// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #pragma once #include #include #include #include #include #include #include #include "db/dbformat.h" #include "db/kv_checksum.h" #include "db/range_tombstone_fragmenter.h" #include "db/read_callback.h" #include "db/version_edit.h" #include "memory/allocator.h" #include "memory/concurrent_arena.h" #include "monitoring/instrumented_mutex.h" #include "options/cf_options.h" #include "rocksdb/db.h" #include "rocksdb/memtablerep.h" #include "table/multiget_context.h" #include "util/dynamic_bloom.h" #include "util/hash.h" #include "util/hash_containers.h" namespace ROCKSDB_NAMESPACE { struct FlushJobInfo; class Mutex; class MemTableIterator; class MergeContext; class SystemClock; struct ImmutableMemTableOptions { explicit ImmutableMemTableOptions(const ImmutableOptions& ioptions, const MutableCFOptions& mutable_cf_options); size_t arena_block_size; uint32_t memtable_prefix_bloom_bits; size_t memtable_huge_page_size; bool memtable_whole_key_filtering; bool inplace_update_support; size_t inplace_update_num_locks; UpdateStatus (*inplace_callback)(char* existing_value, uint32_t* existing_value_size, Slice delta_value, std::string* merged_value); size_t max_successive_merges; Statistics* statistics; MergeOperator* merge_operator; Logger* info_log; bool allow_data_in_errors; uint32_t protection_bytes_per_key; }; // Batched counters to updated when inserting keys in one write batch. // In post process of the write batch, these can be updated together. // Only used in concurrent memtable insert case. struct MemTablePostProcessInfo { uint64_t data_size = 0; uint64_t num_entries = 0; uint64_t num_deletes = 0; }; using MultiGetRange = MultiGetContext::Range; // Note: Many of the methods in this class have comments indicating that // external synchronization is required as these methods are not thread-safe. // It is up to higher layers of code to decide how to prevent concurrent // invocation of these methods. This is usually done by acquiring either // the db mutex or the single writer thread. // // Some of these methods are documented to only require external // synchronization if this memtable is immutable. Calling MarkImmutable() is // not sufficient to guarantee immutability. It is up to higher layers of // code to determine if this MemTable can still be modified by other threads. // Eg: The Superversion stores a pointer to the current MemTable (that can // be modified) and a separate list of the MemTables that can no longer be // written to (aka the 'immutable memtables'). class MemTable { public: struct KeyComparator : public MemTableRep::KeyComparator { const InternalKeyComparator comparator; explicit KeyComparator(const InternalKeyComparator& c) : comparator(c) {} virtual int operator()(const char* prefix_len_key1, const char* prefix_len_key2) const override; virtual int operator()(const char* prefix_len_key, const DecodedType& key) const override; }; // MemTables are reference counted. The initial reference count // is zero and the caller must call Ref() at least once. // // earliest_seq should be the current SequenceNumber in the db such that any // key inserted into this memtable will have an equal or larger seq number. // (When a db is first created, the earliest sequence number will be 0). // If the earliest sequence number is not known, kMaxSequenceNumber may be // used, but this may prevent some transactions from succeeding until the // first key is inserted into the memtable. explicit MemTable(const InternalKeyComparator& comparator, const ImmutableOptions& ioptions, const MutableCFOptions& mutable_cf_options, WriteBufferManager* write_buffer_manager, SequenceNumber earliest_seq, uint32_t column_family_id); // No copying allowed MemTable(const MemTable&) = delete; MemTable& operator=(const MemTable&) = delete; // Do not delete this MemTable unless Unref() indicates it not in use. ~MemTable(); // Increase reference count. // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable. void Ref() { ++refs_; } // Drop reference count. // If the refcount goes to zero return this memtable, otherwise return null. // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable. MemTable* Unref() { --refs_; assert(refs_ >= 0); if (refs_ <= 0) { return this; } return nullptr; } // Returns an estimate of the number of bytes of data in use by this // data structure. // // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable (unless this Memtable is immutable). size_t ApproximateMemoryUsage(); // As a cheap version of `ApproximateMemoryUsage()`, this function doesn't // require external synchronization. The value may be less accurate though size_t ApproximateMemoryUsageFast() const { return approximate_memory_usage_.load(std::memory_order_relaxed); } // used by MemTableListVersion::MemoryAllocatedBytesExcludingLast size_t MemoryAllocatedBytes() const { return table_->ApproximateMemoryUsage() + range_del_table_->ApproximateMemoryUsage() + arena_.MemoryAllocatedBytes(); } // Returns a vector of unique random memtable entries of size 'sample_size'. // // Note: