// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "table/table.h" #include "db/dbformat.h" #include "rocksdb/cache.h" #include "rocksdb/comparator.h" #include "rocksdb/env.h" #include "rocksdb/filter_policy.h" #include "rocksdb/options.h" #include "rocksdb/statistics.h" #include "table/block.h" #include "table/filter_block.h" #include "table/format.h" #include "table/two_level_iterator.h" #include "util/coding.h" #include "util/stop_watch.h" namespace leveldb { // The longest the prefix of the cache key used to identify blocks can be. // We are using the fact that we know for Posix files the unique ID is three // varints. const size_t kMaxCacheKeyPrefixSize = kMaxVarint64Length*3+1; struct Table::Rep { ~Rep() { delete filter; delete [] filter_data; delete index_block; } Rep(const EnvOptions& storage_options) : soptions(storage_options) { } Options options; const EnvOptions& soptions; Status status; unique_ptr file; char cache_key_prefix[kMaxCacheKeyPrefixSize]; size_t cache_key_prefix_size; FilterBlockReader* filter; const char* filter_data; BlockHandle metaindex_handle; // Handle to metaindex_block: saved from footer Block* index_block; }; // Helper function to setup the cache key's prefix for the Table. void Table::SetupCacheKeyPrefix(Rep* rep) { assert(kMaxCacheKeyPrefixSize >= 10); rep->cache_key_prefix_size = 0; if (rep->options.block_cache) { rep->cache_key_prefix_size = rep->file->GetUniqueId(rep->cache_key_prefix, kMaxCacheKeyPrefixSize); if (rep->cache_key_prefix_size == 0) { // If the prefix wasn't generated or was too long, we create one from the // cache. char* end = EncodeVarint64(rep->cache_key_prefix, rep->options.block_cache->NewId()); rep->cache_key_prefix_size = static_cast(end - rep->cache_key_prefix); } } } namespace { // anonymous namespace, not visible externally // Read the block identified by "handle" from "file". // The only relevant option is options.verify_checksums for now. // Set *didIO to true if didIO is not null. // On failure return non-OK. // On success fill *result and return OK - caller owns *result Status ReadBlock(RandomAccessFile* file, const ReadOptions& options, const BlockHandle& handle, Block** result, bool* didIO = nullptr) { BlockContents contents; Status s = ReadBlockContents(file, options, handle, &contents); if (s.ok()) { *result = new Block(contents); } if (didIO) { *didIO = true; } return s; } } // end of anonymous namespace Status Table::Open(const Options& options, const EnvOptions& soptions, unique_ptr&& file, uint64_t size, unique_ptr* table) { table->reset(); if (size < Footer::kEncodedLength) { return Status::InvalidArgument("file is too short to be an sstable"); } char footer_space[Footer::kEncodedLength]; Slice footer_input; Status s = file->Read(size - Footer::kEncodedLength, Footer::kEncodedLength, &footer_input, footer_space); if (!s.ok()) return s; // Check that we actually read the whole footer from the file. It may be // that size isn't correct. if (footer_input.size() != Footer::kEncodedLength) { return Status::InvalidArgument("file is too short to be an sstable"); } Footer footer; s = footer.DecodeFrom(&footer_input); if (!s.ok()) return s; Block* index_block = nullptr; // TODO: we never really verify check sum for index block s = ReadBlock(file.get(), ReadOptions(), footer.index_handle(), &index_block); if (s.ok()) { // We've successfully read the footer and the index block: we're // ready to serve requests. Rep* rep = new Table::Rep(soptions); rep->options = options; rep->file = std::move(file); rep->metaindex_handle = footer.metaindex_handle(); rep->index_block = index_block; SetupCacheKeyPrefix(rep); rep->filter_data = nullptr; rep->filter = nullptr; table->reset(new Table(rep)); (*table)->ReadMeta(footer); } else { if (index_block) delete index_block; } return s; } void Table::SetupForCompaction() { switch (rep_->options.access_hint_on_compaction_start) { case Options::NONE: break; case Options::NORMAL: rep_->file->Hint(RandomAccessFile::NORMAL); break; case Options::SEQUENTIAL: rep_->file->Hint(RandomAccessFile::SEQUENTIAL); break; case Options::WILLNEED: rep_->file->Hint(RandomAccessFile::WILLNEED); break; default: assert(false); } compaction_optimized_ = true; } void Table::ReadMeta(const Footer& footer) { if (rep_->options.filter_policy == nullptr) { return; // Do not need any metadata } // TODO(sanjay): Skip this if footer.metaindex_handle() size indicates // it is an empty block. // TODO: we never really verify check sum for meta index block Block* meta = nullptr; if (!ReadBlock(rep_->file.get(), ReadOptions(), footer.metaindex_handle(), &meta).ok()) { // Do not propagate errors since meta info is not needed for operation