// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // This source code is also licensed under the GPLv2 license found in the // COPYING file in the root directory of this source tree. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #ifdef GFLAGS #ifdef NUMA #include #include #endif #ifndef OS_WIN #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "db/db_impl.h" #include "db/version_set.h" #include "hdfs/env_hdfs.h" #include "monitoring/histogram.h" #include "monitoring/statistics.h" #include "port/port.h" #include "port/stack_trace.h" #include "rocksdb/cache.h" #include "rocksdb/db.h" #include "rocksdb/env.h" #include "rocksdb/filter_policy.h" #include "rocksdb/memtablerep.h" #include "rocksdb/options.h" #include "rocksdb/perf_context.h" #include "rocksdb/persistent_cache.h" #include "rocksdb/rate_limiter.h" #include "rocksdb/slice.h" #include "rocksdb/slice_transform.h" #include "rocksdb/utilities/object_registry.h" #include "rocksdb/utilities/optimistic_transaction_db.h" #include "rocksdb/utilities/options_util.h" #include "rocksdb/utilities/sim_cache.h" #include "rocksdb/utilities/transaction.h" #include "rocksdb/utilities/transaction_db.h" #include "rocksdb/write_batch.h" #include "util/compression.h" #include "util/crc32c.h" #include "util/mutexlock.h" #include "util/random.h" #include "util/stderr_logger.h" #include "util/string_util.h" #include "util/testutil.h" #include "util/transaction_test_util.h" #include "util/xxhash.h" #include "utilities/blob_db/blob_db.h" #include "utilities/merge_operators.h" #include "utilities/persistent_cache/block_cache_tier.h" #ifdef OS_WIN #include // open/close #endif using GFLAGS::ParseCommandLineFlags; using GFLAGS::RegisterFlagValidator; using GFLAGS::SetUsageMessage; DEFINE_string( benchmarks, "fillseq," "fillseqdeterministic," "fillsync," "fillrandom," "filluniquerandomdeterministic," "overwrite," "readrandom," "newiterator," "newiteratorwhilewriting," "seekrandom," "seekrandomwhilewriting," "seekrandomwhilemerging," "readseq," "readreverse," "compact," "readrandom," "multireadrandom," "readseq," "readtocache," "readreverse," "readwhilewriting," "readwhilemerging," "readrandomwriterandom," "updaterandom," "randomwithverify," "fill100K," "crc32c," "xxhash," "compress," "uncompress," "acquireload," "fillseekseq," "randomtransaction," "randomreplacekeys," "timeseries", "Comma-separated list of operations to run in the specified" " order. Available benchmarks:\n" "\tfillseq -- write N values in sequential key" " order in async mode\n" "\tfillseqdeterministic -- write N values in the specified" " key order and keep the shape of the LSM tree\n" "\tfillrandom -- write N values in random key order in async" " mode\n" "\tfilluniquerandomdeterministic -- write N values in a random" " key order and keep the shape of the LSM tree\n" "\toverwrite -- overwrite N values in random key order in" " async mode\n" "\tfillsync -- write N/100 values in random key order in " "sync mode\n" "\tfill100K -- write N/1000 100K values in random order in" " async mode\n" "\tdeleteseq -- delete N keys in sequential order\n" "\tdeleterandom -- delete N keys in random order\n" "\treadseq -- read N times sequentially\n" "\treadtocache -- 1 thread reading database sequentially\n" "\treadreverse -- read N times in reverse order\n" "\treadrandom -- read N times in random order\n" "\treadmissing -- read N missing keys in random order\n" "\treadwhilewriting -- 1 writer, N threads doing random " "reads\n" "\treadwhilemerging -- 1 merger, N threads doing random " "reads\n" "\treadrandomwriterandom -- N threads doing random-read, " "random-write\n" "\tprefixscanrandom -- prefix scan N times in random order\n" "\tupdaterandom -- N threads doing read-modify-write for random " "keys\n" "\tappendrandom -- N threads doing read-modify-write with " "growing values\n" "\tmergerandom -- same as updaterandom/appendrandom using merge" " operator. " "Must be used with merge_operator\n" "\treadrandommergerandom -- perform N random read-or-merge " "operations. Must be used with merge_operator\n" "\tnewiterator -- repeated iterator creation\n" "\tseekrandom -- N random seeks, call Next seek_nexts times " "per seek\n" "\tseekrandomwhilewriting -- seekrandom and 1 thread doing " "overwrite\n" "\tseekrandomwhilemerging -- seekrandom and 1 thread doing " "merge\n" "\tcrc32c -- repeated crc32c of 4K of data\n" "\txxhash -- repeated xxHash of 4K of data\n" "\tacquireload -- load N*1000 times\n" "\tfillseekseq -- write N values in sequential key, then read " "them by seeking to each key\n" "\trandomtransaction -- execute N random