions > 0); assert(info.table_properties.raw_key_size > 0); assert(info.table_properties.num_entries > 0); } --num_pending_file_creations_; } protected: bool IsValidColumnFamilyName(const std::string& cf_name) const { if (cf_name == kDefaultColumnFamilyName) { return true; } // The column family names in the stress tests are numbers. for (size_t i = 0; i < cf_name.size(); ++i) { if (cf_name[i] < '0' || cf_name[i] > '9') { return false; } } return true; } void VerifyFileDir(const std::string& file_dir) { #ifndef NDEBUG if (db_name_ == file_dir) { return; } for (const auto& db_path : db_paths_) { if (db_path.path == file_dir) { return; } } for (auto& cf : column_families_) { for (const auto& cf_path : cf.options.cf_paths) { if (cf_path.path == file_dir) { return; } } } assert(false); #else (void)file_dir; #endif // !NDEBUG } void VerifyFileName(const std::string& file_name) { #ifndef NDEBUG uint64_t file_number; FileType file_type; bool result = ParseFileName(file_name, &file_number, &file_type); assert(result); assert(file_type == kTableFile); #else (void)file_name; #endif // !NDEBUG } void VerifyFilePath(const std::string& file_path) { #ifndef NDEBUG size_t pos = file_path.find_last_of("/"); if (pos == std::string::npos) { VerifyFileName(file_path); } else { if (pos > 0) { VerifyFileDir(file_path.substr(0, pos)); } VerifyFileName(file_path.substr(pos)); } #else (void)file_path; #endif // !NDEBUG } #endif // !ROCKSDB_LITE private: std::string db_name_; std::vector db_paths_; std::vector column_families_; std::atomic num_pending_file_creations_; }; } // namespace class StressTest { public: StressTest() : cache_(NewCache(FLAGS_cache_size)), compressed_cache_(NewLRUCache(FLAGS_compressed_cache_size)), filter_policy_(FLAGS_bloom_bits >= 0 ? FLAGS_use_block_based_filter ? NewBloomFilterPolicy(FLAGS_bloom_bits, true) : NewBloomFilterPolicy(FLAGS_bloom_bits, false) : nullptr), db_(nullptr), #ifndef ROCKSDB_LITE txn_db_(nullptr), #endif new_column_family_name_(1), num_times_reopened_(0), db_preload_finished_(false) { if (FLAGS_destroy_db_initially) { std::vector files; FLAGS_env->GetChildren(FLAGS_db, &files); for (unsigned int i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("heap-")) { FLAGS_env->DeleteFile(FLAGS_db + "/" + files[i]); } } Options options; options.env = FLAGS_env; Status s = DestroyDB(FLAGS_db, options); if (!s.ok()) { fprintf(stderr, "Cannot destroy original db: %s\n", s.ToString().c_str()); exit(1); } } } virtual ~StressTest() { for (auto cf : column_families_) { delete cf; } column_families_.clear(); delete db_; assert(secondaries_.size() == secondary_cfh_lists_.size()); size_t n = secondaries_.size(); for (size_t i = 0; i != n; ++i) { for (auto* cf : secondary_cfh_lists_[i]) { delete cf; } secondary_cfh_lists_[i].clear(); delete secondaries_[i]; } secondaries_.clear(); } std::shared_ptr NewCache(size_t capacity) { if (capacity <= 0) { return nullptr; } if (FLAGS_use_clock_cache) { auto cache = NewClockCache((size_t)capacity); if (!cache) { fprintf(stderr, "Clock cache not supported."); exit(1); } return cache; } else { return NewLRUCache((size_t)capacity); } } bool BuildOptionsTable() { if (FLAGS_set_options_one_in <= 0) { return true; } std::unordered_map> options_tbl = { {"write_buffer_size", {ToString(options_.write_buffer_size), ToString(options_.write_buffer_size * 2), ToString(options_.write_buffer_size * 4)}}, {"max_write_buffer_number", {ToString(options_.max_write_buffer_number), ToString(options_.max_write_buffer_number * 2), ToString(options_.max_write_buffer_number * 4)}}, {"arena_block_size", { ToString(options_.arena_block_size), ToString(options_.write_buffer_size / 4), ToString(options_.write_buffer_size / 8), }}, {"memtable_huge_page_size", {"0", ToString(2 * 1024 * 1024)}}, {"max_successive_merges", {"0", "2", "4"}}, {"inplace_update_num_locks", {"100", "200", "300"}}, // TODO(ljin): enable test for this option // {"disable_auto_compactions", {"100", "200", "300"}}, {"soft_rate_limit", {"0", "0.5", "0.9"}}, {"hard_rate_limit", {"0", "1.1", "2.0"}}, {"level0_file_num_compaction_trigger", { ToString(options_.level0_file_num_compaction_trigger), ToString(options_.level0_file_num_compaction_trigger + 2), ToString(options_.level0_file_num_compaction_trigger + 4), }}, {"level0_slowdown_writes_trigger", { ToString(options_.level0_slowdown_writes_trigger), ToString(options_.level0_slowdown_writes_trigger + 2), ToString(options_.level0_slowdown_writes_trigger + 4), }}, {"level0_stop_writes_trigger", { ToString(options_.level0_stop_writes_trigger), ToString(options_.level0_stop_writes_trigger + 2), ToString(options_.level0_stop_writes_trigger + 4), }}, {"max_compaction_bytes", { ToString(options_.target_file_size_base * 5), ToString(options_.target_file_size_base * 15), ToString(options_.target_file_size_base * 100), }}, {"target_file_size_base", { ToString(options_.target_file_size_base), ToString(options_.target_file_size_base * 2), ToString(options_.target_file_size_base * 4), }}, {"target_file_size_multiplier", { ToString(options_.target_file_size_multiplier), "1", "2", }}, {"max_bytes_for_level_base", { ToString(options_.max_bytes_for_level_base / 2), ToString(options_.max_bytes_for_level_base), ToString(options_.max_bytes_for_level_base * 2), }}, {"max_bytes_for_level_multiplier", { ToString(options_.max_bytes_for_level_multiplier), "1", "2", }}, {"max_sequential_skip_in_iterations", {"4", "8", "12"}}, }; options_table_ = std::move(options_tbl); for (const auto& iter : options_table_) { options_index_.push_back(iter.first); } return true; } bool Run() { uint64_t now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Initializing db_stress\n", FLAGS_env->TimeToString(now / 1000000).c_str()); PrintEnv(); Open(); BuildOptionsTable(); SharedState shared(this); if (FLAGS_read_only) { now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Preloading db with %" PRIu64 " KVs\n", FLAGS_env->TimeToString(now / 1000000).c_str(), FLAGS_max_key); PreloadDbAndReopenAsReadOnly(FLAGS_max_key, &shared); } uint32_t n = shared.GetNumThreads(); now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Initializing worker threads\n", FLAGS_env->TimeToString(now / 1000000).c_str()); std::vector threads(n); for (uint32_t i = 0; i < n; i++) { threads[i] = new ThreadState(i, &shared); FLAGS_env->StartThread(ThreadBody, threads[i]); } ThreadState bg_thread(0, &shared); if (FLAGS_compaction_thread_pool_adjust_interval > 0) { FLAGS_env->StartThread(PoolSizeChangeThread, &bg_thread); } // Each thread goes through the following states: // initializing -> wait for others to init -> read/populate/depopulate // wait for others to operate -> verify -> done { MutexLock l(shared.GetMutex()); while (!shared.AllInitialized()) { shared.GetCondVar()->Wait(); } if (shared.ShouldVerifyAtBeginning()) { if (shared.HasVerificationFailedYet()) { printf("Crash-recovery verification failed :(\n"); } else { printf("Crash-recovery verification passed :)\n"); } } now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Starting database operations\n", FLAGS_env->TimeToString(now / 1000000).c_str()); shared.SetStart(); shared.GetCondVar()->SignalAll(); while (!shared.AllOperated()) { shared.GetCondVar()->Wait(); } now = FLAGS_env->NowMicros(); if (FLAGS_test_batches_snapshots) { fprintf(stdout, "%s Limited verification already done during gets\n", FLAGS_env->TimeToString((uint64_t)now / 1000000).c_str()); } else { fprintf(stdout, "%s Starting verification\n", FLAGS_env->TimeToString((uint64_t)now / 1000000).c_str()); } shared.SetStartVerify(); shared.GetCondVar()->SignalAll(); while (!shared.AllDone()) { shared.GetCondVar()->Wait(); } } for (unsigned int i = 1; i < n; i++) { threads[0]->stats.Merge(threads[i]->stats); } threads[0]->stats.Report("Stress Test"); for (unsigned int i = 0; i < n; i++) { delete threads[i]; threads[i] = nullptr; } now = FLAGS_env->NowMicros(); if (!FLAGS_test_batches_snapshots && !shared.HasVerificationFailedYet()) { fprintf(stdout, "%s Verification successful\n", FLAGS_env->TimeToString(now / 1000000).c_str()); } PrintStatistics(); if (FLAGS_compaction_thread_pool_adjust_interval > 0) { MutexLock l(shared.GetMutex()); shared.SetShouldStopBgThread(); while (!shared.BgThreadFinished()) { shared.GetCondVar()->Wait(); } } #ifndef ROCKSDB_LITE if (FLAGS_enable_secondary) { now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Start to verify secondaries against primary\n", FLAGS_env->TimeToString(static_cast(now) / 1000000) .c_str()); } for (size_t k = 0; k != secondaries_.size(); ++k) { Status s = secondaries_[k]->TryCatchUpWithPrimary(); if (!s.ok()) { fprintf(stderr, "Secondary failed to catch up with primary\n"); return false; } ReadOptions ropts; ropts.total_order_seek = true; // Verify only the default column family since the primary may have // dropped other column families after most recent reopen. std::unique_ptr iter1(db_->NewIterator(ropts)); std::unique_ptr iter2(secondaries_[k]->NewIterator(ropts)); for (iter1->SeekToFirst(), iter2->SeekToFirst(); iter1->Valid() && iter2->Valid(); iter1->Next(), iter2->Next()) { if (iter1->key().compare(iter2->key()) != 0 || iter1->value().compare(iter2->value())) { fprintf(stderr, "Secondary %d contains different data from " "primary.\nPrimary: %s : %s\nSecondary: %s : %s\n", static_cast(k), iter1->key().ToString(/*hex=*/true).c_str(), iter1->value().ToString(/*hex=*/true).c_str(), iter2->key().ToString(/*hex=*/true).c_str(), iter2->value().ToString(/*hex=*/true).c_str()); return false; } } if (iter1->Valid() && !iter2->Valid()) { fprintf(stderr, "Secondary %d record count is smaller than that of primary\n", static_cast(k)); return false; } else if (!iter1->Valid() && iter2->Valid()) { fprintf(stderr, "Secondary %d record count is larger than that of primary\n", static_cast(k)); return false; } } if (FLAGS_enable_secondary) { now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Verification of secondaries succeeded\n", FLAGS_env->TimeToString(static_cast(now) / 1000000) .c_str()); } #endif // ROCKSDB_LITE if (shared.HasVerificationFailedYet()) { printf("Verification failed :(\n"); return false; } return true; } protected: static void ThreadBody(void* v) { ThreadState* thread = reinterpret_cast(v); SharedState* shared = thread->shared; if (shared->ShouldVerifyAtBeginning()) { thread->shared->GetStressTest()->VerifyDb(thread); } { MutexLock l(shared->GetMutex()); shared->IncInitialized(); if (shared->AllInitialized()) { shared->GetCondVar()->SignalAll(); } while (!shared->Started()) { shared->GetCondVar()->Wait(); } } thread->shared->GetStressTest()->OperateDb(thread); { MutexLock l(shared->GetMutex()); shared->IncOperated(); if (shared->AllOperated()) { shared->GetCondVar()->SignalAll(); } while (!shared->VerifyStarted()) { shared->GetCondVar()->Wait(); } } thread->shared->GetStressTest()->VerifyDb(thread); { MutexLock l(shared->GetMutex()); shared->IncDone(); if (shared->AllDone()) { shared->GetCondVar()->SignalAll(); } } } static void PoolSizeChangeThread(void* v) { assert(FLAGS_compaction_thread_pool_adjust_interval > 0); ThreadState* thread = reinterpret_cast(v); SharedState* shared = thread->shared; while (true) { { MutexLock l(shared->GetMutex()); if (shared->ShoudStopBgThread()) { shared->SetBgThreadFinish(); shared->GetCondVar()->SignalAll(); return; } } auto thread_pool_size_base = FLAGS_max_background_compactions; auto thread_pool_size_var = FLAGS_compaction_thread_pool_variations; int new_thread_pool_size = thread_pool_size_base - thread_pool_size_var + thread->rand.Next() % (thread_pool_size_var * 2 + 1); if (new_thread_pool_size < 1) { new_thread_pool_size = 1; } FLAGS_env->SetBackgroundThreads(new_thread_pool_size); // Sleep up to 3 seconds FLAGS_env->SleepForMicroseconds( thread->rand.Next() % FLAGS_compaction_thread_pool_adjust_interval * 1000 + 1); } } static void PrintKeyValue(int cf, uint64_t key, const char* value, size_t sz) { if (!FLAGS_verbose) { return; } std::string tmp; tmp.reserve(sz * 2 + 16); char buf[4]; for (size_t i = 0; i < sz; i++) { snprintf(buf, 4, "%X", value[i]); tmp.append(buf); } fprintf(stdout, "[CF %d] %" PRIi64 " == > (%" ROCKSDB_PRIszt ") %s\n", cf, key, sz, tmp.c_str()); } static int64_t GenerateOneKey(ThreadState* thread, uint64_t iteration) { const double completed_ratio = static_cast(iteration) / FLAGS_ops_per_thread; const int64_t base_key = static_cast( completed_ratio * (FLAGS_max_key - FLAGS_active_width)); return base_key + thread->rand.Next() % FLAGS_active_width; } static std::vector GenerateNKeys(ThreadState* thread, int num_keys, uint64_t iteration) { const double completed_ratio = static_cast(iteration) / FLAGS_ops_per_thread; const int64_t base_key = static_cast( completed_ratio * (FLAGS_max_key - FLAGS_active_width)); std::vector keys; keys.reserve(num_keys); int64_t next_key = base_key + thread->rand.Next() % FLAGS_active_width; keys.push_back(next_key); for (int i = 1; i < num_keys; ++i) { // This may result in some duplicate keys next_key = next_key + thread->rand.Next() % (FLAGS_active_width - (next_key - base_key)); keys.push_back(next_key); } return keys; } static size_t GenerateValue(uint32_t rand, char* v, size_t max_sz) { size_t value_sz = ((rand % kRandomValueMaxFactor) + 1) * FLAGS_value_size_mult; assert(value_sz <= max_sz && value_sz >= sizeof(uint32_t)); (void)max_sz; *((uint32_t*)v) = rand; for (size_t i = sizeof(uint32_t); i < value_sz; i++) { v[i] = (char)(rand ^ i); } v[value_sz] = '\0'; return value_sz; // the size of the value set. } Status AssertSame(DB* db, ColumnFamilyHandle* cf, ThreadState::SnapshotState& snap_state) { Status s; if (cf->GetName() != snap_state.cf_at_name) { return s; } ReadOptions ropt; ropt.snapshot = snap_state.snapshot; PinnableSlice exp_v(&snap_state.value); exp_v.PinSelf(); PinnableSlice v; s = db->Get(ropt, cf, snap_state.key, &v); if (!s.ok() && !s.IsNotFound()) { return s; } if (snap_state.status != s) { return Status::Corruption( "The snapshot gave inconsistent results for key " + ToString(Hash(snap_state.key.c_str(), snap_state.key.size(), 0)) + " in cf " + cf->GetName() + ": (" + snap_state.status.ToString() + ") vs. (" + s.ToString() + ")"); } if (s.ok()) { if (exp_v != v) { return Status::Corruption("The snapshot gave inconsistent values: (" + exp_v.ToString() + ") vs. (" + v.ToString() + ")"); } } if (snap_state.key_vec != nullptr) { // When `prefix_extractor` is set, seeking to beginning and scanning // across prefixes are only supported with `total_order_seek` set. ropt.total_order_seek = true; std::unique_ptr iterator(db->NewIterator(ropt)); std::unique_ptr> tmp_bitvec( new std::vector(FLAGS_max_key)); for (iterator->SeekToFirst(); iterator->Valid(); iterator->Next()) { uint64_t key_val; if (GetIntVal(iterator->key().ToString(), &key_val)) { (*tmp_bitvec.get())[key_val] = true; } } if (!std::equal(snap_state.key_vec->begin(), snap_state.key_vec->end(), tmp_bitvec.get()->begin())) { return Status::Corruption("Found inconsistent keys at this snapshot"); } } return Status::OK(); } // Currently PreloadDb has to be single-threaded. void PreloadDbAndReopenAsReadOnly(int64_t number_of_keys, SharedState* shared) { WriteOptions write_opts; write_opts.disableWAL = FLAGS_disable_wal; if (FLAGS_sync) { write_opts.sync = true; } char value[100]; int cf_idx = 0; Status s; for (auto cfh : column_families_) { for (int64_t k = 0; k != number_of_keys; ++k) { std::string key_str = Key(k); Slice key = key_str; size_t sz = GenerateValue(0 /*value_base*/, value, sizeof(value)); Slice v(value, sz); shared->Put(cf_idx, k, 0, true /* pending */); if (FLAGS_use_merge) { if (!FLAGS_use_txn) { s = db_->Merge(write_opts, cfh, key, v); } else { #ifndef ROCKSDB_LITE Transaction* txn; s = NewTxn(write_opts, &txn); if (s.ok()) { s = txn->Merge(cfh, key, v); if (s.ok()) { s = CommitTxn(txn); } } #endif } } else { if (!FLAGS_use_txn) { s = db_->Put(write_opts, cfh, key, v); } else { #ifndef ROCKSDB_LITE Transaction* txn; s = NewTxn(write_opts, &txn); if (s.ok()) { s = txn->Put(cfh, key, v); if (s.ok()) { s = CommitTxn(txn); } } #endif } } shared->Put(cf_idx, k, 0, false /* pending */); if (!s.ok()) { break; } } if (!s.ok()) { break; } ++cf_idx; } if (s.ok()) { s = db_->Flush(FlushOptions(), column_families_); } if (s.ok()) { for (auto cf : column_families_) { delete cf; } column_families_.clear(); delete db_; db_ = nullptr; #ifndef ROCKSDB_LITE txn_db_ = nullptr; #endif db_preload_finished_.store(true); auto now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Reopening database in read-only\n", FLAGS_env->TimeToString(now / 1000000).c_str()); // Reopen as read-only, can ignore all options related to updates Open(); } else { fprintf(stderr, "Failed to preload db"); exit(1); } } Status SetOptions(ThreadState* thread) { assert(FLAGS_set_options_one_in > 0); std::unordered_map opts; std::string name = options_index_[thread->rand.Next() % options_index_.size()]; int value_idx = thread->rand.Next() % options_table_[name].size(); if (name == "soft_rate_limit" || name == "hard_rate_limit") { opts["soft_rate_limit"] = options_table_["soft_rate_limit"][value_idx]; opts["hard_rate_limit"] = options_table_["hard_rate_limit"][value_idx]; } else if (name == "level0_file_num_compaction_trigger" || name == "level0_slowdown_writes_trigger" || name == "level0_stop_writes_trigger") { opts["level0_file_num_compaction_trigger"] = options_table_["level0_file_num_compaction_trigger"][value_idx]; opts["level0_slowdown_writes_trigger"] = options_table_["level0_slowdown_writes_trigger"][value_idx]; opts["level0_stop_writes_trigger"] = options_table_["level0_stop_writes_trigger"][value_idx]; } else { opts[name] = options_table_[name][value_idx]; } int rand_cf_idx = thread->rand.Next() % FLAGS_column_families; auto cfh = column_families_[rand_cf_idx]; return db_->SetOptions(cfh, opts); } #ifndef ROCKSDB_LITE Status NewTxn(WriteOptions& write_opts, Transaction** txn) { if (!FLAGS_use_txn) { return Status::InvalidArgument("NewTxn when FLAGS_use_txn is not set"); } static std::atomic txn_id = {0}; TransactionOptions txn_options; *txn = txn_db_->BeginTransaction(write_opts, txn_options); auto istr = std::to_string(txn_id.fetch_add(1)); Status s = (*txn)->SetName("xid" + istr); return s; } Status CommitTxn(Transaction* txn) { if (!FLAGS_use_txn) { return Status::InvalidArgument("CommitTxn when FLAGS_use_txn is not set"); } Status s = txn->Prepare(); if (s.ok()) { s = txn->Commit(); } delete txn; return s; } #endif virtual void OperateDb(ThreadState* thread) { ReadOptions read_opts(FLAGS_verify_checksum, true); WriteOptions write_opts; auto shared = thread->shared; char value[100]; std::string from_db; if (FLAGS_sync) { write_opts.sync = true; } write_opts.disableWAL = FLAGS_disable_wal; const int prefixBound = (int)FLAGS_readpercent + (int)FLAGS_prefixpercent; const int writeBound = prefixBound + (int)FLAGS_writepercent; const int delBound = writeBound + (int)FLAGS_delpercent; const int delRangeBound = delBound + (int)FLAGS_delrangepercent; const uint64_t ops_per_open = FLAGS_ops_per_thread / (FLAGS_reopen + 1); thread->stats.Start(); for (int open_cnt = 0; open_cnt <= FLAGS_reopen; ++open_cnt) { if (thread->shared->HasVerificationFailedYet()) { break; } if (open_cnt != 0) { thread->stats.FinishedSingleOp(); MutexLock l(thread->shared->GetMutex()); while (!thread->snapshot_queue.empty()) { db_->ReleaseSnapshot(thread->snapshot_queue.front().second.snapshot); delete thread->snapshot_queue.front().second.key_vec; thread->snapshot_queue.pop(); } thread->shared->IncVotedReopen(); if (thread->shared->AllVotedReopen()) { thread->shared->GetStressTest()->Reopen(); thread->shared->GetCondVar()->SignalAll(); } else { thread->shared->GetCondVar()->Wait(); } // Commenting this out as we don't want to reset stats on each open. // thread->stats.Start(); } for (uint64_t i = 0; i < ops_per_open; i++) { if (thread->shared->HasVerificationFailedYet()) { break; } // Change Options if (FLAGS_set_options_one_in > 0 && thread->rand.OneIn(FLAGS_set_options_one_in)) { SetOptions(thread); } if (FLAGS_set_in_place_one_in > 0 && thread->rand.OneIn(FLAGS_set_in_place_one_in)) { options_.inplace_update_support ^= options_.inplace_update_support; } MaybeClearOneColumnFamily(thread); #ifndef ROCKSDB_LITE if (FLAGS_compact_files_one_in > 0 && thread->rand.Uniform(FLAGS_compact_files_one_in) == 0) { auto* random_cf = column_families_[thread->rand.Next() % FLAGS_column_families]; rocksdb::ColumnFamilyMetaData cf_meta_data; db_->GetColumnFamilyMetaData(random_cf, &cf_meta_data); // Randomly compact up to three consecutive files from a level const int kMaxRetry = 3; for (int attempt = 0; attempt < kMaxRetry; ++attempt) { size_t random_level = thread->rand.Uniform( static_cast(cf_meta_data.levels.size())); const auto& files = cf_meta_data.levels[random_level].files; if (files.size() > 0) { size_t random_file_index = thread->rand.Uniform(static_cast(files.size())); if (files[random_file_index].being_compacted) { // Retry as the selected file is currently being compacted continue; } std::vector input_files; input_files.push_back(files[random_file_index].name); if (random_file_index > 0 && !files[random_file_index - 1].being_compacted) { input_files.push_back(files[random_file_index - 1].name); } if (random_file_index + 1 < files.size() && !files[random_file_index + 1].being_compacted) { input_files.push_back(files[random_file_index + 1].name); } size_t output_level = std::min(random_level + 1, cf_meta_data.levels.size() - 1); auto s = db_->CompactFiles(CompactionOptions(), random_cf, input_files, static_cast(output_level)); if (!s.ok()) { fprintf(stdout, "Unable to perform CompactFiles(): %s\n", s.ToString().c_str()); thread->stats.AddNumCompactFilesFailed(1); } else { thread->stats.AddNumCompactFilesSucceed(1); } break; } } } #endif // !ROCKSDB_LITE int64_t rand_key = GenerateOneKey(thread, i); int rand_column_family = thread->rand.Next() % FLAGS_column_families; std::string keystr = Key(rand_key); Slice key = keystr; std::unique_ptr lock; if (ShouldAcquireMutexOnKey()) { lock.reset(new MutexLock( shared->GetMutexForKey(rand_column_family, rand_key))); } auto column_family = column_families_[rand_column_family]; if (FLAGS_compact_range_one_in > 0 && thread->rand.Uniform(FLAGS_compact_range_one_in) == 0) { int64_t end_key_num; if (port::kMaxInt64 - rand_key < FLAGS_compact_range_width) { end_key_num = port::kMaxInt64; } else { end_key_num = FLAGS_compact_range_width + rand_key; } std::string end_key_buf = Key(end_key_num); Slice end_key(end_key_buf); CompactRangeOptions cro; cro.exclusive_manual_compaction = static_cast(thread->rand.Next() % 2); Status status = db_->CompactRange(cro, column_family, &key, &end_key); if (!status.ok()) { printf("Unable to perform CompactRange(): %s\n", status.ToString().c_str()); } } std::vector rand_column_families = GenerateColumnFamilies(FLAGS_column_families, rand_column_family); if (FLAGS_flush_one_in > 0 && thread->rand.Uniform(FLAGS_flush_one_in) == 0) { FlushOptions flush_opts; std::vector cfhs; std::for_each( rand_column_families.begin(), rand_column_families.end(), [this, &cfhs](int k) { cfhs.push_back(column_families_[k]); }); Status status = db_->Flush(flush_opts, cfhs); if (!status.ok()) { fprintf(stdout, "Unable to perform Flush(): %s\n", status.ToString().c_str()); } } std::vector rand_keys = GenerateKeys(rand_key); if (FLAGS_ingest_external_file_one_in > 0 && thread->rand.Uniform(FLAGS_ingest_external_file_one_in) == 0) { TestIngestExternalFile(thread, rand_column_families, rand_keys, lock); } if (FLAGS_backup_one_in > 0 && thread->rand.Uniform(FLAGS_backup_one_in) == 0) { Status s = TestBackupRestore(thread, rand_column_families, rand_keys); if (!s.ok()) { VerificationAbort(shared, "Backup/restore gave inconsistent state", s); } } if (FLAGS_checkpoint_one_in > 0 && thread->rand.Uniform(FLAGS_checkpoint_one_in) == 0) { Status s = TestCheckpoint(thread, rand_column_families, rand_keys); if (!s.ok()) { VerificationAbort(shared, "Checkpoint gave inconsistent state", s); } } if (FLAGS_acquire_snapshot_one_in > 0 && thread->rand.Uniform(FLAGS_acquire_snapshot_one_in) == 0) { #ifndef ROCKSDB_LITE auto db_impl = reinterpret_cast(db_->GetRootDB()); const bool ww_snapshot = thread->rand.OneIn(10); const Snapshot* snapshot = ww_snapshot ? db_impl->GetSnapshotForWriteConflictBoundary() : db_->GetSnapshot(); #else const Snapshot* snapshot = db_->GetSnapshot(); #endif // !ROCKSDB_LITE ReadOptions ropt; ropt.snapshot = snapshot; std::string value_at; // When taking a snapshot, we also read a key from that snapshot. We // will later read the same key before releasing the snapshot and // verify that the results are the same. auto status_at = db_->Get(ropt, column_family, key, &value_at); std::vector* key_vec = nullptr; if (FLAGS_compare_full_db_state_snapshot && (thread->tid == 0)) { key_vec = new std::vector(FLAGS_max_key); // When `prefix_extractor` is set, seeking to beginning and scanning // across prefixes are only supported with `total_order_seek` set. ropt.total_order_seek = true; std::unique_ptr iterator(db_->NewIterator(ropt)); for (iterator->SeekToFirst(); iterator->Valid(); iterator->Next()) { uint64_t key_val; if (GetIntVal(iterator->key().ToString(), &key_val)) { (*key_vec)[key_val] = true; } } } ThreadState::SnapshotState snap_state = { snapshot, rand_column_family, column_family->GetName(), keystr, status_at, value_at, key_vec}; thread->snapshot_queue.emplace( std::min(FLAGS_ops_per_thread - 1, i + FLAGS_snapshot_hold_ops), snap_state); } while (!thread->snapshot_queue.empty() && i >= thread->snapshot_queue.front().first) { auto snap_state = thread->snapshot_queue.front().second; assert(snap_state.snapshot); // Note: this is unsafe as the cf might be dropped