the entries are stored in the unordered_set as length-prefixed keys, // hence their representation in the set as "const char*". // Note2: the size of the output set 'entries' is not enforced to be strictly // equal to 'target_sample_size'. Its final size might be slightly // greater or slightly less than 'target_sample_size' // // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable (unless this Memtable is immutable). // REQUIRES: SkipList memtable representation. This function is not // implemented for any other type of memtable representation (vectorrep, // hashskiplist,...). void UniqueRandomSample(const uint64_t& target_sample_size, std::unordered_set* entries) { // TODO(bjlemaire): at the moment, only supported by skiplistrep. // Extend it to all other memtable representations. table_->UniqueRandomSample(num_entries(), target_sample_size, entries); } // This method heuristically determines if the memtable should continue to // host more data. bool ShouldScheduleFlush() const { return flush_state_.load(std::memory_order_relaxed) == FLUSH_REQUESTED; } // Returns true if a flush should be scheduled and the caller should // be the one to schedule it bool MarkFlushScheduled() { auto before = FLUSH_REQUESTED; return flush_state_.compare_exchange_strong(before, FLUSH_SCHEDULED, std::memory_order_relaxed, std::memory_order_relaxed); } // Return an iterator that yields the contents of the memtable. // // The caller must ensure that the underlying MemTable remains live // while the returned iterator is live. The keys returned by this // iterator are internal keys encoded by AppendInternalKey in the // db/dbformat.{h,cc} module. // // By default, it returns an iterator for prefix seek if prefix_extractor // is configured in Options. // arena: If not null, the arena needs to be used to allocate the Iterator. // Calling ~Iterator of the iterator will destroy all the states but // those allocated in arena. InternalIterator* NewIterator(const ReadOptions& read_options, Arena* arena); // Returns an iterator that yields the range tombstones of the memtable. // The caller must ensure that the underlying MemTable remains live // while the returned iterator is live. // @param immutable_memtable Whether this memtable is an immutable memtable. // This information is not stored in memtable itself, so it needs to be // specified by the caller. This flag is used internally to decide whether a // cached fragmented range tombstone list can be returned. This cached version // is constructed when a memtable becomes immutable. Setting the flag to false // will always yield correct result, but may incur performance penalty as it // always creates a new fragmented range tombstone list. FragmentedRangeTombstoneIterator* NewRangeTombstoneIterator( const ReadOptions& read_options, SequenceNumber read_seq, bool immutable_memtable); Status VerifyEncodedEntry(Slice encoded, const ProtectionInfoKVOS64& kv_prot_info); // Add an entry into memtable that maps key to value at the // specified sequence number and with the specified type. // Typically value will be empty if type==kTypeDeletion. // // REQUIRES: if allow_concurrent = false, external synchronization to prevent // simultaneous operations on the same MemTable. // // Returns `Status::TryAgain` if the `seq`, `key` combination already exists // in the memtable and `MemTableRepFactory::CanHandleDuplicatedKey()` is true. // The next attempt should try a larger value for `seq`. Status Add(SequenceNumber seq, ValueType type, const Slice& key, const Slice& value, const ProtectionInfoKVOS64* kv_prot_info, bool allow_concurrent = false, MemTablePostProcessInfo* post_process_info = nullptr, void** hint = nullptr); // Used to Get value associated with key or Get Merge Operands associated // with key. // If do_merge = true the default behavior which is Get value for key is // executed. Expected behavior is described right below. // If memtable contains a value for key, store it in *value and return true. // If memtable contains a deletion for key, store a NotFound() error // in *status and return true. // If memtable contains Merge operation as the most recent entry for a key, // and the merge process does not stop (not reaching a value or delete), // prepend the current merge operand to *operands. // store MergeInProgress in s, and return false. // Else, return false. // If any operation was found, its most recent sequence number // will be stored in *seq on success (regardless of whether true/false is // returned). Otherwise, *seq will be set to kMaxSequenceNumber. // On success, *s may be set to OK, NotFound, or MergeInProgress. Any other // status returned indicates a corruption or other unexpected error. // If do_merge = false then any Merge Operands encountered for key are simply // stored in merge_context.operands_list and never actually merged to get a // final value. The raw Merge Operands are eventually returned to the user. // @param immutable_memtable Whether this memtable is immutable. Used // internally by NewRangeTombstoneIterator(). See comment