return; } Iterator* iter = meta->NewIterator(BytewiseComparator()); std::string key = "filter."; key.append(rep_->options.filter_policy->Name()); iter->Seek(key); if (iter->Valid() && iter->key() == Slice(key)) { ReadFilter(iter->value()); } delete iter; delete meta; } void Table::ReadFilter(const Slice& filter_handle_value) { Slice v = filter_handle_value; BlockHandle filter_handle; if (!filter_handle.DecodeFrom(&v).ok()) { return; } // TODO: We might want to unify with ReadBlock() if we start // requiring checksum verification in Table::Open. ReadOptions opt; BlockContents block; if (!ReadBlockContents(rep_->file.get(), opt, filter_handle, &block).ok()) { return; } if (block.heap_allocated) { rep_->filter_data = block.data.data(); // Will need to delete later } rep_->filter = new FilterBlockReader(rep_->options, block.data); } Table::~Table() { delete rep_; } static void DeleteBlock(void* arg, void* ignored) { delete reinterpret_cast(arg); } static void DeleteCachedBlock(const Slice& key, void* value) { Block* block = reinterpret_cast(value); delete block; } static void ReleaseBlock(void* arg, void* h) { Cache* cache = reinterpret_cast(arg); Cache::Handle* handle = reinterpret_cast(h); cache->Release(handle); } // Convert an index iterator value (i.e., an encoded BlockHandle) // into an iterator over the contents of the corresponding block. Iterator* Table::BlockReader(void* arg, const ReadOptions& options, const Slice& index_value, bool* didIO, bool for_compaction, const bool no_io) { Table* table = reinterpret_cast(arg); Cache* block_cache = table->rep_->options.block_cache.get(); std::shared_ptr statistics = table->rep_->options.statistics; Block* block = nullptr; Cache::Handle* cache_handle = nullptr; BlockHandle handle; Slice input = index_value; Status s = handle.DecodeFrom(&input); // We intentionally allow extra stuff in index_value so that we // can add more features in the future. if (s.ok()) { if (block_cache != nullptr) { char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; const size_t cache_key_prefix_size = table->rep_->cache_key_prefix_size; assert(cache_key_prefix_size != 0); assert(cache_key_prefix_size <= kMaxCacheKeyPrefixSize); memcpy(cache_key, table->rep_->cache_key_prefix, cache_key_prefix_size); char* end = EncodeVarint64(cache_key + cache_key_prefix_size, handle.offset()); Slice key(cache_key, static_cast(end-cache_key)); cache_handle = block_cache->Lookup(key); if (cache_handle != nullptr) { block = reinterpret_cast(block_cache->Value(cache_handle)); RecordTick(statistics, BLOCK_CACHE_HIT); } else if (no_io) { return nullptr; // Did not find in block_cache and can't do IO } else { Histograms histogram = for_compaction ? READ_BLOCK_COMPACTION_MICROS : READ_BLOCK_GET_MICROS; { // block for stop watch StopWatch sw(table->rep_->options.env, statistics, histogram); s = ReadBlock( table->rep_->file.get(), options, handle, &block, didIO ); } if (s.ok()) { if (block->isCachable() && options.fill_cache) { cache_handle = block_cache->Insert( key, block, block->size(), &DeleteCachedBlock); } } RecordTick(statistics, BLOCK_CACHE_MISS); } } else if (no_io) { return nullptr; // Could not read from block_cache and can't do IO }else { s = ReadBlock(table->rep_->file.get(), options, handle, &block, didIO); } } Iterator* iter; if (block != nullptr) { iter = block->NewIterator(table->rep_->options.comparator); if (cache_handle == nullptr) { iter->RegisterCleanup(&DeleteBlock, block, nullptr); } else { iter->RegisterCleanup(&ReleaseBlock, block_cache, cache_handle); } } else { iter = NewErrorIterator(s); } return iter; } Iterator* Table::BlockReader(void* arg, const ReadOptions& options, const EnvOptions& soptions, const Slice& index_value, bool for_compaction) { return BlockReader(arg, options, index_value, nullptr, for_compaction); } // This will be broken if the user specifies an unusual implementation // of Options.comparator, or if the user specifies an unusual // definition of prefixes in Options.filter_policy. In particular, we // require the following three properties: // // 1) key.starts_with(prefix(key)) // 2) Compare(prefix(key), key) <= 0. // 3) If Compare(key1, key2) <= 0, then Compare(prefix(key1), prefix(key2)) <= 0 // // TODO(tylerharter): right now, this won't cause I/O since blooms are // in memory. When blooms may need to be paged in, we should refactor so that // this is only ever called lazily. In particular, this shouldn't be called // while the DB lock is held like it is now. bool Table::PrefixMayMatch(const Slice& internal_prefix) const { FilterBlockReader* filter = rep_->filter; bool may_match = true; Status s; if (filter == nullptr) { return true; } std::unique_ptr