concurrently. But // it is ok since unclean cf drop is cunnrently not supported by write // prepared transactions. Status s = AssertSame(db_, column_families_[snap_state.cf_at], snap_state); if (!s.ok()) { VerificationAbort(shared, "Snapshot gave inconsistent state", s); } db_->ReleaseSnapshot(snap_state.snapshot); delete snap_state.key_vec; thread->snapshot_queue.pop(); } int prob_op = thread->rand.Uniform(100); // Reset this in case we pick something other than a read op. We don't // want to use a stale value when deciding at the beginning of the loop // whether to vote to reopen if (prob_op >= 0 && prob_op < (int)FLAGS_readpercent) { // OPERATION read if (FLAGS_use_multiget) { // Leave room for one more iteration of the loop with a single key // batch. This is to ensure that each thread does exactly the same // number of ops int multiget_batch_size = static_cast( std::min(static_cast(thread->rand.Uniform(64)), FLAGS_ops_per_thread - i - 1)); // If its the last iteration, ensure that multiget_batch_size is 1 multiget_batch_size = std::max(multiget_batch_size, 1); rand_keys = GenerateNKeys(thread, multiget_batch_size, i); TestMultiGet(thread, read_opts, rand_column_families, rand_keys); i += multiget_batch_size - 1; } else { TestGet(thread, read_opts, rand_column_families, rand_keys); } } else if ((int)FLAGS_readpercent <= prob_op && prob_op < prefixBound) { // OPERATION prefix scan // keys are 8 bytes long, prefix size is FLAGS_prefix_size. There are // (8 - FLAGS_prefix_size) bytes besides the prefix. So there will // be 2 ^ ((8 - FLAGS_prefix_size) * 8) possible keys with the same // prefix TestPrefixScan(thread, read_opts, rand_column_families, rand_keys); } else if (prefixBound <= prob_op && prob_op < writeBound) { // OPERATION write TestPut(thread, write_opts, read_opts, rand_column_families, rand_keys, value, lock); } else if (writeBound <= prob_op && prob_op < delBound) { // OPERATION delete TestDelete(thread, write_opts, rand_column_families, rand_keys, lock); } else if (delBound <= prob_op && prob_op < delRangeBound) { // OPERATION delete range TestDeleteRange(thread, write_opts, rand_column_families, rand_keys, lock); } else { // OPERATION iterate int num_seeks = static_cast( std::min(static_cast(thread->rand.Uniform(4)), FLAGS_ops_per_thread - i - 1)); rand_keys = GenerateNKeys(thread, num_seeks, i); i += num_seeks - 1; TestIterate(thread, read_opts, rand_column_families, rand_keys); } thread->stats.FinishedSingleOp(); #ifndef ROCKSDB_LITE uint32_t tid = thread->tid; assert(secondaries_.empty() || static_cast(tid) < secondaries_.size()); if (FLAGS_secondary_catch_up_one_in > 0 && thread->rand.Uniform(FLAGS_secondary_catch_up_one_in) == 0) { Status s = secondaries_[tid]->TryCatchUpWithPrimary(); if (!s.ok()) { VerificationAbort(shared, "Secondary instance failed to catch up", s); break; } } #endif } } while (!thread->snapshot_queue.empty()) { db_->ReleaseSnapshot(thread->snapshot_queue.front().second.snapshot); delete thread->snapshot_queue.front().second.key_vec; thread->snapshot_queue.pop(); } thread->stats.Stop(); } virtual void VerifyDb(ThreadState* thread) const = 0; virtual void MaybeClearOneColumnFamily(ThreadState* /* thread */) {} virtual bool ShouldAcquireMutexOnKey() const { return false; } virtual std::vector GenerateColumnFamilies( const int /* num_column_families */, int rand_column_family) const { return {rand_column_family}; } virtual std::vector GenerateKeys(int64_t rand_key) const { return {rand_key}; } virtual Status TestGet(ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) = 0; virtual std::vector TestMultiGet( ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) = 0; virtual Status TestPrefixScan(ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) = 0; virtual Status TestPut(ThreadState* thread, WriteOptions& write_opts, const ReadOptions& read_opts, const std::vector& cf_ids, const std::vector& keys, char (&value)[100], std::unique_ptr& lock) = 0; virtual Status TestDelete(ThreadState* thread, WriteOptions& write_opts, const std::vector& rand_column_families, const std::vector& rand_keys, std::unique_ptr& lock) = 0; virtual Status TestDeleteRange(ThreadState* thread, WriteOptions& write_opts, const std::vector& rand_column_families, const std::vector& rand_keys, std::unique_ptr& lock) = 0; virtual void TestIngestExternalFile( ThreadState* thread, const std::vector& rand_column_families, const std::vector& rand_keys, std::unique_ptr& lock) = 0; // Return a column family handle that mirrors what is pointed by // `column_family_id`, which will be used to validate data to be correct. // By default, the column family itself will be returned. virtual ColumnFamilyHandle* GetControlCfh(ThreadState* /* thread*/, int column_family_id) { return column_families_[column_family_id]; } // Given a key K, this creates an iterator which scans to K and then // does a random sequence of Next/Prev operations. virtual Status TestIterate(ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) { Status s; const Snapshot* snapshot = db_->GetSnapshot(); ReadOptions readoptionscopy = read_opts; readoptionscopy.snapshot = snapshot; std::string upper_bound_str; Slice upper_bound; if (thread->rand.OneIn(16)) { // in 1/16 chance, set a iterator upper bound int64_t rand_upper_key = GenerateOneKey(thread, FLAGS_ops_per_thread); upper_bound_str = Key(rand_upper_key); upper_bound = Slice(upper_bound_str); // uppder_bound can be smaller than seek key, but the query itself // should not crash either. readoptionscopy.iterate_upper_bound = &upper_bound; } std::string lower_bound_str; Slice lower_bound; if (thread->rand.OneIn(16)) { // in 1/16 chance, enable iterator lower bound int64_t rand_lower_key = GenerateOneKey(thread, FLAGS_ops_per_thread); lower_bound_str = Key(rand_lower_key); lower_bound = Slice(lower_bound_str); // uppder_bound can be smaller than seek key, but the query itself // should not crash either. readoptionscopy.iterate_lower_bound = &lower_bound; } auto cfh = column_families_[rand_column_families[0]]; std::unique_ptr iter(db_->NewIterator(readoptionscopy, cfh)); for (int64_t rkey : rand_keys) { std::string key_str = Key(rkey); Slice key = key_str; if (readoptionscopy.iterate_upper_bound != nullptr && thread->rand.OneIn(2)) { // 1/2 chance, change the upper bound. // It is possible that it is changed without first use, but there is no // problem with that. int64_t rand_upper_key = GenerateOneKey(thread, FLAGS_ops_per_thread); upper_bound_str = Key(rand_upper_key); upper_bound = Slice(upper_bound_str); } // Set up an iterator and does the same without bounds and with total // order seek and compare the results. This is to identify bugs related // to bounds, prefix extractor or reseeking. Sometimes we are comparing // iterators with the same set-up, and it doesn't hurt to check them // to be equal. ReadOptions cmp_ro; cmp_ro.snapshot = snapshot; cmp_ro.total_order_seek = true; ColumnFamilyHandle* cmp_cfh = GetControlCfh(thread, rand_column_families[0]); std::unique_ptr cmp_iter(db_->NewIterator(cmp_ro, cmp_cfh)); bool diverged = false; LastIterateOp last_op; if (thread->rand.OneIn(8)) { iter->SeekForPrev(key); cmp_iter->SeekForPrev(key); last_op = kLastOpSeekForPrev; } else { iter->Seek(key); cmp_iter->Seek(key); last_op = kLastOpSeek; } VerifyIterator(thread, cmp_cfh, readoptionscopy, iter.get(), cmp_iter.get(), last_op, key, &diverged); bool no_reverse = (FLAGS_memtablerep == "prefix_hash" && !read_opts.total_order_seek && options_.prefix_extractor.get() != nullptr); for (uint64_t i = 0; i < FLAGS_num_iterations && iter->Valid(); i++) { if (no_reverse || thread->rand.OneIn(2)) { iter->Next(); if (!diverged) { assert(cmp_iter->Valid()); cmp_iter->Next(); } } else { iter->Prev(); if (!diverged) { assert(cmp_iter->Valid()); cmp_iter->Prev(); } } last_op = kLastOpNextOrPrev; VerifyIterator(thread, cmp_cfh, readoptionscopy, iter.get(), cmp_iter.get(), last_op, key, &diverged); } if (s.ok()) { thread->stats.AddIterations(1); } else { thread->stats.AddErrors(1); break; } } db_->ReleaseSnapshot(snapshot); return s; } // Enum used by VerifyIterator() to identify the mode to validate. enum LastIterateOp { kLastOpSeek, kLastOpSeekForPrev, kLastOpNextOrPrev }; // Compare the two iterator, iter and cmp_iter are in the same position, // unless iter might be made invalidate or undefined because of // upper or lower bounds, or prefix extractor. // Will flag failure if the verification fails. // diverged = true if the two iterator is already diverged. // True if verification passed, false if not. void VerifyIterator(ThreadState* thread, ColumnFamilyHandle* cmp_cfh, const ReadOptions& ro, Iterator* iter, Iterator* cmp_iter, LastIterateOp op, const Slice& seek_key, bool* diverged) { if (*diverged) { return; } if (op == kLastOpSeek && ro.iterate_lower_bound != nullptr && (options_.comparator->Compare(*ro.iterate_lower_bound, seek_key) >= 0 || (ro.iterate_upper_bound != nullptr && options_.comparator->Compare(*ro.iterate_lower_bound, *ro.iterate_upper_bound) >= 0))) { // Lower bound behavior is not well defined if it is larger than // seek key or upper bound. Disable the check for now. *diverged = true; return; } if (op == kLastOpSeekForPrev && ro.iterate_upper_bound != nullptr && (options_.comparator->Compare(*ro.iterate_upper_bound, seek_key) <= 0 || (ro.iterate_lower_bound != nullptr && options_.comparator->Compare(*ro.iterate_lower_bound, *ro.iterate_upper_bound) >= 0))) { // Uppder bound behavior is not well defined if it is smaller than // seek key or lower bound. Disable the check for now. *diverged = true; return; } if (iter->Valid() && !cmp_iter->Valid()) { fprintf(stderr, "Control interator is invalid but iterator has key %s seek key " "%s\n", iter->key().ToString(true).c_str(), seek_key.ToString(true).c_str()); if (ro.iterate_upper_bound != nullptr) { fprintf(stderr, "upper bound %s\n", ro.iterate_upper_bound->ToString(true).c_str()); } if (ro.iterate_lower_bound != nullptr) { fprintf(stderr, "lower bound %s\n", ro.iterate_lower_bound->ToString(true).c_str()); } *diverged = true; } else if (cmp_iter->Valid()) { // Iterator is not valid. It can be legimate if it has already been // out of upper or lower bound, or filtered out by prefix iterator. const Slice& total_order_key = cmp_iter->key(); const SliceTransform* pe = options_.prefix_extractor.get(); const Comparator* cmp = options_.comparator; if (pe != nullptr) { if (!pe->InDomain(seek_key)) { // Prefix seek a non-in-domain key is undefined. Skip checking for // this scenario. *diverged = true; return; } if (!pe->InDomain(total_order_key) || pe->Transform(total_order_key) != pe->Transform(seek_key)) { // If the prefix is exhausted, the only thing needs to check // is the iterator isn't return a position in prefix. // Either way, checking can stop from here. *diverged = true; if (!iter->Valid() || !pe->InDomain(iter->key()) || pe->Transform(iter->key()) != pe->Transform(seek_key)) { return; } fprintf(stderr, "Iterator stays in prefix bug contol doesn't" " seek key %s iterator key %s control iterator key %s\n", seek_key.ToString(true).c_str(), iter->key().ToString(true).c_str(), cmp_iter->key().ToString(true).c_str()); } } // Check upper or lower bounds. if (!