above // NewRangeTombstoneIterator() for more detail. bool Get(const LookupKey& key, std::string* value, PinnableWideColumns* columns, std::string* timestamp, Status* s, MergeContext* merge_context, SequenceNumber* max_covering_tombstone_seq, SequenceNumber* seq, const ReadOptions& read_opts, bool immutable_memtable, ReadCallback* callback = nullptr, bool* is_blob_index = nullptr, bool do_merge = true); bool Get(const LookupKey& key, std::string* value, PinnableWideColumns* columns, std::string* timestamp, Status* s, MergeContext* merge_context, SequenceNumber* max_covering_tombstone_seq, const ReadOptions& read_opts, bool immutable_memtable, ReadCallback* callback = nullptr, bool* is_blob_index = nullptr, bool do_merge = true) { SequenceNumber seq; return Get(key, value, columns, timestamp, s, merge_context, max_covering_tombstone_seq, &seq, read_opts, immutable_memtable, callback, is_blob_index, do_merge); } // @param immutable_memtable Whether this memtable is immutable. Used // internally by NewRangeTombstoneIterator(). See comment above // NewRangeTombstoneIterator() for more detail. void MultiGet(const ReadOptions& read_options, MultiGetRange* range, ReadCallback* callback, bool immutable_memtable); // If `key` exists in current memtable with type value_type and the existing // value is at least as large as the new value, updates it in-place. Otherwise // adds the new value to the memtable out-of-place. // // Returns `Status::TryAgain` if the `seq`, `key` combination already exists // in the memtable and `MemTableRepFactory::CanHandleDuplicatedKey()` is true. // The next attempt should try a larger value for `seq`. // // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable. Status Update(SequenceNumber seq, ValueType value_type, const Slice& key, const Slice& value, const ProtectionInfoKVOS64* kv_prot_info); // If `key` exists in current memtable with type `kTypeValue` and the existing // value is at least as large as the new value, updates it in-place. Otherwise // if `key` exists in current memtable with type `kTypeValue`, adds the new // value to the memtable out-of-place. // // Returns `Status::NotFound` if `key` does not exist in current memtable or // the latest version of `key` does not have `kTypeValue`. // // Returns `Status::TryAgain` if the `seq`, `key` combination already exists // in the memtable and `MemTableRepFactory::CanHandleDuplicatedKey()` is true. // The next attempt should try a larger value for `seq`. // // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable. Status UpdateCallback(SequenceNumber seq, const Slice& key, const Slice& delta, const ProtectionInfoKVOS64* kv_prot_info); // Returns the number of successive merge entries starting from the newest // entry for the key up to the last non-merge entry or last entry for the // key in the memtable. size_t CountSuccessiveMergeEntries(const LookupKey& key); // Update counters and flush status after inserting a whole write batch // Used in concurrent memtable inserts. void BatchPostProcess(const MemTablePostProcessInfo& update_counters) { num_entries_.fetch_add(update_counters.num_entries, std::memory_order_relaxed); data_size_.fetch_add(update_counters.data_size, std::memory_order_relaxed); if (update_counters.num_deletes != 0) { num_deletes_.fetch_add(update_counters.num_deletes, std::memory_order_relaxed); } UpdateFlushState(); } // Get total number of entries in the mem table. // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable (unless this Memtable is immutable). uint64_t num_entries() const { return num_entries_.load(std::memory_order_relaxed); } // Get total number of deletes in the mem table. // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable (unless this Memtable is immutable). uint64_t num_deletes() const { return num_deletes_.load(std::memory_order_relaxed); } uint64_t get_data_size() const { return data_size_.load(std::memory_order_relaxed); } size_t write_buffer_size() const { return write_buffer_size_.load(std::memory_order_relaxed); } // Dynamically change the memtable's capacity. If set below the current usage, // the next key added will trigger a flush. Can only increase size when // memtable prefix bloom is disabled, since we can't easily allocate more // space. void UpdateWriteBufferSize(size_t new_write_buffer_size) { if (bloom_filter_ == nullptr || new_write_buffer_size < write_buffer_size_) { write_buffer_size_.store(new_write_buffer_size, std::memory_order_relaxed); } } // Returns the edits area that is needed for flushing the memtable VersionEdit* GetEdits() { return &edit_; } // Returns if there is no entry inserted to the mem table. // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable (unless this Memtable is immutable). bool IsEmpty() const { return first_seqno_ == 0; } // Returns the sequence number of the first element that was inserted // into the memtable. // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable (unless this Memtable is immutable). SequenceNumber GetFirstSequenceNumber() { return first_seqno_.load(std::memory_order_relaxed); } // Returns