iiter(rep_->index_block->NewIterator( rep_->options.comparator)); iiter->Seek(internal_prefix); if (!iiter->Valid()) { // we're past end of file may_match = false; } else if (ExtractUserKey(iiter->key()).starts_with( ExtractUserKey(internal_prefix))) { // we need to check for this subtle case because our only // guarantee is that "the key is a string >= last key in that data // block" according to the doc/table_format.txt spec. // // Suppose iiter->key() starts with the desired prefix; it is not // necessarily the case that the corresponding data block will // contain the prefix, since iiter->key() need not be in the // block. However, the next data block may contain the prefix, so // we return true to play it safe. may_match = true; } else { // iiter->key() does NOT start with the desired prefix. Because // Seek() finds the first key that is >= the seek target, this // means that iiter->key() > prefix. Thus, any data blocks coming // after the data block corresponding to iiter->key() cannot // possibly contain the key. Thus, the corresponding data block // is the only one which could potentially contain the prefix. Slice handle_value = iiter->value(); BlockHandle handle; s = handle.DecodeFrom(&handle_value); assert(s.ok()); may_match = filter->PrefixMayMatch(handle.offset(), internal_prefix); } RecordTick(rep_->options.statistics, BLOOM_FILTER_PREFIX_CHECKED); if (!may_match) { RecordTick(rep_->options.statistics, BLOOM_FILTER_PREFIX_USEFUL); } return may_match; } Iterator* Table::NewIterator(const ReadOptions& options) const { if (options.prefix) { InternalKey internal_prefix(*options.prefix, 0, kTypeValue); if (!PrefixMayMatch(internal_prefix.Encode())) { // nothing in this file can match the prefix, so we should not // bother doing I/O to this file when iterating. return NewEmptyIterator(); } } return NewTwoLevelIterator( rep_->index_block->NewIterator(rep_->options.comparator), &Table::BlockReader, const_cast(this), options, rep_->soptions); } Status Table::InternalGet(const ReadOptions& options, const Slice& k, void* arg, bool (*saver)(void*, const Slice&, const Slice&, bool), void (*mark_key_may_exist)(void*), const bool no_io) { Status s; Iterator* iiter = rep_->index_block->NewIterator(rep_->options.comparator); bool done = false; for (iiter->Seek(k); iiter->Valid() && !done; iiter->Next()) { Slice handle_value = iiter->value(); FilterBlockReader* filter = rep_->filter; BlockHandle handle; if (filter != nullptr && handle.DecodeFrom(&handle_value).ok() && !filter->KeyMayMatch(handle.offset(), k)) { // Not found // TODO: think about interaction with Merge. If a user key cannot // cross one data block, we should be fine. RecordTick(rep_->options.statistics, BLOOM_FILTER_USEFUL); break; } else { bool didIO = false; Iterator* block_iter = BlockReader(this, options, iiter->value(), &didIO, no_io); if (no_io && !block_iter) { // couldn't get block from block_cache // Update Saver.state to Found because we are only looking for whether // we can guarantee the key is not there when "no_io" is set (*mark_key_may_exist)(arg); break; } // Call the *saver function on each entry/block until it returns false for (block_iter->Seek(k); block_iter->Valid(); block_iter->Next()) { if (!(*saver)(arg, block_iter->key(), block_iter->value(), didIO)) { done = true; break; } } s = block_iter->status(); delete block_iter; } } if (s.ok()) { s = iiter->status(); } delete iiter; return s; } bool SaveDidIO(void* arg, const Slice& key, const Slice& value, bool didIO) { *reinterpret_cast(arg) = didIO; return false; } bool Table::TEST_KeyInCache(const ReadOptions& options, const Slice& key) { // We use InternalGet() as it has logic that checks whether we read the // block from the disk or not. bool didIO = false; Status s = InternalGet(options, key, &didIO, SaveDidIO); assert(s.ok()); return !didIO; } uint64_t Table::ApproximateOffsetOf(const Slice& key) const { Iterator* index_iter = rep_->index_block->NewIterator(rep_->options.comparator); index_iter->Seek(key); uint64_t result; if (index_iter->Valid()) { BlockHandle handle; Slice input = index_iter->value(); Status s = handle.DecodeFrom(&input); if (s.ok()) { result = handle.offset(); } else { // Strange: we can't decode the block handle in the index block. // We'll just return the offset of the metaindex block, which is // close to the whole file size for this case. result = rep_->metaindex_handle.offset(); } } else { // key is past the last key in the file. Approximate the offset // by returning the offset of the metaindex block (which is // right near the end of the file). result = rep_->metaindex_handle.offset(); } delete index_iter; return result; } } // namespace leveldb