*diverged) { if ((iter->Valid() && iter->key() != cmp_iter->key()) || (!iter->Valid() && (ro.iterate_upper_bound == nullptr || cmp->Compare(total_order_key, *ro.iterate_upper_bound) < 0) && (ro.iterate_lower_bound == nullptr || cmp->Compare(total_order_key, *ro.iterate_lower_bound) > 0))) { fprintf(stderr, "Iterator diverged from control iterator which" " has value %s seek key %s\n", total_order_key.ToString(true).c_str(), seek_key.ToString(true).c_str()); if (iter->Valid()) { fprintf(stderr, "iterator has value %s\n", iter->key().ToString(true).c_str()); } else { fprintf(stderr, "iterator is not valid\n"); } if (ro.iterate_upper_bound != nullptr) { fprintf(stderr, "upper bound %s\n", ro.iterate_upper_bound->ToString(true).c_str()); } if (ro.iterate_lower_bound != nullptr) { fprintf(stderr, "lower bound %s\n", ro.iterate_lower_bound->ToString(true).c_str()); } *diverged = true; } } } if (*diverged) { fprintf(stderr, "Control CF %s\n", cmp_cfh->GetName().c_str()); thread->stats.AddErrors(1); // Fail fast to preserve the DB state. thread->shared->SetVerificationFailure(); } } #ifdef ROCKSDB_LITE virtual Status TestBackupRestore( ThreadState* /* thread */, const std::vector& /* rand_column_families */, const std::vector& /* rand_keys */) { assert(false); fprintf(stderr, "RocksDB lite does not support " "TestBackupRestore\n"); std::terminate(); } virtual Status TestCheckpoint( ThreadState* /* thread */, const std::vector& /* rand_column_families */, const std::vector& /* rand_keys */) { assert(false); fprintf(stderr, "RocksDB lite does not support " "TestCheckpoint\n"); std::terminate(); } #else // ROCKSDB_LITE virtual Status TestBackupRestore(ThreadState* thread, const std::vector& rand_column_families, const std::vector& rand_keys) { // Note the column families chosen by `rand_column_families` cannot be // dropped while the locks for `rand_keys` are held. So we should not have // to worry about accessing those column families throughout this function. assert(rand_column_families.size() == rand_keys.size()); std::string backup_dir = FLAGS_db + "/.backup" + ToString(thread->tid); std::string restore_dir = FLAGS_db + "/.restore" + ToString(thread->tid); BackupableDBOptions backup_opts(backup_dir); BackupEngine* backup_engine = nullptr; Status s = BackupEngine::Open(FLAGS_env, backup_opts, &backup_engine); if (s.ok()) { s = backup_engine->CreateNewBackup(db_); } if (s.ok()) { delete backup_engine; backup_engine = nullptr; s = BackupEngine::Open(FLAGS_env, backup_opts, &backup_engine); } if (s.ok()) { s = backup_engine->RestoreDBFromLatestBackup(restore_dir /* db_dir */, restore_dir /* wal_dir */); } if (s.ok()) { s = backup_engine->PurgeOldBackups(0 /* num_backups_to_keep */); } DB* restored_db = nullptr; std::vector restored_cf_handles; if (s.ok()) { Options restore_options(options_); restore_options.listeners.clear(); std::vector cf_descriptors; // TODO(ajkr): `column_family_names_` is not safe to access here when // `clear_column_family_one_in != 0`. But we can't easily switch to // `ListColumnFamilies` to get names because it won't necessarily give // the same order as `column_family_names_`. assert(FLAGS_clear_column_family_one_in == 0); for (auto name : column_family_names_) { cf_descriptors.emplace_back(name, ColumnFamilyOptions(restore_options)); } s = DB::Open(DBOptions(restore_options), restore_dir, cf_descriptors, &restored_cf_handles, &restored_db); } // for simplicity, currently only verifies existence/non-existence of a few // keys for (size_t i = 0; s.ok() && i < rand_column_families.size(); ++i) { std::string key_str = Key(rand_keys[i]); Slice key = key_str; std::string restored_value; Status get_status = restored_db->Get( ReadOptions(), restored_cf_handles[rand_column_families[i]], key, &restored_value); bool exists = thread->shared->Exists(rand_column_families[i], rand_keys[i]); if (get_status.ok()) { if (!exists) { s = Status::Corruption( "key exists in restore but not in original db"); } } else if (get_status.IsNotFound()) { if (exists) { s = Status::Corruption( "key exists in original db but not in restore"); } } else { s = get_status; } } if (backup_engine != nullptr) { delete backup_engine; backup_engine = nullptr; } if (restored_db != nullptr) { for (auto* cf_handle : restored_cf_handles) { restored_db->DestroyColumnFamilyHandle(cf_handle); } delete restored_db; restored_db = nullptr; } if (!s.ok()) { printf("A backup/restore operation failed with: %s\n", s.ToString().c_str()); } return s; } virtual Status TestCheckpoint(ThreadState* thread, const std::vector& rand_column_families, const std::vector& rand_keys) { // Note the column families chosen by `rand_column_families` cannot be // dropped while the locks for `rand_keys` are held. So we should not have // to worry about accessing those column families throughout this function. assert(rand_column_families.size() == rand_keys.size()); std::string checkpoint_dir = FLAGS_db + "/.checkpoint" + ToString(thread->tid); Options tmp_opts(options_); tmp_opts.listeners.clear(); DestroyDB(checkpoint_dir, tmp_opts); Checkpoint* checkpoint = nullptr; Status s = Checkpoint::Create(db_, &checkpoint); if (s.ok()) { s = checkpoint->CreateCheckpoint(checkpoint_dir); } std::vector cf_handles; DB* checkpoint_db = nullptr; if (s.ok()) { delete checkpoint; checkpoint = nullptr; Options options(options_); options.listeners.clear(); std::vector cf_descs; // TODO(ajkr): `column_family_names_` is not safe to access here when // `clear_column_family_one_in != 0`. But we can't easily switch to // `ListColumnFamilies` to get names because it won't necessarily give // the same order as `column_family_names_`. if (FLAGS_clear_column_family_one_in == 0) { for (const auto& name : column_family_names_) { cf_descs.emplace_back(name, ColumnFamilyOptions(options)); } s = DB::OpenForReadOnly(DBOptions(options), checkpoint_dir, cf_descs, &cf_handles, &checkpoint_db); } } if (checkpoint_db != nullptr) { for (size_t i = 0; s.ok() && i < rand_column_families.size(); ++i) { std::string key_str = Key(rand_keys[i]); Slice key = key_str; std::string value; Status get_status = checkpoint_db->Get( ReadOptions(), cf_handles[rand_column_families[i]], key, &value); bool exists = thread->shared->Exists(rand_column_families[i], rand_keys[i]); if (get_status.ok()) { if (!exists) { s = Status::Corruption( "key exists in checkpoint but not in original db"); } } else if (get_status.IsNotFound()) { if (exists) { s = Status::Corruption( "key exists in original db but not in checkpoint"); } } else { s = get_status; } } for (auto cfh : cf_handles) { delete cfh; } cf_handles.clear(); delete checkpoint_db; checkpoint_db = nullptr; } DestroyDB(checkpoint_dir, tmp_opts); if (!s.ok()) { fprintf(stderr, "A checkpoint operation failed with: %s\n", s.ToString().c_str()); } return s; } #endif // ROCKSDB_LITE void VerificationAbort(SharedState* shared, std::string msg, Status s) const { printf("Verification failed: %s. Status is %s\n", msg.c_str(), s.ToString().c_str()); shared->SetVerificationFailure(); } void VerificationAbort(SharedState* shared, std::string msg, int cf, int64_t key) const { printf("Verification failed for column family %d key %" PRIi64 ": %s\n", cf, key, msg.c_str()); shared->SetVerificationFailure(); } void PrintEnv() const { fprintf(stdout, "RocksDB version : %d.%d\n", kMajorVersion, kMinorVersion); fprintf(stdout, "Format version : %d\n", FLAGS_format_version); fprintf(stdout, "TransactionDB : %s\n", FLAGS_use_txn ? "true" : "false"); fprintf(stdout, "Read only mode : %s\n", FLAGS_read_only ? "true" : "false"); fprintf(stdout, "Atomic flush : %s\n", FLAGS_atomic_flush ? "true" : "false"); fprintf(stdout, "Column families : %d\n", FLAGS_column_families); if (!FLAGS_test_batches_snapshots) { fprintf(stdout, "Clear CFs one in : %d\n", FLAGS_clear_column_family_one_in); } fprintf(stdout, "Number of threads : %d\n", FLAGS_threads); fprintf(stdout, "Ops per thread : %lu\n", (unsigned long)FLAGS_ops_per_thread); std::string ttl_state("unused"); if (FLAGS_ttl > 0) { ttl_state = NumberToString(FLAGS_ttl); } fprintf(stdout, "Time to live(sec) : %s\n", ttl_state.c_str()); fprintf(stdout, "Read percentage : %d%%\n", FLAGS_readpercent); fprintf(stdout, "Prefix percentage : %d%%\n", FLAGS_prefixpercent); fprintf(stdout, "Write percentage : %d%%\n", FLAGS_writepercent); fprintf(stdout, "Delete percentage : %d%%\n", FLAGS_delpercent); fprintf(stdout, "Delete range percentage : %d%%\n", FLAGS_delrangepercent); fprintf(stdout, "No overwrite percentage : %d%%\n", FLAGS_nooverwritepercent); fprintf(stdout, "Iterate percentage : %d%%\n", FLAGS_iterpercent); fprintf(stdout, "DB-write-buffer-size : %" PRIu64 "\n", FLAGS_db_write_buffer_size); fprintf(stdout, "Write-buffer-size : %d\n", FLAGS_write_buffer_size); fprintf(stdout, "Iterations : %lu\n", (unsigned long)FLAGS_num_iterations); fprintf(stdout, "Max key : %lu\n", (unsigned long)FLAGS_max_key); fprintf(stdout, "Ratio #ops/#keys : %f\n", (1.0 * FLAGS_ops_per_thread * FLAGS_threads) / FLAGS_max_key); fprintf(stdout, "Num times DB reopens : %d\n", FLAGS_reopen); fprintf(stdout, "Batches/snapshots : %d\n", FLAGS_test_batches_snapshots); fprintf(stdout, "Do update in place : %d\n", FLAGS_in_place_update); fprintf(stdout, "Num keys per lock : %d\n", 1 << FLAGS_log2_keys_per_lock); std::string compression = CompressionTypeToString(FLAGS_compression_type_e); fprintf(stdout, "Compression : %s\n", compression.c_str()); std::string checksum = ChecksumTypeToString(FLAGS_checksum_type_e); fprintf(stdout, "Checksum type : %s\n", checksum.c_str()); fprintf(stdout, "Max subcompactions : %" PRIu64 "\n", FLAGS_subcompactions); fprintf(stdout, "Use MultiGet : %s\n", FLAGS_use_multiget ? "true" : "false"); const char* memtablerep = ""; switch (FLAGS_rep_factory) { case kSkipList: memtablerep = "skip_list"; break; case kHashSkipList: memtablerep = "prefix_hash"; break; case kVectorRep: memtablerep = "vector"; break; } fprintf(stdout, "Memtablerep : %s\n", memtablerep); fprintf(stdout, "Test kill odd : %d\n", rocksdb_kill_odds); if (!rocksdb_kill_prefix_blacklist.empty()) { fprintf(stdout, "Skipping kill points prefixes:\n"); for (auto& p : rocksdb_kill_prefix_blacklist) { fprintf(stdout, " %s\n", p.c_str()); } } fprintf(stdout, "Periodic Compaction Secs : %" PRIu64 "\n", FLAGS_periodic_compaction_seconds); fprintf(stdout, "Compaction TTL : %" PRIu64 "\n", FLAGS_compaction_ttl); fprintf(stdout, "------------------------------------------------\n"); } void Open() { assert(db_ == nullptr); #ifndef ROCKSDB_LITE assert(txn_db_ == nullptr); #endif if (FLAGS_options_file.empty()) { BlockBasedTableOptions block_based_options; block_based_options.block_cache = cache_; block_based_options.cache_index_and_filter_blocks = FLAGS_cache_index_and_filter_blocks; block_based_options.block_cache_compressed = compressed_cache_; block_based_options.checksum = FLAGS_checksum_type_e; block_based_options.block_size = FLAGS_block_size; block_based_options.format_version = static_cast(FLAGS_format_version); block_based_options.index_block_restart_interval = static_cast(FLAGS_index_block_restart_interval); block_based_options.filter_policy = filter_policy_; block_based_options.partition_filters = FLAGS_partition_filters; block_based_options.index_type = static_cast(FLAGS_index_type); options_.table_factory.reset( NewBlockBasedTableFactory(block_based_options)); options_.db_write_buffer_size = FLAGS_db_write_buffer_size; options_.write_buffer_size = FLAGS_write_buffer_size; options_.max_write_buffer_number = FLAGS_max_write_buffer_number; options_.min_write_buffer_number_to_merge = FLAGS_min_write_buffer_number_to_merge; options_.max_write_buffer_number_to_maintain = FLAGS_max_write_buffer_number_to_maintain; options_.max_write_buffer_size_to_maintain = FLAGS_max_write_buffer_size_to_maintain; options_.memtable_prefix_bloom_size_ratio = FLAGS_memtable_prefix_bloom_size_ratio; options_.memtable_whole_key_filtering = FLAGS_memtable_whole_key_filtering; options_.max_background_compactions = FLAGS_max_background_compactions; options_.max_background_flushes = FLAGS_max_background_flushes; options_.compaction_style = static_cast(FLAGS_compaction_style); if (FLAGS_prefix_size >= 0) { options_.prefix_extractor.reset( NewFixedPrefixTransform(FLAGS_prefix_size)); } options_.max_open_files = FLAGS_open_files; options_.statistics = dbstats; options_.env = FLAGS_env; options_.use_fsync = FLAGS_use_fsync; options_.compaction_readahead_size = FLAGS_compaction_readahead_size; options_.allow_mmap_reads = FLAGS_mmap_read; options_.allow_mmap_writes = FLAGS_mmap_write; options_.use_direct_reads = FLAGS_use_direct_reads; options_.use_direct_io_for_flush_and_compaction = FLAGS_use_direct_io_for_flush_and_compaction; options_.recycle_log_file_num = static_cast(FLAGS_recycle_log_file_num); options_.target_file_size_base = FLAGS_target_file_size_base; options_.target_file_size_multiplier = FLAGS_target_file_size_multiplier; options_.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base; options_.max_bytes_for_level_multiplier = FLAGS_max_bytes_for_level_multiplier; options_.