the sequence number of the first element that was inserted // into the memtable. // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable (unless this Memtable is immutable). void SetFirstSequenceNumber(SequenceNumber first_seqno) { return first_seqno_.store(first_seqno, std::memory_order_relaxed); } // Returns the sequence number that is guaranteed to be smaller than or equal // to the sequence number of any key that could be inserted into this // memtable. It can then be assumed that any write with a larger(or equal) // sequence number will be present in this memtable or a later memtable. // // If the earliest sequence number could not be determined, // kMaxSequenceNumber will be returned. SequenceNumber GetEarliestSequenceNumber() { return earliest_seqno_.load(std::memory_order_relaxed); } // Sets the sequence number that is guaranteed to be smaller than or equal // to the sequence number of any key that could be inserted into this // memtable. It can then be assumed that any write with a larger(or equal) // sequence number will be present in this memtable or a later memtable. // Used only for MemPurge operation void SetEarliestSequenceNumber(SequenceNumber earliest_seqno) { return earliest_seqno_.store(earliest_seqno, std::memory_order_relaxed); } // DB's latest sequence ID when the memtable is created. This number // may be updated to a more recent one before any key is inserted. SequenceNumber GetCreationSeq() const { return creation_seq_; } void SetCreationSeq(SequenceNumber sn) { creation_seq_ = sn; } // Returns the next active logfile number when this memtable is about to // be flushed to storage // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable. uint64_t GetNextLogNumber() { return mem_next_logfile_number_; } // Sets the next active logfile number when this memtable is about to // be flushed to storage // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable. void SetNextLogNumber(uint64_t num) { mem_next_logfile_number_ = num; } // if this memtable contains data from a committed // two phase transaction we must take note of the // log which contains that data so we can know // when to relese that log void RefLogContainingPrepSection(uint64_t log); uint64_t GetMinLogContainingPrepSection(); // Notify the underlying storage that no more items will be added. // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable. // After MarkImmutable() is called, you should not attempt to // write anything to this MemTable(). (Ie. do not call Add() or Update()). void MarkImmutable() { table_->MarkReadOnly(); mem_tracker_.DoneAllocating(); } // Notify the underlying storage that all data it contained has been // persisted. // REQUIRES: external synchronization to prevent simultaneous // operations on the same MemTable. void MarkFlushed() { table_->MarkFlushed(); } // return true if the current MemTableRep supports merge operator. bool IsMergeOperatorSupported() const { return table_->IsMergeOperatorSupported(); } // return true if the current MemTableRep supports snapshots. // inplace update prevents snapshots, bool IsSnapshotSupported() const { return table_->IsSnapshotSupported() && !moptions_.inplace_update_support; } struct MemTableStats { uint64_t size; uint64_t count; }; MemTableStats ApproximateStats(const Slice& start_ikey, const Slice& end_ikey); // Get the lock associated for the key port::RWMutex* GetLock(const Slice& key); const InternalKeyComparator& GetInternalKeyComparator() const { return comparator_.comparator; } const ImmutableMemTableOptions* GetImmutableMemTableOptions() const { return &moptions_; } uint64_t ApproximateOldestKeyTime() const { return oldest_key_time_.load(std::memory_order_relaxed); } // REQUIRES: db_mutex held. void SetID(uint64_t id) { id_ = id; } uint64_t GetID() const { return id_; } void SetFlushCompleted(bool completed) { flush_completed_ = completed; } uint64_t GetFileNumber() const { return file_number_; } void SetFileNumber(uint64_t file_num) { file_number_ = file_num; } void SetFlushInProgress(bool in_progress) { flush_in_progress_ = in_progress; } void SetFlushJobInfo(std::unique_ptr&& info) { flush_job_info_ = std::move(info); } std::unique_ptr ReleaseFlushJobInfo() { return std::move(flush_job_info_); } // Returns a heuristic flush decision bool ShouldFlushNow(); void ConstructFragmentedRangeTombstones(); // Returns whether a fragmented range tombstone list is already constructed // for this memtable. It should be constructed right before a memtable is // added to an immutable memtable list. Note that if a memtable does not have // any range tombstone, then no range tombstone list will ever be constructed. // @param allow_empty Specifies whether a memtable with no range tombstone is // considered to have its fragmented range tombstone list constructed. bool IsFragmentedRangeTombstonesConstructed(bool allow_empty = true) const { if (allow_empty) { return fragmented_range_tombstone_list_.get() != nullptr || is_range_del_table_empty_; } else { return fragmented_range_tombstone_list_.get() != nullptr; } } // Get