// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. #ifndef GFLAGS #include int main() { fprintf(stderr, "Please install gflags to run rocksdb tools\n"); return 1; } #else #include #include #include #include #include "rocksdb/comparator.h" #include "rocksdb/db.h" #include "rocksdb/perf_context.h" #include "rocksdb/slice_transform.h" #include "rocksdb/memtablerep.h" #include "util/histogram.h" #include "util/stop_watch.h" #include "util/testharness.h" using GFLAGS::ParseCommandLineFlags; DEFINE_bool(trigger_deadlock, false, "issue delete in range scan to trigger PrefixHashMap deadlock"); DEFINE_uint64(bucket_count, 100000, "number of buckets"); DEFINE_uint64(num_locks, 10001, "number of locks"); DEFINE_bool(random_prefix, false, "randomize prefix"); DEFINE_uint64(total_prefixes, 100000, "total number of prefixes"); DEFINE_uint64(items_per_prefix, 1, "total number of values per prefix"); DEFINE_int64(write_buffer_size, 33554432, ""); DEFINE_int64(max_write_buffer_number, 2, ""); DEFINE_int64(min_write_buffer_number_to_merge, 1, ""); DEFINE_int32(skiplist_height, 4, ""); DEFINE_int32(memtable_prefix_bloom_bits, 10000000, ""); DEFINE_int32(memtable_prefix_bloom_probes, 10, ""); DEFINE_int32(memtable_prefix_bloom_huge_page_tlb_size, 2 * 1024 * 1024, ""); DEFINE_int32(value_size, 40, ""); // Path to the database on file system const std::string kDbName = rocksdb::test::TmpDir() + "/prefix_test"; namespace rocksdb { struct TestKey { uint64_t prefix; uint64_t sorted; TestKey(uint64_t prefix, uint64_t sorted) : prefix(prefix), sorted(sorted) {} }; // return a slice backed by test_key inline Slice TestKeyToSlice(const TestKey& test_key) { return Slice((const char*)&test_key, sizeof(test_key)); } inline const TestKey* SliceToTestKey(const Slice& slice) { return (const TestKey*)slice.data(); } class TestKeyComparator : public Comparator { public: // Compare needs to be aware of the possibility of a and/or b is // prefix only virtual int Compare(const Slice& a, const Slice& b) const { const TestKey* key_a = SliceToTestKey(a); const TestKey* key_b = SliceToTestKey(b); if (key_a->prefix != key_b->prefix) { if (key_a->prefix < key_b->prefix) return -1; if (key_a->prefix > key_b->prefix) return 1; } else { ASSERT_TRUE(key_a->prefix == key_b->prefix); // note, both a and b could be prefix only if (a.size() != b.size()) { // one of them is prefix ASSERT_TRUE( (a.size() == sizeof(uint64_t) && b.size() == sizeof(TestKey)) || (b.size() == sizeof(uint64_t) && a.size() == sizeof(TestKey))); if (a.size() < b.size()) return -1; if (a.size() > b.size()) return 1; } else { // both a and b are prefix if (a.size() == sizeof(uint64_t)) { return 0; } // both a and b are whole key ASSERT_TRUE(a.size() == sizeof(TestKey) && b.size() == sizeof(TestKey)); if (key_a->sorted < key_b->sorted) return -1; if (key_a->sorted > key_b->sorted) return 1; if (key_a->sorted == key_b->sorted) return 0; } } return 0; } virtual const char* Name() const override { return "TestKeyComparator"; } virtual void FindShortestSeparator( std::string* start, const Slice& limit) const { } virtual void FindShortSuccessor(std::string* key) const {} }; namespace { void PutKey(DB* db, WriteOptions write_options, uint64_t prefix, uint64_t suffix, const Slice& value) { TestKey test_key(prefix, suffix); Slice key = TestKeyToSlice(test_key); ASSERT_OK(db->Put(write_options, key, value)); } void SeekIterator(Iterator* iter, uint64_t prefix, uint64_t suffix) { TestKey test_key(prefix, suffix); Slice key = TestKeyToSlice(test_key); iter->Seek(key); } const std::string kNotFoundResult = "NOT_FOUND"; std::string Get(DB* db, const ReadOptions& read_options, uint64_t prefix, uint64_t suffix) { TestKey test_key(prefix, suffix); Slice key = TestKeyToSlice(test_key); std::string result; Status s = db->Get(read_options, key, &result); if (s.IsNotFound()) { result = kNotFoundResult; } else if (!s.ok()) { result = s.ToString(); } return result; } } // namespace class PrefixTest { public: std::shared_ptr OpenDb() { DB* db; options.create_if_missing = true; options.write_buffer_size = FLAGS_write_buffer_size; options.max_write_buffer_number = FLAGS_max_write_buffer_number; options.min_write_buffer_number_to_merge = FLAGS_min_write_buffer_number_to_merge; options.memtable_prefix_bloom_bits = FLAGS_memtable_prefix_bloom_bits; options.memtable_prefix_bloom_probes = FLAGS_memtable_prefix_bloom_probes; options.memtable_prefix_bloom_huge_page_tlb_size = FLAGS_memtable_prefix_bloom_huge_page_tlb_size; Status s = DB::Open(options, kDbName, &db); ASSERT_OK(s); return std::shared_ptr(db); } void FirstOption() { option_config_ = kBegin; } bool NextOptions(int bucket_count) { // skip some options option_config_++; if (option_config_ < kEnd) { options.prefix_extractor.reset(NewFixedPrefixTransform(8)); switch(option_config_) { case kHashSkipList: options.memtable_factory.reset( NewHashSkipListRepFactory(bucket_count, FLAGS_skiplist_height)); return true; case kHashLinkList: options.memtable_factory.reset( NewHashLinkListRepFactory(bucket_count)); return true; case kHashLinkListHugePageTlb: options.memtable_factory.reset( NewHashLinkListRepFactory(bucket_count, 2 * 1024 * 1024)); return true; case kHashLinkListTriggerSkipList: options.memtable_factory.reset( NewHashLinkListRepFactory(bucket_count, 0, 3)); return true; default: return false; } } return false; } PrefixTest() : option_config_(kBegin) { options.comparator = new TestKeyComparator(); } ~PrefixTest() { delete options.comparator; } protected: enum OptionConfig { kBegin, kHashSkipList, kHashLinkList, kHashLinkListHugePageTlb, kHashLinkListTriggerSkipList, kEnd }; int option_config_; Options options; }; TEST(PrefixTest, TestResult) { for (int num_buckets = 1; num_buckets <= 2; num_buckets++) { FirstOption(); while (NextOptions(num_buckets)) { std::cout << "*** Mem table: " << options.memtable_factory->Name() << " number of buckets: " << num_buckets << std::endl; DestroyDB(kDbName, Options()); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; // 1. Insert one row. Slice v16("v16"); PutKey(db.get(), write_options, 1, 6, v16); std::unique_ptr iter(db->NewIterator(read_options)); SeekIterator(iter.get(), 1, 6); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); iter->Next(); ASSERT_TRUE(!iter->Valid()); SeekIterator(iter.get(), 2, 0); ASSERT_TRUE(!iter->Valid()); ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6)); ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 1, 5)); ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 1, 7)); ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 0, 6)); ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 2, 6)); // 2. Insert an entry for the same prefix as the last entry in the bucket. Slice v17("v17"); PutKey(db.get(), write_options, 1, 7, v17); iter.reset(db->NewIterator(read_options)); SeekIterator(iter.get(), 1, 7); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); SeekIterator(iter.get(), 1, 6); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); iter->Next(); ASSERT_TRUE(!iter->Valid()); SeekIterator(iter.get(), 2, 0); ASSERT_TRUE(!iter->Valid()); // 3. Insert an entry for the same prefix as the head of the bucket. Slice v15("v15"); PutKey(db.get(), write_options, 1, 5, v15); iter.reset(db->NewIterator(read_options)); SeekIterator(iter.get(), 1, 7); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v15 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v15 == iter->value()); ASSERT_EQ(v15.ToString(), Get(db.get(), read_options, 1, 5)); ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6)); ASSERT_EQ(v17.ToString(), Get(db.get(), read_options, 1, 7)); // 4. Insert an entry with a larger prefix Slice v22("v22"); PutKey(db.get(), write_options, 2, 2, v22); iter.reset(db->NewIterator(read_options)); SeekIterator(iter.get(), 2, 2); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v22 == iter->value()); SeekIterator(iter.get(), 2, 0); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v22 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v15 == iter->value()); SeekIterator(iter.get(), 1, 7); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); // 5. Insert an entry with a smaller prefix Slice v02("v02"); PutKey(db.get(), write_options, 0, 2, v02); iter.reset(db->NewIterator(read_options)); SeekIterator(iter.get(), 0, 2); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v02 == iter->value()); SeekIterator(iter.get(), 0, 0); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v02 == iter->value()); SeekIterator(iter.get(), 2, 0); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v22 