transactions and " "verify correctness\n" "\trandomreplacekeys -- randomly replaces N keys by deleting " "the old version and putting the new version\n\n" "\ttimeseries -- 1 writer generates time series data " "and multiple readers doing random reads on id\n\n" "Meta operations:\n" "\tcompact -- Compact the entire DB\n" "\tstats -- Print DB stats\n" "\tresetstats -- Reset DB stats\n" "\tlevelstats -- Print the number of files and bytes per level\n" "\tsstables -- Print sstable info\n" "\theapprofile -- Dump a heap profile (if supported by this" " port)\n"); DEFINE_int64(num, 1000000, "Number of key/values to place in database"); DEFINE_int64(numdistinct, 1000, "Number of distinct keys to use. Used in RandomWithVerify to " "read/write on fewer keys so that gets are more likely to find the" " key and puts are more likely to update the same key"); DEFINE_int64(merge_keys, -1, "Number of distinct keys to use for MergeRandom and " "ReadRandomMergeRandom. " "If negative, there will be FLAGS_num keys."); DEFINE_int32(num_column_families, 1, "Number of Column Families to use."); DEFINE_int32( num_hot_column_families, 0, "Number of Hot Column Families. If more than 0, only write to this " "number of column families. After finishing all the writes to them, " "create new set of column families and insert to them. Only used " "when num_column_families > 1."); DEFINE_int64(reads, -1, "Number of read operations to do. " "If negative, do FLAGS_num reads."); DEFINE_int64(deletes, -1, "Number of delete operations to do. " "If negative, do FLAGS_num deletions."); DEFINE_int32(bloom_locality, 0, "Control bloom filter probes locality"); DEFINE_int64(seed, 0, "Seed base for random number generators. " "When 0 it is deterministic."); DEFINE_int32(threads, 1, "Number of concurrent threads to run."); DEFINE_int32(duration, 0, "Time in seconds for the random-ops tests to run." " When 0 then num & reads determine the test duration"); DEFINE_int32(value_size, 100, "Size of each value"); DEFINE_int32(seek_nexts, 0, "How many times to call Next() after Seek() in " "fillseekseq, seekrandom, seekrandomwhilewriting and " "seekrandomwhilemerging"); DEFINE_bool(reverse_iterator, false, "When true use Prev rather than Next for iterators that do " "Seek and then Next"); DEFINE_bool(use_uint64_comparator, false, "use Uint64 user comparator"); DEFINE_bool(pin_slice, true, "use pinnable slice for point lookup"); DEFINE_int64(batch_size, 1, "Batch size"); static bool ValidateKeySize(const char* flagname, int32_t value) { return true; } static bool ValidateUint32Range(const char* flagname, uint64_t value) { if (value > std::numeric_limits::max()) { fprintf(stderr, "Invalid value for --%s: %lu, overflow\n", flagname, (unsigned long)value); return false; } return true; } DEFINE_int32(key_size, 16, "size of each key"); DEFINE_int32(num_multi_db, 0, "Number of DBs used in the benchmark. 0 means single DB."); DEFINE_double(compression_ratio, 0.5, "Arrange to generate values that shrink" " to this fraction of their original size after compression"); DEFINE_double(read_random_exp_range, 0.0, "Read random's key will be generated using distribution of " "num * exp(-r) where r is uniform number from 0 to this value. " "The larger the number is, the more skewed the reads are. " "Only used in readrandom and multireadrandom benchmarks."); DEFINE_bool(histogram, false, "Print histogram of operation timings"); DEFINE_bool(enable_numa, false, "Make operations aware of NUMA architecture and bind memory " "and cpus corresponding to nodes together. In NUMA, memory " "in same node as CPUs are closer when compared to memory in " "other nodes. Reads can be faster when the process is bound to " "CPU and memory of same node. Use \"$numactl --hardware\" command " "to see NUMA memory architecture."); DEFINE_int64(db_write_buffer_size, rocksdb::Options().db_write_buffer_size, "Number of bytes to buffer in all memtables before compacting"); DEFINE_int64(write_buffer_size, rocksdb::Options().write_buffer_size, "Number of bytes to buffer in memtable before compacting"); DEFINE_int32(max_write_buffer_number, rocksdb::Options().max_write_buffer_number, "The number of in-memory memtables. Each memtable is of size" "write_buffer_size."); DEFINE_int32(min_write_buffer_number_to_merge, rocksdb::Options().min_write_buffer_number_to_merge, "The minimum number of write buffers that will be merged together" "before writing to storage. This is cheap because it is an" "in-memory merge. If this feature is not enabled, then all these" "write buffers are flushed to L0 as separate files and this " "increases read