the newest user-defined timestamp contained in this MemTable. Check // `newest_udt_` for what newer means. This method should only be invoked for // an MemTable that has enabled user-defined timestamp feature and set // `persist_user_defined_timestamps` to false. The tracked newest UDT will be // used by flush job in the background to help check the MemTable's // eligibility for Flush. const Slice& GetNewestUDT() const; // Returns Corruption status if verification fails. static Status VerifyEntryChecksum(const char* entry, uint32_t protection_bytes_per_key, bool allow_data_in_errors = false); private: enum FlushStateEnum { FLUSH_NOT_REQUESTED, FLUSH_REQUESTED, FLUSH_SCHEDULED }; friend class MemTableIterator; friend class MemTableBackwardIterator; friend class MemTableList; KeyComparator comparator_; const ImmutableMemTableOptions moptions_; int refs_; const size_t kArenaBlockSize; AllocTracker mem_tracker_; ConcurrentArena arena_; std::unique_ptr table_; std::unique_ptr range_del_table_; std::atomic_bool is_range_del_table_empty_; // Total data size of all data inserted std::atomic data_size_; std::atomic num_entries_; std::atomic num_deletes_; // Dynamically changeable memtable option std::atomic write_buffer_size_; // These are used to manage memtable flushes to storage bool flush_in_progress_; // started the flush bool flush_completed_; // finished the flush uint64_t file_number_; // filled up after flush is complete // The updates to be applied to the transaction log when this // memtable is flushed to storage. VersionEdit edit_; // The sequence number of the kv that was inserted first std::atomic first_seqno_; // The db sequence number at the time of creation or kMaxSequenceNumber // if not set. std::atomic earliest_seqno_; SequenceNumber creation_seq_; // The log files earlier than this number can be deleted. uint64_t mem_next_logfile_number_; // the earliest log containing a prepared section // which has been inserted into this memtable. std::atomic min_prep_log_referenced_; // rw locks for inplace updates std::vector locks_; const SliceTransform* const prefix_extractor_; std::unique_ptr bloom_filter_; std::atomic flush_state_; SystemClock* clock_; // Extract sequential insert prefixes. const SliceTransform* insert_with_hint_prefix_extractor_; // Insert hints for each prefix. UnorderedMapH insert_hints_; // Timestamp of oldest key std::atomic oldest_key_time_; // Memtable id to track flush. uint64_t id_ = 0; // Sequence number of the atomic flush that is responsible for this memtable. // The sequence number of atomic flush is a seq, such that no writes with // sequence numbers greater than or equal to seq are flushed, while all // writes with sequence number smaller than seq are flushed. SequenceNumber atomic_flush_seqno_; // keep track of memory usage in table_, arena_, and range_del_table_. // Gets refreshed inside `ApproximateMemoryUsage()` or `ShouldFlushNow` std::atomic approximate_memory_usage_; // Flush job info of the current memtable. std::unique_ptr flush_job_info_; // Size in bytes for the user-defined timestamps. size_t ts_sz_; // Whether to persist user-defined timestamps bool persist_user_defined_timestamps_; // Newest user-defined timestamp contained in this MemTable. For ts1, and ts2 // if Comparator::CompareTimestamp(ts1, ts2) > 0, ts1 is considered newer than // ts2. We track this field for a MemTable if its column family has UDT // feature enabled and the `persist_user_defined_timestamp` flag is false. // Otherwise, this field just contains an empty Slice. Slice newest_udt_; // Updates flush_state_ using ShouldFlushNow() void UpdateFlushState(); void UpdateOldestKeyTime(); void GetFromTable(const LookupKey& key, SequenceNumber max_covering_tombstone_seq, bool do_merge, ReadCallback* callback, bool* is_blob_index, std::string* value, PinnableWideColumns* columns, std::string* timestamp, Status* s, MergeContext* merge_context, SequenceNumber* seq, bool* found_final_value, bool* merge_in_progress); // Always returns non-null and assumes certain pre-checks (e.g., // is_range_del_table_empty_) are done. This is only valid during the lifetime // of the underlying memtable. // read_seq and read_options.timestamp will be used as the upper bound // for range tombstones. FragmentedRangeTombstoneIterator* NewRangeTombstoneIteratorInternal( const ReadOptions& read_options, SequenceNumber read_seq, bool immutable_memtable); // The fragmented range tombstones of this memtable. // This is constructed when this memtable becomes immutable // if !is_range_del_table_empty_. std::unique_ptr fragmented_range_tombstone_list_; // makes sure there is a single range tombstone writer to invalidate cache std::mutex range_del_mutex_; CoreLocalArray> cached_range_tombstone_; void UpdateEntryChecksum(const ProtectionInfoKVOS64* kv_prot_info, const Slice& key, const Slice& value, ValueType type, SequenceNumber s, char* checksum_ptr); void MaybeUpdateNewestUDT(const Slice& user_key); }; extern const char* EncodeKey(std::string* scratch, const Slice& target); } // namespace ROCKSDB_NAMESPACE