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v15 == iter->value()); SeekIterator(iter.get(), 1, 7); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); // 6. Insert to the beginning and the end of the first prefix Slice v13("v13"); Slice v18("v18"); PutKey(db.get(), write_options, 1, 3, v13); PutKey(db.get(), write_options, 1, 8, v18); iter.reset(db->NewIterator(read_options)); SeekIterator(iter.get(), 1, 7); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); SeekIterator(iter.get(), 1, 3); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v13 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v15 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v18 == iter->value()); SeekIterator(iter.get(), 0, 0); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v02 == iter->value()); SeekIterator(iter.get(), 2, 0); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v22 == iter->value()); ASSERT_EQ(v22.ToString(), Get(db.get(), read_options, 2, 2)); ASSERT_EQ(v02.ToString(), Get(db.get(), read_options, 0, 2)); ASSERT_EQ(v13.ToString(), Get(db.get(), read_options, 1, 3)); ASSERT_EQ(v15.ToString(), Get(db.get(), read_options, 1, 5)); ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6)); ASSERT_EQ(v17.ToString(), Get(db.get(), read_options, 1, 7)); ASSERT_EQ(v18.ToString(), Get(db.get(), read_options, 1, 8)); } } } TEST(PrefixTest, DynamicPrefixIterator) { while (NextOptions(FLAGS_bucket_count)) { std::cout << "*** Mem table: " << options.memtable_factory->Name() << std::endl; DestroyDB(kDbName, Options()); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; std::vector prefixes; for (uint64_t i = 0; i < FLAGS_total_prefixes; ++i) { prefixes.push_back(i); } if (FLAGS_random_prefix) { std::random_shuffle(prefixes.begin(), prefixes.end()); } HistogramImpl hist_put_time; HistogramImpl hist_put_comparison; // insert x random prefix, each with y continuous element. for (auto prefix : prefixes) { for (uint64_t sorted = 0; sorted < FLAGS_items_per_prefix; sorted++) { TestKey test_key(prefix, sorted); Slice key = TestKeyToSlice(test_key); std::string value(FLAGS_value_size, 0); perf_context.Reset(); StopWatchNano timer(Env::Default(), true); ASSERT_OK(db->Put(write_options, key, value)); hist_put_time.Add(timer.ElapsedNanos()); hist_put_comparison.Add(perf_context.user_key_comparison_count); } } std::cout << "Put key comparison: \n" << hist_put_comparison.ToString() << "Put time: \n" << hist_put_time.ToString(); // test seek existing keys HistogramImpl hist_seek_time; HistogramImpl hist_seek_comparison; std::unique_ptr iter(db->NewIterator(read_options)); for (auto prefix : prefixes) { TestKey test_key(prefix, FLAGS_items_per_prefix / 2); Slice key = TestKeyToSlice(test_key); std::string value = "v" + std::to_string(0); perf_context.Reset(); StopWatchNano timer(Env::Default(), true); auto key_prefix = options.prefix_extractor->Transform(key); uint64_t total_keys = 0; for (iter->Seek(key); iter->Valid() && iter->key().starts_with(key_prefix); iter->Next()) { if (FLAGS_trigger_deadlock) { std::cout << "Behold the deadlock!\n"; db->Delete(write_options, iter->key()); } total_keys++; } hist_seek_time.Add(timer.ElapsedNanos()); hist_seek_comparison.Add(perf_context.user_key_comparison_count); ASSERT_EQ(total_keys, FLAGS_items_per_prefix - FLAGS_items_per_prefix/2); } std::cout << "Seek key comparison: \n" << hist_seek_comparison.ToString() << "Seek time: \n" << hist_seek_time.ToString(); // test non-existing keys HistogramImpl hist_no_seek_time; HistogramImpl hist_no_seek_comparison; for (auto prefix = FLAGS_total_prefixes; prefix < FLAGS_total_prefixes + 10000; prefix++) { TestKey test_key(prefix, 0); Slice key = TestKeyToSlice(test_key); perf_context.Reset(); StopWatchNano timer(Env::Default(), true); iter->Seek(key); hist_no_seek_time.Add(timer.ElapsedNanos()); hist_no_seek_comparison.Add(perf_context.user_key_comparison_count); ASSERT_TRUE(!iter->Valid()); } std::cout << "non-existing Seek key comparison: \n" << hist_no_seek_comparison.ToString() << "non-existing Seek time: \n" << hist_no_seek_time.ToString(); } } } int main(int argc, char** argv) { ParseCommandLineFlags(&argc, &argv, true); std::cout << kDbName << "\n"; rocksdb::test::RunAllTests(); return 0; } #endif // GFLAGS