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger; options_.level0_slowdown_writes_trigger = FLAGS_level0_slowdown_writes_trigger; options_.level0_file_num_compaction_trigger = FLAGS_level0_file_num_compaction_trigger; options_.compression = FLAGS_compression_type_e; options_.compression_opts.max_dict_bytes = FLAGS_compression_max_dict_bytes; options_.compression_opts.zstd_max_train_bytes = FLAGS_compression_zstd_max_train_bytes; options_.create_if_missing = true; options_.max_manifest_file_size = FLAGS_max_manifest_file_size; options_.inplace_update_support = FLAGS_in_place_update; options_.max_subcompactions = static_cast(FLAGS_subcompactions); options_.allow_concurrent_memtable_write = FLAGS_allow_concurrent_memtable_write; options_.periodic_compaction_seconds = FLAGS_periodic_compaction_seconds; options_.ttl = FLAGS_compaction_ttl; options_.enable_pipelined_write = FLAGS_enable_pipelined_write; options_.enable_write_thread_adaptive_yield = FLAGS_enable_write_thread_adaptive_yield; options_.compaction_options_universal.size_ratio = FLAGS_universal_size_ratio; options_.compaction_options_universal.min_merge_width = FLAGS_universal_min_merge_width; options_.compaction_options_universal.max_merge_width = FLAGS_universal_max_merge_width; options_.compaction_options_universal.max_size_amplification_percent = FLAGS_universal_max_size_amplification_percent; options_.atomic_flush = FLAGS_atomic_flush; } else { #ifdef ROCKSDB_LITE fprintf(stderr, "--options_file not supported in lite mode\n"); exit(1); #else DBOptions db_options; std::vector cf_descriptors; Status s = LoadOptionsFromFile(FLAGS_options_file, FLAGS_env, &db_options, &cf_descriptors); db_options.env = FLAGS_env; if (!s.ok()) { fprintf(stderr, "Unable to load options file %s --- %s\n", FLAGS_options_file.c_str(), s.ToString().c_str()); exit(1); } options_ = Options(db_options, cf_descriptors[0].options); #endif // ROCKSDB_LITE } if (FLAGS_rate_limiter_bytes_per_sec > 0) { options_.rate_limiter.reset(NewGenericRateLimiter( FLAGS_rate_limiter_bytes_per_sec, 1000 /* refill_period_us */, 10 /* fairness */, FLAGS_rate_limit_bg_reads ? RateLimiter::Mode::kReadsOnly : RateLimiter::Mode::kWritesOnly)); if (FLAGS_rate_limit_bg_reads) { options_.new_table_reader_for_compaction_inputs = true; } } if (FLAGS_prefix_size == 0 && FLAGS_rep_factory == kHashSkipList) { fprintf(stderr, "prefeix_size cannot be zero if memtablerep == prefix_hash\n"); exit(1); } if (FLAGS_prefix_size != 0 && FLAGS_rep_factory != kHashSkipList) { fprintf(stderr, "WARNING: prefix_size is non-zero but " "memtablerep != prefix_hash\n"); } switch (FLAGS_rep_factory) { case kSkipList: // no need to do anything break; #ifndef ROCKSDB_LITE case kHashSkipList: options_.memtable_factory.reset(NewHashSkipListRepFactory(10000)); break; case kVectorRep: options_.memtable_factory.reset(new VectorRepFactory()); break; #else default: fprintf(stderr, "RocksdbLite only supports skip list mem table. Skip " "--rep_factory\n"); #endif // ROCKSDB_LITE } if (FLAGS_use_full_merge_v1) { options_.merge_operator = MergeOperators::CreateDeprecatedPutOperator(); } else { options_.merge_operator = MergeOperators::CreatePutOperator(); } fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str()); Status s; if (FLAGS_ttl == -1) { std::vector existing_column_families; s = DB::ListColumnFamilies(DBOptions(options_), FLAGS_db, &existing_column_families); // ignore errors if (!s.ok()) { // DB doesn't exist assert(existing_column_families.empty()); assert(column_family_names_.empty()); column_family_names_.push_back(kDefaultColumnFamilyName); } else if (column_family_names_.empty()) { // this is the first call to the function Open() column_family_names_ = existing_column_families; } else { // this is a reopen. just assert that existing column_family_names are // equivalent to what we remember auto sorted_cfn = column_family_names_; std::sort(sorted_cfn.begin(), sorted_cfn.end()); std::sort(existing_column_families.begin(), existing_column_families.end()); if (sorted_cfn != existing_column_families) { fprintf(stderr, "Expected column families differ from the existing:\n"); printf("Expected: {"); for (auto cf : sorted_cfn) { printf("%s ", cf.c_str()); } printf("}\n"); printf("Existing: {"); for (auto cf : existing_column_families) { printf("%s ", cf.c_str()); } printf("}\n"); } assert(sorted_cfn == existing_column_families); } std::vector cf_descriptors; for (auto name : column_family_names_) { if (name != kDefaultColumnFamilyName) { new_column_family_name_ = std::max(new_column_family_name_.load(), std::stoi(name) + 1); } cf_descriptors.emplace_back(name, ColumnFamilyOptions(options_)); } while (cf_descriptors.size() < (size_t)FLAGS_column_families) { std::string name = ToString(new_column_family_name_.load()); new_column_family_name_++; cf_descriptors.emplace_back(name, ColumnFamilyOptions(options_)); column_family_names_.push_back(name); } options_.listeners.clear(); options_.listeners.emplace_back( new DbStressListener(FLAGS_db, options_.db_paths, cf_descriptors)); options_.create_missing_column_families = true; if (!FLAGS_use_txn) { if (db_preload_finished_.load() && FLAGS_read_only) { s = DB::OpenForReadOnly(DBOptions(options_), FLAGS_db, cf_descriptors, &column_families_, &db_); } else { s = DB::Open(DBOptions(options_), FLAGS_db, cf_descriptors, &column_families_, &db_); } } else { #ifndef ROCKSDB_LITE TransactionDBOptions txn_db_options; // For the moment it is sufficient to test WRITE_PREPARED policy txn_db_options.write_policy = TxnDBWritePolicy::WRITE_PREPARED; s = TransactionDB::Open(options_, txn_db_options, FLAGS_db, cf_descriptors, &column_families_, &txn_db_); db_ = txn_db_; // after a crash, rollback to commit recovered transactions std::vector trans; txn_db_->GetAllPreparedTransactions(&trans); Random rand(static_cast(FLAGS_seed)); for (auto txn : trans) { if (rand.OneIn(2)) { s = txn->Commit(); assert(s.ok()); } else { s = txn->Rollback(); assert(s.ok()); } delete txn; } trans.clear(); txn_db_->GetAllPreparedTransactions(&trans); assert(trans.size() == 0); #endif } assert(!s.ok() || column_families_.size() == static_cast(FLAGS_column_families)); if (FLAGS_enable_secondary) { #ifndef ROCKSDB_LITE secondaries_.resize(FLAGS_threads); std::fill(secondaries_.begin(), secondaries_.end(), nullptr); secondary_cfh_lists_.clear(); secondary_cfh_lists_.resize(FLAGS_threads); Options tmp_opts; tmp_opts.max_open_files = FLAGS_open_files; tmp_opts.statistics = dbstats_secondaries; tmp_opts.env = FLAGS_env; for (size_t i = 0; i != static_cast(FLAGS_threads); ++i) { const std::string secondary_path = FLAGS_secondaries_base + "/" + std::to_string(i); s = DB::OpenAsSecondary(tmp_opts, FLAGS_db, secondary_path, cf_descriptors, &secondary_cfh_lists_[i], &secondaries_[i]); if (!s.ok()) { break; } } #else fprintf(stderr, "Secondary is not supported in RocksDBLite\n"); exit(1); #endif } } else { #ifndef ROCKSDB_LITE DBWithTTL* db_with_ttl; s = DBWithTTL::Open(options_, FLAGS_db, &db_with_ttl, FLAGS_ttl); db_ = db_with_ttl; if (FLAGS_enable_secondary) { secondaries_.resize(FLAGS_threads); std::fill(secondaries_.begin(), secondaries_.end(), nullptr); Options tmp_opts; tmp_opts.env = options_.env; tmp_opts.max_open_files = FLAGS_open_files; for (size_t i = 0; i != static_cast(FLAGS_threads); ++i) { const std::string secondary_path = FLAGS_secondaries_base + "/" + std::to_string(i); s = DB::OpenAsSecondary(tmp_opts, FLAGS_db, secondary_path, &secondaries_[i]); if (!s.ok()) { break; } } } #else fprintf(stderr, "TTL is not supported in RocksDBLite\n"); exit(1); #endif } if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } } void Reopen() { for (auto cf : column_families_) { delete cf; } column_families_.clear(); delete db_; db_ = nullptr; #ifndef ROCKSDB_LITE txn_db_ = nullptr; #endif assert(secondaries_.size() == secondary_cfh_lists_.size()); size_t n = secondaries_.size(); for (size_t i = 0; i != n; ++i) { for (auto* cf : secondary_cfh_lists_[i]) { delete cf; } secondary_cfh_lists_[i].clear(); delete secondaries_[i]; } secondaries_.clear(); num_times_reopened_++; auto now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Reopening database for the %dth time\n", FLAGS_env->TimeToString(now / 1000000).c_str(), num_times_reopened_); Open(); } void PrintStatistics() { if (dbstats) { fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str()); } if (dbstats_secondaries) { fprintf(stdout, "Secondary instances STATISTICS:\n%s\n", dbstats_secondaries->ToString().c_str()); } } std::shared_ptr cache_; std::shared_ptr compressed_cache_; std::shared_ptr filter_policy_; DB* db_; #ifndef ROCKSDB_LITE TransactionDB* txn_db_; #endif Options options_; std::vector column_families_; std::vector column_family_names_; std::atomic new_column_family_name_; int num_times_reopened_; std::unordered_map> options_table_; std::vector options_index_; std::atomic db_preload_finished_; // Fields used for stress-testing secondary instance in the same process std::vector secondaries_; std::vector> secondary_cfh_lists_; }; class NonBatchedOpsStressTest : public StressTest { public: NonBatchedOpsStressTest() {} virtual ~NonBatchedOpsStressTest() {} virtual void VerifyDb(ThreadState* thread) const { ReadOptions options(FLAGS_verify_checksum, true); auto shared = thread->shared; const int64_t max_key = shared->GetMaxKey(); const int64_t keys_per_thread = max_key / shared->GetNumThreads(); int64_t start = keys_per_thread * thread->tid; int64_t end = start + keys_per_thread; uint64_t prefix_to_use = (FLAGS_prefix_size < 0) ? 1 : static_cast(FLAGS_prefix_size); if (thread->tid == shared->GetNumThreads() - 1) { end = max_key; } for (size_t cf = 0; cf < column_families_.size(); ++cf) { if (thread->shared->HasVerificationFailedYet()) { break; } if (!thread->rand.OneIn(2)) { // Use iterator to verify this range std::unique_ptr iter( db_->NewIterator(options, column_families_[cf])); iter->Seek(Key(start)); for (auto i = start; i < end; i++) { if (thread->shared->HasVerificationFailedYet()) { break; } // TODO(ljin): update "long" to uint64_t // Reseek when the prefix changes if (prefix_to_use > 0 && i % (static_cast(1) << 8 * (8 - prefix_to_use)) == 0) { iter->Seek(Key(i)); } std::string from_db; std::string keystr = Key(i); Slice k = keystr; Status s = iter->status(); if (iter->Valid()) { if (iter->key().compare(k) > 0) { s = Status::NotFound(Slice()); } else if (iter->key().compare(k) == 0) { from_db = iter->value().ToString(); iter->Next(); } else if (iter->key().compare(k) < 0) { VerificationAbort(shared, "An out of range key was found", static_cast(cf), i); } } else { // The iterator found no value for the key in question, so do not // move to the next item in the iterator s = Status::NotFound(Slice()); } VerifyValue(static_cast(cf), i, options, shared, from_db, s, true); if (from_db.length()) { PrintKeyValue(static_cast(cf), static_cast(i), from_db.data(), from_db.length()); } } } else { // Use Get to verify this range for (auto i = start; i < end; i++) { if (thread->shared->HasVerificationFailedYet()) { break; } std::string from_db; std::string keystr = Key(i); Slice k = keystr; Status s = db_->Get(options, column_families_[cf], k, &from_db); VerifyValue(static_cast(cf), i, options, shared, from_db, s, true); if (from_db.length()) { PrintKeyValue(static_cast(cf), static_cast(i), from_db.data(), from_db.length()); } } } } } virtual void MaybeClearOneColumnFamily(ThreadState* thread) { if (FLAGS_clear_column_family_one_in != 0 && FLAGS_column_families > 1) { if (thread->rand.OneIn(FLAGS_clear_column_family_one_in)) { // drop column family and then create it again (can't drop default) int cf = thread->rand.Next() % (FLAGS_column_families - 1) + 1; std::string new_name = ToString(new_column_family_name_.fetch_add(1)); { MutexLock l(thread->shared->GetMutex()); fprintf( stdout, "[CF %d] Dropping and recreating column family. new name: %s\n", cf, new_name.c_str()); } thread->shared->LockColumnFamily(cf); Status s = db_->DropColumnFamily(column_families_[cf]); delete column_families_[cf]; if (!s.ok()) { fprintf(stderr, "dropping column family error: %s\n", s.ToString().c_str()); std::terminate(); } s = db_->CreateColumnFamily(ColumnFamilyOptions(options_), new_name, &column_families_[cf]); column_family_names_[cf] = new_name; thread->shared->ClearColumnFamily(cf); if (!s.ok()) { fprintf(stderr, "creating column family error: %s\n", s.ToString().c_str()); std::terminate(); } thread->shared->UnlockColumnFamily(cf); } } } virtual bool ShouldAcquireMutexOnKey() const { return true; } virtual Status TestGet(ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) { auto cfh = column_families_[rand_column_families[0]]; std::string key_str = Key(rand_keys[0]); Slice key = key_str; std::string from_db; Status s = db_->Get(read_opts, cfh, key, &from_db); if (s.ok()) { // found case thread->stats.AddGets(1, 1); } else if (s.IsNotFound()) { // not found case thread->stats.AddGets(1, 0); } else { // errors case thread->stats.AddErrors(1); } return s; } virtual std::vector TestMultiGet( ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) { size_t num_keys = rand_keys.size(); std::vector key_str; std::vector keys; key_str.reserve(num_keys); keys.reserve(num_keys); std::vector values(num_keys); std::vector statuses(num_keys); ColumnFamilyHandle* cfh = column_families_[rand_column_families[0]]; for (size_t i = 0; i < num_keys; ++i) { key_str.emplace_back(Key(rand_keys[i])); keys.emplace_back(key_str.back()); } db_->MultiGet(read_opts, cfh, num_keys, keys.data(), values.data(), statuses.data()); for (const auto& s : statuses) { if (s.ok()) { // found case thread->stats.AddGets(1, 1); } else if (s.IsNotFound()) { // not found case thread->stats.AddGets(1, 0); } else { // errors case thread->stats.AddErrors(1); } } return statuses; } virtual Status TestPrefixScan(ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) { auto cfh = column_families_[rand_column_families[0]]; std::string key_str = Key(rand_keys[0]); Slice key = key_str; Slice prefix = Slice(key.data(), FLAGS_prefix_size); std::string upper_bound; Slice ub_slice; ReadOptions ro_copy = read_opts; if (thread->rand.OneIn(2) && GetNextPrefix(prefix, &upper_bound)) { // For half of the time, set the upper bound to the next prefix ub_slice = Slice(upper_bound); ro_copy.iterate_upper_bound = &ub_slice; } Iterator* iter = db_->NewIterator(ro_copy, cfh); long count = 0; for (iter->Seek(prefix); iter->Valid() && iter->key().starts_with(prefix); iter->Next()) { ++count; } assert(count <= (static_cast(1) << ((8 - FLAGS_prefix_size) * 8))); Status s = iter->status(); if (iter->status().ok()) { thread->stats.AddPrefixes(1, count); } else { thread->stats.AddErrors(1); } delete iter; return s; } virtual Status TestPut(ThreadState* thread, WriteOptions& write_opts, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys, char (&value)[100], std::unique_ptr& lock) { auto shared = thread->shared; int64_t max_key = shared->GetMaxKey(); int64_t rand_key = rand_keys[0]; int rand_column_family = rand_column_families[0]; while (!shared->AllowsOverwrite(rand_key) && (FLAGS_use_merge || shared->Exists(rand_column_family, rand_key))) { lock.reset(); rand_key = thread->rand.Next() % max_key; rand_column_family = thread->rand.Next() % FLAGS_column_families; lock.reset( new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key))); } std::string key_str = Key(rand_key); Slice key = key_str; ColumnFamilyHandle* cfh = column_families_[rand_column_family]; if (FLAGS_verify_before_write) { std::string key_str2 = Key(rand_key); Slice k = key_str2; std::string from_db; Status s = db_->Get(read_opts, cfh, k, &from_db); if (!VerifyValue(rand_column_family, rand_key, read_opts, shared, from_db, s, true)) { return s; } } uint32_t value_base = thread->rand.Next() % shared->UNKNOWN_SENTINEL; size_t sz = GenerateValue(value_base, value, sizeof(value)); Slice v(value, sz); shared->Put(rand_column_family, rand_key, value_base, true /* pending */); Status s; if (FLAGS_use_merge) { if (!FLAGS_use_txn) { s = db_->Merge(write_opts, cfh, key, v); } else { #ifndef ROCKSDB_LITE Transaction* txn; s = NewTxn(write_opts, &txn); if (s.ok()) { s = txn->Merge(cfh, key, v); if (s.ok()) { s = CommitTxn(txn); } } #endif } } else { if (!FLAGS_use_txn) { s = db_->Put(write_opts, cfh, key, v); } else { #ifndef ROCKSDB_LITE Transaction* txn; s = NewTxn(write_opts, &txn); if (s.ok()) { s = txn->Put(cfh, key, v); if (s.ok()) { s = CommitTxn(txn); } } #endif } } shared->Put(rand_column_family, rand_key, value_base, false /* pending */); if (!s.ok()) { fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str()); std::terminate(); } thread->stats.AddBytesForWrites(1, sz); PrintKeyValue(rand_column_family, static_cast(rand_key), value, sz); return s; } virtual Status TestDelete(ThreadState* thread, WriteOptions& write_opts, const std::vector& rand_column_families, const std::vector& rand_keys, std::unique_ptr& lock) { int64_t rand_key = rand_keys[0]; int rand_column_family = rand_column_families[0]; auto shared = thread->shared; int64_t max_key = shared->GetMaxKey(); // OPERATION delete // If the chosen key does not allow overwrite and it does not exist, // choose another key. while (!shared->AllowsOverwrite(rand_key) && !shared->Exists(rand_column_family, rand_key)) { lock.reset(); rand_key = thread->rand.Next() % max_key; rand_column_family = thread->rand.Next() % FLAGS_column_families; lock.reset( new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key))); } std::string key_str = Key(rand_key); Slice key = key_str; auto cfh = column_families_[rand_column_family]; // Use delete if the key may be overwritten and a single deletion // otherwise. Status s; if (shared->AllowsOverwrite(rand_key)) { shared->Delete(rand_column_family, rand_key, true /* pending */); if (!FLAGS_use_txn) { s = db_->Delete(write_opts, cfh, key); } else { #ifndef ROCKSDB_LITE Transaction* txn; s = NewTxn(write_opts, &txn); if (s.ok()) { s = txn->Delete(cfh, key); if (s.ok()) { s = CommitTxn(txn); } } #endif } shared->Delete(rand_column_family, rand_key, false /* pending */); thread->stats.AddDeletes(1); if (!s.ok()) { fprintf(stderr, "delete error: %s\n", s.ToString().c_str()); std::terminate(); } } else { shared->SingleDelete(rand_column_family, rand_key, true /* pending */); if (!FLAGS_use_txn) { s = db_->SingleDelete(write_opts, cfh, key); } else { #ifndef ROCKSDB_LITE Transaction* txn; s = NewTxn(write_opts, &txn); if (s.ok()) { s = txn->SingleDelete(cfh, key); if (s.ok()) { s = CommitTxn(txn); } } #endif } shared->SingleDelete(rand_column_family, rand_key, false /* pending */); thread->stats.AddSingleDeletes(1); if (!s.ok()) { fprintf(stderr, "single delete error: %s\n", s.ToString().c_str()); std::terminate(); } } return s; } virtual Status TestDeleteRange(ThreadState* thread, WriteOptions& write_opts, const std::vector& rand_column_families, const std::vector& rand_keys, std::unique_ptr& lock) { // OPERATION delete range std::vector> range_locks; // delete range does not respect disallowed overwrites. the keys for // which overwrites are disallowed are randomly distributed so it // could be expensive to find a range where each key allows // overwrites. int64_t rand_key = rand_keys[0]; int rand_column_family = rand_column_families[0]; auto shared = thread->shared; int64_t max_key = shared->GetMaxKey(); if (rand_key > max_key - FLAGS_range_deletion_width) { lock.reset(); rand_key = thread->rand.Next() % (max_key - FLAGS_range_deletion_width + 1); range_locks.emplace_back( new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key))); } else { range_locks.emplace_back(std::move(lock)); } for (int j = 1; j < FLAGS_range_deletion_width; ++j) { if (((rand_key + j) & ((1 << FLAGS_log2_keys_per_lock) - 1)) == 0) { range_locks.emplace_back(new MutexLock( shared->GetMutexForKey(rand_column_family, rand_key + j))); } } shared->DeleteRange(rand_column_family, rand_key, rand_key + FLAGS_range_deletion_width, true /* pending */); std::string keystr = Key(rand_key); Slice key = keystr; auto cfh = column_families_[rand_column_family]; std::string end_keystr = Key(rand_key + FLAGS_range_deletion_width); Slice end_key = end_keystr; Status s = db_->DeleteRange(write_opts, cfh, key, end_key); if (!s.ok()) { fprintf(stderr, "delete range error: %s\n", s.ToString().c_str()); std::terminate(); } int covered = shared->DeleteRange(rand_column_family, rand_key, rand_key + FLAGS_range_deletion_width, false /* pending */); thread->stats.AddRangeDeletions(1); thread->stats.AddCoveredByRangeDeletions(covered); return s; } #ifdef ROCKSDB_LITE virtual void TestIngestExternalFile( ThreadState* /* thread */, const std::vector& /* rand_column_families */, const std::vector& /* rand_keys */, std::unique_ptr& /* lock */) { assert(false); fprintf(stderr, "RocksDB lite does not support " "TestIngestExternalFile\n"); std::terminate(); } #else virtual void TestIngestExternalFile( ThreadState* thread, const std::vector& rand_column_families, const std::vector& rand_keys, std::unique_ptr& lock) { const std::string sst_filename = FLAGS_db + "/." + ToString(thread->tid) + ".sst"; Status s; if (FLAGS_env->FileExists(sst_filename).ok()) { // Maybe we terminated abnormally before, so cleanup to give this file // ingestion a clean slate s = FLAGS_env->DeleteFile(sst_filename); } SstFileWriter sst_file_writer(EnvOptions(options_), options_); if (s.ok()) { s = sst_file_writer.Open(sst_filename); } int64_t key_base = rand_keys[0]; int column_family = rand_column_families[0]; std::vector> range_locks; std::vector values; SharedState* shared = thread->shared; // Grab locks, set pending state on expected values, and add keys for (int64_t key = key_base; s.ok() && key < std::min(key_base + FLAGS_ingest_external_file_width, shared->GetMaxKey()); ++key) { if (key == key_base) { range_locks.emplace_back(std::move(lock)); } else if ((key & ((1 << FLAGS_log2_keys_per_lock) - 1)) == 0) { range_locks.emplace_back( new MutexLock(shared->GetMutexForKey(column_family, key))); } uint32_t value_base = thread->rand.Next() % shared->UNKNOWN_SENTINEL; values.push_back(value_base); shared->Put(column_family, key, value_base, true /* pending */); char value[100]; size_t value_len = GenerateValue(value_base, value, sizeof(value)); auto key_str = Key(key); s = sst_file_writer.Put(Slice(key_str), Slice(value, value_len)); } if (s.ok()) { s = sst_file_writer.Finish(); } if (s.ok()) { s = db_->IngestExternalFile(column_families_[column_family], {sst_filename}, IngestExternalFileOptions()); } if (!s.ok()) { fprintf(stderr, "file ingestion error: %s\n", s.ToString().c_str()); std::terminate(); } int64_t key = key_base; for (int32_t value : values) { shared->Put(column_family, key, value, false /* pending */); ++key; } } #endif // ROCKSDB_LITE bool VerifyValue(int cf, int64_t key, const ReadOptions& /*opts*/, SharedState* shared, const std::string& value_from_db, Status s, bool strict = false) const { if (shared->HasVerificationFailedYet()) { return false; } // compare value_from_db with the value in the shared state char value[kValueMaxLen]; uint32_t value_base = shared->Get(cf, key); if (value_base == SharedState::UNKNOWN_SENTINEL) { return true; } if (value_base == SharedState::DELETION_SENTINEL && !strict) { return true; } if (s.ok()) { if (value_base == SharedState::DELETION_SENTINEL) { VerificationAbort(shared, "Unexpected value found", cf, key); return false; } size_t sz = GenerateValue(value_base, value, sizeof(value)); if (value_from_db.length() != sz) { VerificationAbort(shared, "Length of value read is not equal", cf, key); return false; } if (memcmp(value_from_db.data(), value, sz) != 0) { VerificationAbort(shared, "Contents of value read don't match", cf, key); return false; } } else { if (value_base != SharedState::DELETION_SENTINEL) { VerificationAbort(shared, "Value not found: " + s.ToString(), cf, key); return false; } } return true; } }; class BatchedOpsStressTest : public StressTest { public: BatchedOpsStressTest() {} virtual ~BatchedOpsStressTest() {} // Given a key K and value V, this puts ("0"+K, "0"+V), ("1"+K, "1"+V), ... // ("9"+K, "9"+V) in DB atomically i.e in a single batch. // Also refer BatchedOpsStressTest::TestGet virtual Status TestPut(ThreadState* thread, WriteOptions& write_opts, const ReadOptions& /* read_opts */, const std::vector& rand_column_families, const std::vector& rand_keys, char (&value)[100], std::unique_ptr& /* lock */) { uint32_t value_base = thread->rand.Next() % thread->shared->UNKNOWN_SENTINEL; size_t sz = GenerateValue(value_base, value, sizeof(value)); Slice v(value, sz); std::string keys[10] = {"9", "8", "7", "6", "5", "4", "3", "2", "1", "0"}; std::string values[10] = {"9", "8", "7", "6", "5", "4", "3", "2", "1", "0"}; Slice value_slices[10]; WriteBatch batch; Status s; auto cfh = column_families_[rand_column_families[0]]; std::string key_str = Key(rand_keys[0]); for (int i = 0; i < 10; i++) { keys[i] += key_str; values[i] += v.ToString(); value_slices[i] = values[i]; if (FLAGS_use_merge) { batch.Merge(cfh, keys[i], value_slices[i]); } else { batch.Put(cfh, keys[i], value_slices[i]); } } s = db_->Write(write_opts, &batch); if (!s.ok()) { fprintf(stderr, "multiput error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); } else { // we did 10 writes each of size sz + 1 thread->stats.AddBytesForWrites(10, (sz + 1) * 10); } return s; } // Given a key K, this deletes ("0"+K), ("1"+K),... ("9"+K) // in DB atomically i.e in a single batch. Also refer MultiGet. virtual Status TestDelete(ThreadState* thread, WriteOptions& writeoptions, const std::vector& rand_column_families, const std::vector& rand_keys, std::unique_ptr& /* lock */) { std::string keys[10] = {"9", "7", "5", "3", "1", "8", "6", "4", "2", "0"}; WriteBatch batch; Status s; auto cfh = column_families_[rand_column_families[0]]; std::string key_str = Key(rand_keys[0]); for (int i = 0; i < 10; i++) { keys[i] += key_str; batch.Delete(cfh, keys[i]); } s = db_->Write(writeoptions, &batch); if (!s.ok()) { fprintf(stderr, "multidelete error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); } else { thread->stats.AddDeletes(10); } return s; } virtual Status TestDeleteRange( ThreadState* /* thread */, WriteOptions& /* write_opts */, const std::vector& /* rand_column_families */, const std::vector& /* rand_keys */, std::unique_ptr& /* lock */) { assert(false); return Status::NotSupported( "BatchedOpsStressTest does not support " "TestDeleteRange"); } virtual void TestIngestExternalFile( ThreadState* /* thread */, const std::vector& /* rand_column_families */, const std::vector& /* rand_keys */, std::unique_ptr& /* lock */) { assert(false); fprintf(stderr, "BatchedOpsStressTest does not support " "TestIngestExternalFile\n"); std::terminate(); } // Given a key K, this gets values for "0"+K, "1"+K,..."9"+K // in the same snapshot, and verifies that all the values are of the form // "0"+V, "1"+V,..."9"+V. // ASSUMES that BatchedOpsStressTest::TestPut was used to put (K, V) into // the DB. virtual Status TestGet(ThreadState* thread, const ReadOptions& readoptions, const std::vector& rand_column_families, const std::vector& rand_keys) { std::string keys[10] = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}; Slice key_slices[10]; std::string values[10]; ReadOptions readoptionscopy = readoptions; readoptionscopy.snapshot = db_->GetSnapshot(); std::string key_str = Key(rand_keys[0]); Slice key = key_str; auto cfh = column_families_[rand_column_families[0]]; std::string from_db; Status s; for (int i = 0; i < 10; i++) { keys[i] += key.ToString(); key_slices[i] = keys[i]; s = db_->Get(readoptionscopy, cfh, key_slices[i], &from_db); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); values[i] = ""; thread->stats.AddErrors(1); // we continue after error rather than exiting so that we can // find more errors if any } else if (s.IsNotFound()) { values[i] = ""; thread->stats.AddGets(1, 0); } else { values[i] = from_db; char expected_prefix = (keys[i])[0]; char actual_prefix = (values[i])[0]; if (actual_prefix != expected_prefix) { fprintf(stderr, "error expected prefix = %c actual = %c\n", expected_prefix, actual_prefix); } (values[i])[0] = ' '; // blank out the differing character thread->stats.AddGets(1, 1); } } db_->ReleaseSnapshot(readoptionscopy.snapshot); // Now that we retrieved all values, check that they all match for (int i = 1; i < 10; i++) { if (values[i] != values[0]) { fprintf(stderr, "error : inconsistent values for key %s: %s, %s\n", key.ToString(true).c_str(), StringToHex(values[0]).c_str(), StringToHex(values[i]).c_str()); // we continue after error rather than exiting so that we can // find more errors if any } } return s; } virtual std::vector TestMultiGet( ThreadState* thread, const ReadOptions& readoptions, const std::vector& rand_column_families, const std::vector& rand_keys) { size_t num_keys = rand_keys.size(); std::vector ret_status(num_keys); std::array keys = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}; size_t num_prefixes = keys.size(); for (size_t rand_key = 0; rand_key < num_keys; ++rand_key) { std::vector key_slices; std::vector values(num_prefixes); std::vector statuses(num_prefixes); ReadOptions readoptionscopy = readoptions; readoptionscopy.snapshot = db_->GetSnapshot(); std::vector key_str; key_str.reserve(num_prefixes); key_slices.reserve(num_prefixes); std::string from_db; ColumnFamilyHandle* cfh = column_families_[rand_column_families[0]]; for (size_t key = 0; key < num_prefixes; ++key) { key_str.emplace_back(keys[key] + Key(rand_keys[rand_key])); key_slices.emplace_back(key_str.back()); } db_->MultiGet(readoptionscopy, cfh, num_prefixes, key_slices.data(), values.data(), statuses.data()); for (size_t i = 0; i < num_prefixes; i++) { Status s = statuses[i]; if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); ret_status[rand_key] = s; // we continue after error rather than exiting so that we can // find more errors if any } else if (s.IsNotFound()) { thread->stats.AddGets(1, 0); ret_status[rand_key] = s; } else { char expected_prefix = (keys[i])[0]; char actual_prefix = (values[i])[0]; if (actual_prefix != expected_prefix) { fprintf(stderr, "error expected prefix = %c actual = %c\n", expected_prefix, actual_prefix); } std::string str; str.assign(values[i].data(), values[i].size()); values[i].Reset(); str[0] = ' '; // blank out the differing character values[i].PinSelf(str); thread->stats.AddGets(1, 1); } } db_->ReleaseSnapshot(readoptionscopy.snapshot); // Now that we retrieved all values, check that they all match for (size_t i = 1; i < num_prefixes; i++) { if (values[i] != values[0]) { fprintf(stderr, "error : inconsistent values for key %s: %s, %s\n", key_str[i].c_str(), StringToHex(values[0].ToString()).c_str(), StringToHex(values[i].ToString()).c_str()); // we continue after error rather than exiting so that we can // find more errors if any } } } return ret_status; } // Given a key, this does prefix scans for "0"+P, "1"+P,..."9"+P // in the same snapshot where P is the first FLAGS_prefix_size - 1 bytes // of the key. Each of these 10 scans returns a series of values; // each series should be the same length, and it is verified for each // index i that all the i'th values are of the form "0"+V, "1"+V,..."9"+V. // ASSUMES that MultiPut was used to put (K, V) virtual Status TestPrefixScan(ThreadState* thread, const ReadOptions& readoptions, const std::vector& rand_column_families, const std::vector& rand_keys) { size_t prefix_to_use = (FLAGS_prefix_size < 0) ? 7 : static_cast(FLAGS_prefix_size); std::string key_str = Key(rand_keys[0]); Slice key = key_str; auto cfh = column_families_[rand_column_families[0]]; std::string prefixes[10] = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}; Slice prefix_slices[10]; ReadOptions readoptionscopy[10]; const Snapshot* snapshot = db_->GetSnapshot(); Iterator* iters[10]; std::string upper_bounds[10]; Slice ub_slices[10]; Status s = Status::OK(); for (int i = 0; i < 10; i++) { prefixes[i] += key.ToString(); prefixes[i].resize(prefix_to_use); prefix_slices[i] = Slice(prefixes[i]); readoptionscopy[i] = readoptions; readoptionscopy[i].snapshot = snapshot; if (thread->rand.OneIn(2) && GetNextPrefix(prefix_slices[i], &(upper_bounds[i]))) { // For half of the time, set the upper bound to the next prefix ub_slices[i] = Slice(upper_bounds[i]); readoptionscopy[i].iterate_upper_bound = &(ub_slices[i]); } iters[i] = db_->NewIterator(readoptionscopy[i], cfh); iters[i]->Seek(prefix_slices[i]); } long count = 0; while (iters[0]->Valid() && iters[0]->key().starts_with(prefix_slices[0])) { count++; std::string values[10]; // get list of all values for this iteration for (int i = 0; i < 10; i++) { // no iterator should finish before the first one assert(iters[i]->Valid() && iters[i]->key().starts_with(prefix_slices[i])); values[i] = iters[i]->value().ToString(); char expected_first = (prefixes[i])[0]; char actual_first = (values[i])[0]; if (actual_first != expected_first) { fprintf(stderr, "error expected first = %c actual = %c\n", expected_first, actual_first); } (values[i])[0] = ' '; // blank out the differing character } // make sure all values are equivalent for (int i = 0; i < 10; i++) { if (values[i] != values[0]) { fprintf(stderr, "error : %d, inconsistent values for prefix %s: %s, %s\n", i, prefixes[i].c_str(), StringToHex(values[0]).c_str(), StringToHex(values[i]).c_str()); // we continue after error rather than exiting so that we can // find more errors if any } iters[i]->Next(); } } // cleanup iterators and snapshot for (int i = 0; i < 10; i++) { // if the first iterator finished, they should have all finished assert(!iters[i]->Valid() || !iters[i]->key().starts_with(prefix_slices[i])); assert(iters[i]->status().ok()); delete iters[i]; } db_->ReleaseSnapshot(snapshot); if (s.ok()) { thread->stats.AddPrefixes(1, count); } else { thread->stats.AddErrors(1); } return s; } virtual void VerifyDb(ThreadState* /* thread */) const {} }; class CfConsistencyStressTest : public StressTest { public: CfConsistencyStressTest() : batch_id_(0) {} virtual ~CfConsistencyStressTest() {} virtual Status TestPut(ThreadState* thread, WriteOptions& write_opts, const ReadOptions& /* read_opts */, const std::vector& rand_column_families, const std::vector& rand_keys, char (&value)[100], std::unique_ptr& /* lock */) { std::string key_str = Key(rand_keys[0]); Slice key = key_str; uint64_t value_base = batch_id_.fetch_add(1); size_t sz = GenerateValue(static_cast(value_base), value, sizeof(value)); Slice v(value, sz); WriteBatch batch; for (auto cf : rand_column_families) { ColumnFamilyHandle* cfh = column_families_[cf]; if (FLAGS_use_merge) { batch.Merge(cfh, key, v); } else { /* !FLAGS_use_merge */ batch.Put(cfh, key, v); } } Status s = db_->Write(write_opts, &batch); if (!s.ok()) { fprintf(stderr, "multi put or merge error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); } else { auto num = static_cast(rand_column_families.size()); thread->stats.AddBytesForWrites(num, (sz + 1) * num); } return s; } virtual Status TestDelete(ThreadState* thread, WriteOptions& write_opts, const std::vector& rand_column_families, const std::vector& rand_keys, std::unique_ptr& /* lock */) { std::string key_str = Key(rand_keys[0]); Slice key = key_str; WriteBatch batch; for (auto cf : rand_column_families) { ColumnFamilyHandle* cfh = column_families_[cf]; batch.Delete(cfh, key); } Status s = db_->Write(write_opts, &batch); if (!s.ok()) { fprintf(stderr, "multidel error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); } else { thread->stats.AddDeletes(static_cast(rand_column_families.size())); } return s; } virtual Status TestDeleteRange(ThreadState* thread, WriteOptions& write_opts, const std::vector& rand_column_families, const std::vector& rand_keys, std::unique_ptr& /* lock */) { int64_t rand_key = rand_keys[0]; auto shared = thread->shared; int64_t max_key = shared->GetMaxKey(); if (rand_key > max_key - FLAGS_range_deletion_width) { rand_key = thread->rand.Next() % (max_key - FLAGS_range_deletion_width + 1); } std::string key_str = Key(rand_key); Slice key = key_str; std::string end_key_str = Key(rand_key + FLAGS_range_deletion_width); Slice end_key = end_key_str; WriteBatch batch; for (auto cf : rand_column_families) { ColumnFamilyHandle* cfh = column_families_[rand_column_families[cf]]; batch.DeleteRange(cfh, key, end_key); } Status s = db_->Write(write_opts, &batch); if (!s.ok()) { fprintf(stderr, "multi del range error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); } else { thread->stats.AddRangeDeletions( static_cast(rand_column_families.size())); } return s; } virtual void TestIngestExternalFile( ThreadState* /* thread */, const std::vector& /* rand_column_families */, const std::vector& /* rand_keys */, std::unique_ptr& /* lock */) { assert(false); fprintf(stderr, "CfConsistencyStressTest does not support TestIngestExternalFile " "because it's not possible to verify the result\n"); std::terminate(); } virtual Status TestGet(ThreadState* thread, const ReadOptions& readoptions, const std::vector& rand_column_families, const std::vector& rand_keys) { std::string key_str = Key(rand_keys[0]); Slice key = key_str; Status s; bool is_consistent = true; if (thread->rand.OneIn(2)) { // 1/2 chance, does a random read from random CF auto cfh = column_families_[rand_column_families[thread->rand.Next() % rand_column_families.size()]]; std::string from_db; s = db_->Get(readoptions, cfh, key, &from_db); } else { // 1/2 chance, comparing one key is the same across all CFs const Snapshot* snapshot = db_->GetSnapshot(); ReadOptions readoptionscopy = readoptions; readoptionscopy.snapshot = snapshot; std::string value0; s = db_->Get(readoptionscopy, column_families_[rand_column_families[0]], key, &value0); if (s.ok() || s.IsNotFound()) { bool found = s.ok(); for (size_t i = 1; i < rand_column_families.size(); i++) { std::string value1; s = db_->Get(readoptionscopy, column_families_[rand_column_families[i]], key, &value1); if (!s.ok() && !s.IsNotFound()) { break; } if (!found && s.ok()) { fprintf(stderr, "Get() return different results with key %s\n", Slice(key_str).ToString(true).c_str()); fprintf(stderr, "CF %s is not found\n", column_family_names_[0].c_str()); fprintf(stderr, "CF %s returns value %s\n", column_family_names_[i].c_str(), Slice(value1).ToString(true).c_str()); is_consistent = false; } else if (found && s.IsNotFound()) { fprintf(stderr, "Get() return different results with key %s\n", Slice(key_str).ToString(true).c_str()); fprintf(stderr, "CF %s returns value %s\n", column_family_names_[0].c_str(), Slice(value0).ToString(true).c_str()); fprintf(stderr, "CF %s is not found\n", column_family_names_[i].c_str()); is_consistent = false; } else if (s.ok() && value0 != value1) { fprintf(stderr, "Get() return different results with key %s\n", Slice(key_str).ToString(true).c_str()); fprintf(stderr, "CF %s returns value %s\n", column_family_names_[0].c_str(), Slice(value0).ToString(true).c_str()); fprintf(stderr, "CF %s returns value %s\n", column_family_names_[i].c_str(), Slice(value1).ToString(true).c_str()); is_consistent = false; } if (!is_consistent) { break; } } } db_->ReleaseSnapshot(snapshot); } if (!is_consistent) { thread->stats.AddErrors(1); // Fail fast to preserve the DB state. thread->shared->SetVerificationFailure(); } else if (s.ok()) { thread->stats.AddGets(1, 1); } else if (s.IsNotFound()) { thread->stats.AddGets(1, 0); } else { thread->stats.AddErrors(1); } return s; } virtual std::vector TestMultiGet( ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) { size_t num_keys = rand_keys.size(); std::vector key_str; std::vector keys; keys.reserve(num_keys); key_str.reserve(num_keys); std::vector values(num_keys); std::vector statuses(num_keys); ColumnFamilyHandle* cfh = column_families_[rand_column_families[0]]; for (size_t i = 0; i < num_keys; ++i) { key_str.emplace_back(Key(rand_keys[i])); keys.emplace_back(key_str.back()); } db_->MultiGet(read_opts, cfh, num_keys, keys.data(), values.data(), statuses.data()); for (auto s : statuses) { if (s.ok()) { // found case thread->stats.AddGets(1, 1); } else if (s.IsNotFound()) { // not found case thread->stats.AddGets(1, 0); } else { // errors case thread->stats.AddErrors(1); } } return statuses; } virtual Status TestPrefixScan(ThreadState* thread, const ReadOptions& readoptions, const std::vector& rand_column_families, const std::vector& rand_keys) { size_t prefix_to_use = (FLAGS_prefix_size < 0) ? 7 : static_cast(FLAGS_prefix_size); std::string key_str = Key(rand_keys[0]); Slice key = key_str; Slice prefix = Slice(key.data(), prefix_to_use); std::string upper_bound; Slice ub_slice; ReadOptions ro_copy = readoptions; if (thread->rand.OneIn(2) && GetNextPrefix(prefix, &upper_bound)) { ub_slice = Slice(upper_bound); ro_copy.iterate_upper_bound = &ub_slice; } auto cfh = column_families_[rand_column_families[thread->rand.Next() % rand_column_families.size()]]; Iterator* iter = db_->NewIterator(ro_copy, cfh); long count = 0; for (iter->Seek(prefix); iter->Valid() && iter->key().starts_with(prefix); iter->Next()) { ++count; } assert(prefix_to_use == 0 || count <= (static_cast(1) << ((8 - prefix_to_use) * 8))); Status s = iter->status(); if (s.ok()) { thread->stats.AddPrefixes(1, count); } else { thread->stats.AddErrors(1); } delete iter; return s; } virtual ColumnFamilyHandle* GetControlCfh(ThreadState* thread, int /*column_family_id*/ ) { // All column families should contain the same data. Randomly pick one. return column_families_[thread->rand.Next() % column_families_.size()]; } #ifdef ROCKSDB_LITE virtual Status TestCheckpoint( ThreadState* /* thread */, const std::vector& /* rand_column_families */, const std::vector& /* rand_keys */) { assert(false); fprintf(stderr, "RocksDB lite does not support " "TestCheckpoint\n"); std::terminate(); } #else virtual Status TestCheckpoint( ThreadState* thread, const std::vector& /* rand_column_families */, const std::vector& /* rand_keys */) { std::string checkpoint_dir = FLAGS_db + "/.checkpoint" + ToString(thread->tid); DestroyDB(checkpoint_dir, options_); Checkpoint* checkpoint = nullptr; Status s = Checkpoint::Create(db_, &checkpoint); if (s.ok()) { s = checkpoint->CreateCheckpoint(checkpoint_dir); } std::vector cf_handles; DB* checkpoint_db = nullptr; if (s.ok()) { delete checkpoint; checkpoint = nullptr; Options options(options_); options.listeners.clear(); std::vector cf_descs; // TODO(ajkr): `column_family_names_` is not safe to access here when // `clear_column_family_one_in != 0`. But we can't easily switch to // `ListColumnFamilies` to get names because it won't necessarily give // the same order as `column_family_names_`. if (FLAGS_clear_column_family_one_in == 0) { for (const auto& name : column_family_names_) { cf_descs.emplace_back(name, ColumnFamilyOptions(options)); } s = DB::OpenForReadOnly(DBOptions(options), checkpoint_dir, cf_descs, &cf_handles, &checkpoint_db); } } if (checkpoint_db != nullptr) { for (auto cfh : cf_handles) { delete cfh; } cf_handles.clear(); delete checkpoint_db; checkpoint_db = nullptr; } DestroyDB(checkpoint_dir, options_); if (!s.ok()) { fprintf(stderr, "A checkpoint operation failed with: %s\n", s.ToString().c_str()); } return s; } #endif // !ROCKSDB_LITE virtual void VerifyDb(ThreadState* thread) const { ReadOptions options(FLAGS_verify_checksum, true); // We must set total_order_seek to true because we are doing a SeekToFirst // on a column family whose memtables may support (by default) prefix-based // iterator. In this case, NewIterator with options.total_order_seek being // false returns a prefix-based iterator. Calling SeekToFirst using this // iterator causes the iterator to become invalid. That means we cannot // iterate the memtable using this iterator any more, although the memtable // contains the most up-to-date key-values. options.total_order_seek = true; assert(thread != nullptr); auto shared = thread->shared; std::vector> iters(column_families_.size()); for (size_t i = 0; i != column_families_.size(); ++i) { iters[i].reset(db_->NewIterator(options, column_families_[i])); } for (auto& iter : iters) { iter->SeekToFirst(); } size_t num = column_families_.size(); assert(num == iters.size()); std::vector statuses(num, Status::OK()); do { if (shared->HasVerificationFailedYet()) { break; } size_t valid_cnt = 0; size_t idx = 0; for (auto& iter : iters) { if (iter->Valid()) { ++valid_cnt; } else { statuses[idx] = iter->status(); } ++idx; } if (valid_cnt == 0) { Status status; for (size_t i = 0; i != num; ++i) { const auto& s = statuses[i]; if (!s.ok()) { status = s; fprintf(stderr, "Iterator on cf %s has error: %s\n", column_families_[i]->GetName().c_str(), s.ToString().c_str()); shared->SetVerificationFailure(); } } if (status.ok()) { fprintf(stdout, "Finished scanning all column families.\n"); } break; } else if (valid_cnt != iters.size()) { shared->SetVerificationFailure(); for (size_t i = 0; i != num; ++i) { if (!iters[i]->Valid()) { if (statuses[i].ok()) { fprintf(stderr, "Finished scanning cf %s\n", column_families_[i]->GetName().c_str()); } else { fprintf(stderr, "Iterator on cf %s has error: %s\n", column_families_[i]->GetName().c_str(), statuses[i].ToString().c_str()); } } else { fprintf(stderr, "cf %s has remaining data to scan\n", column_families_[i]->GetName().c_str()); } } break; } if (shared->HasVerificationFailedYet()) { break; } // If the program reaches here, then all column families' iterators are // still valid. if (shared->PrintingVerificationResults()) { continue; } Slice key; Slice value; int num_mismatched_cfs = 0; for (size_t i = 0; i != num; ++i) { if (i == 0) { key = iters[i]->key(); value = iters[i]->value(); } else { int cmp = key.compare(iters[i]->key()); if (cmp != 0) { ++num_mismatched_cfs; if (1 == num_mismatched_cfs) { fprintf(stderr, "Verification failed\n"); fprintf(stderr, "Latest Sequence Number: %" PRIu64 "\n", db_->GetLatestSequenceNumber()); fprintf(stderr, "[%s] %s => %s\n", column_families_[0]->GetName().c_str(), key.ToString(true /* hex */).c_str(), value.ToString(true /* hex */).c_str()); } fprintf(stderr, "[%s] %s => %s\n", column_families_[i]->GetName().c_str(), iters[i]->key().ToString(true /* hex */).c_str(), iters[i]->value().ToString(true /* hex */).c_str()); #ifndef ROCKSDB_LITE Slice begin_key; Slice end_key; if (cmp < 0) { begin_key = key; end_key = iters[i]->key(); } else { begin_key = iters[i]->key(); end_key = key; } std::vector versions; const size_t kMaxNumIKeys = 8; const auto print_key_versions = [&](ColumnFamilyHandle* cfh) { Status s = GetAllKeyVersions(db_, cfh, begin_key, end_key, kMaxNumIKeys, &versions); if (!s.ok()) { fprintf(stderr, "%s\n", s.ToString().c_str()); return; } assert(nullptr != cfh); fprintf(stderr, "Internal keys in CF '%s', [%s, %s] (max %" ROCKSDB_PRIszt ")\n", cfh->GetName().c_str(), begin_key.ToString(true /* hex */).c_str(), end_key.ToString(true /* hex */).c_str(), kMaxNumIKeys); for (const KeyVersion& kv : versions) { fprintf(stderr, " key %s seq %" PRIu64 " type %d\n", Slice(kv.user_key).ToString(true).c_str(), kv.sequence, kv.type); } }; if (1 == num_mismatched_cfs) { print_key_versions(column_families_[0]); } print_key_versions(column_families_[i]); #endif // ROCKSDB_LITE shared->SetVerificationFailure(); } } } shared->FinishPrintingVerificationResults(); for (auto& iter : iters) { iter->Next(); } } while (true); } virtual std::vector GenerateColumnFamilies( const int /* num_column_families */, int /* rand_column_family */) const { std::vector ret; int num = static_cast(column_families_.size()); int k = 0; std::generate_n(back_inserter(ret), num, [&k]() -> int { return k++; }); return ret; } private: std::atomic batch_id_; }; int db_stress_tool(int argc, char** argv) { SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) + " [OPTIONS]..."); ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_statistics) { dbstats = rocksdb::CreateDBStatistics(); if (FLAGS_enable_secondary) { dbstats_secondaries = rocksdb::CreateDBStatistics(); } } FLAGS_compression_type_e = StringToCompressionType(FLAGS_compression_type.c_str()); FLAGS_checksum_type_e = StringToChecksumType(FLAGS_checksum_type.c_str()); if (!FLAGS_hdfs.empty()) { if (!FLAGS_env_uri.empty()) { fprintf(stderr, "Cannot specify both --hdfs and --env_uri.\n"); exit(1); } FLAGS_env = new rocksdb::HdfsEnv(FLAGS_hdfs); } else if (!FLAGS_env_uri.empty()) { Status s = Env::LoadEnv(FLAGS_env_uri, &FLAGS_env, &env_guard); if (FLAGS_env == nullptr) { fprintf(stderr, "No Env registered for URI: %s\n", FLAGS_env_uri.c_str()); exit(1); } } FLAGS_rep_factory = StringToRepFactory(FLAGS_memtablerep.c_str()); // The number of background threads should be at least as much the // max number of concurrent compactions. FLAGS_env->SetBackgroundThreads(FLAGS_max_background_compactions); FLAGS_env->SetBackgroundThreads(FLAGS_num_bottom_pri_threads, rocksdb::Env::Priority::BOTTOM); if (FLAGS_prefixpercent > 0 && FLAGS_prefix_size < 0) { fprintf(stderr, "Error: prefixpercent is non-zero while prefix_size is " "not positive!\n"); exit(1); } if (FLAGS_test_batches_snapshots && FLAGS_prefix_size <= 0) { fprintf(stderr, "Error: please specify prefix_size for " "test_batches_snapshots test!\n"); exit(1); } if (FLAGS_memtable_prefix_bloom_size_ratio > 0.0 && FLAGS_prefix_size < 0) { fprintf(stderr, "Error: please specify positive prefix_size in order to use " "memtable_prefix_bloom_size_ratio\n"); exit(1); } if ((FLAGS_readpercent + FLAGS_prefixpercent + FLAGS_writepercent + FLAGS_delpercent + FLAGS_delrangepercent + FLAGS_iterpercent) != 100) { fprintf(stderr, "Error: Read+Prefix+Write+Delete+DeleteRange+Iterate percents != " "100!\n"); exit(1); } if (FLAGS_disable_wal == 1 && FLAGS_reopen > 0) { fprintf(stderr, "Error: Db cannot reopen safely with disable_wal set!\n"); exit(1); } if ((unsigned)FLAGS_reopen >= FLAGS_ops_per_thread) { fprintf(stderr, "Error: #DB-reopens should be < ops_per_thread\n" "Provided reopens = %d and ops_per_thread = %lu\n", FLAGS_reopen, (unsigned long)FLAGS_ops_per_thread); exit(1); } if (FLAGS_test_batches_snapshots && FLAGS_delrangepercent > 0) { fprintf(stderr, "Error: nonzero delrangepercent unsupported in " "test_batches_snapshots mode\n"); exit(1); } if (FLAGS_active_width > FLAGS_max_key) { fprintf(stderr, "Error: active_width can be at most max_key\n"); exit(1); } else if (FLAGS_active_width == 0) { FLAGS_active_width = FLAGS_max_key; } if (FLAGS_value_size_mult * kRandomValueMaxFactor > kValueMaxLen) { fprintf(stderr, "Error: value_size_mult can be at most %d\n", kValueMaxLen / kRandomValueMaxFactor); exit(1); } if (FLAGS_use_merge && FLAGS_nooverwritepercent == 100) { fprintf( stderr, "Error: nooverwritepercent must not be 100 when using merge operands"); exit(1); } if (FLAGS_ingest_external_file_one_in > 0 && FLAGS_nooverwritepercent > 0) { fprintf(stderr, "Error: nooverwritepercent must be 0 when using file ingestion\n"); exit(1); } if (FLAGS_clear_column_family_one_in > 0 && FLAGS_backup_one_in > 0) { fprintf(stderr, "Error: clear_column_family_one_in must be 0 when using backup\n"); exit(1); } if (FLAGS_test_cf_consistency && FLAGS_disable_wal) { FLAGS_atomic_flush = true; } if (FLAGS_read_only) { if (FLAGS_writepercent != 0 || FLAGS_delpercent != 0 || FLAGS_delrangepercent != 0) { fprintf(stderr, "Error: updates are not supported in read only mode\n"); exit(1); } else if (FLAGS_checkpoint_one_in > 0 && FLAGS_clear_column_family_one_in > 0) { fprintf(stdout, "Warn: checkpoint won't be validated since column families may " "be dropped.\n"); } } // Choose a location for the test database if none given with --db= if (FLAGS_db.empty()) { std::string default_db_path; FLAGS_env->GetTestDirectory(&default_db_path); default_db_path += "/dbstress"; FLAGS_db = default_db_path; } if (FLAGS_enable_secondary && FLAGS_secondaries_base.empty()) { std::string default_secondaries_path; FLAGS_env->GetTestDirectory(&default_secondaries_path); default_secondaries_path += "/dbstress_secondaries"; rocksdb::Status s = FLAGS_env->CreateDirIfMissing(default_secondaries_path); if (!s.ok()) { fprintf(stderr, "Failed to create directory %s: %s\n", default_secondaries_path.c_str(), s.ToString().c_str()); exit(1); } FLAGS_secondaries_base = default_secondaries_path; } if (!FLAGS_enable_secondary && FLAGS_secondary_catch_up_one_in > 0) { fprintf(stderr, "Secondary instance is disabled.\n"); exit(1); } rocksdb_kill_odds = FLAGS_kill_random_test; rocksdb_kill_prefix_blacklist = SplitString(FLAGS_kill_prefix_blacklist); std::unique_ptr stress; if (FLAGS_test_cf_consistency) { stress.reset(new rocksdb::CfConsistencyStressTest()); } else if (FLAGS_test_batches_snapshots) { stress.reset(new rocksdb::BatchedOpsStressTest()); } else { stress.reset(new rocksdb::NonBatchedOpsStressTest()); } if (stress->Run()) { return 0; } else { return 1; } } } // namespace rocksdb #endif // GFLAGS