amplification because a get request has to check" " in all of these files. Also, an in-memory merge may result in" " writing less data to storage if there are duplicate records " " in each of these individual write buffers."); DEFINE_int32(max_write_buffer_number_to_maintain, rocksdb::Options().max_write_buffer_number_to_maintain, "The total maximum number of write buffers to maintain in memory " "including copies of buffers that have already been flushed. " "Unlike max_write_buffer_number, this parameter does not affect " "flushing. This controls the minimum amount of write history " "that will be available in memory for conflict checking when " "Transactions are used. If this value is too low, some " "transactions may fail at commit time due to not being able to " "determine whether there were any write conflicts. Setting this " "value to 0 will cause write buffers to be freed immediately " "after they are flushed. If this value is set to -1, " "'max_write_buffer_number' will be used."); DEFINE_int32(max_background_compactions, rocksdb::Options().max_background_compactions, "The maximum number of concurrent background compactions" " that can occur in parallel."); DEFINE_int32(base_background_compactions, rocksdb::Options().base_background_compactions, "The base number of concurrent background compactions" " to occur in parallel."); DEFINE_uint64(subcompactions, 1, "Maximum number of subcompactions to divide L0-L1 compactions " "into."); static const bool FLAGS_subcompactions_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_subcompactions, &ValidateUint32Range); DEFINE_int32(max_background_flushes, rocksdb::Options().max_background_flushes, "The maximum number of concurrent background flushes" " that can occur in parallel."); static rocksdb::CompactionStyle FLAGS_compaction_style_e; DEFINE_int32(compaction_style, (int32_t) rocksdb::Options().compaction_style, "style of compaction: level-based, universal and fifo"); static rocksdb::CompactionPri FLAGS_compaction_pri_e; DEFINE_int32(compaction_pri, (int32_t)rocksdb::Options().compaction_pri, "priority of files to compaction: by size or by data age"); DEFINE_int32(universal_size_ratio, 0, "Percentage flexibility while comparing file size" " (for universal compaction only)."); DEFINE_int32(universal_min_merge_width, 0, "The minimum number of files in a" " single compaction run (for universal compaction only)."); DEFINE_int32(universal_max_merge_width, 0, "The max number of files to compact" " in universal style compaction"); DEFINE_int32(universal_max_size_amplification_percent, 0, "The max size amplification for universal style compaction"); DEFINE_int32(universal_compression_size_percent, -1, "The percentage of the database to compress for universal " "compaction. -1 means compress everything."); DEFINE_bool(universal_allow_trivial_move, false, "Allow trivial move in universal compaction."); DEFINE_int64(cache_size, 8 << 20, // 8MB "Number of bytes to use as a cache of uncompressed data"); DEFINE_int32(cache_numshardbits, 6, "Number of shards for the block cache" " is 2 ** cache_numshardbits. Negative means use default settings." " This is applied only if FLAGS_cache_size is non-negative."); DEFINE_double(cache_high_pri_pool_ratio, 0.0, "Ratio of block cache reserve for high pri blocks. " "If > 0.0, we also enable " "cache_index_and_filter_blocks_with_high_priority."); DEFINE_bool(use_clock_cache, false, "Replace default LRU block cache with clock cache."); DEFINE_int64(simcache_size, -1, "Number of bytes to use as a simcache of " "uncompressed data. Nagative value disables simcache."); DEFINE_bool(cache_index_and_filter_blocks, false, "Cache index/filter blocks in block cache."); DEFINE_bool(pin_l0_filter_and_index_blocks_in_cache, false, "Pin index/filter blocks of L0 files in block cache."); DEFINE_int32(block_size, static_cast(rocksdb::BlockBasedTableOptions().block_size), "Number of bytes in a block."); DEFINE_int32(block_restart_interval, rocksdb::BlockBasedTableOptions().block_restart_interval, "Number of keys between restart points " "for delta encoding of keys in data block."); DEFINE_int32(index_block_restart_interval, rocksdb::BlockBasedTableOptions().index_block_restart_interval, "Number of keys between restart points " "for delta encoding of keys in index block."); DEFINE_int32(read_amp_bytes_per_bit, rocksdb::BlockBasedTableOptions().read_amp_bytes_per_bit, "Number of bytes per bit to be used in block read-amp bitmap"); DEFINE_int64(compressed_cache_size, -1, "Number of bytes to use as a cache of compressed data."); DEFINE_int64(row_cache_size, 0, "Number of bytes to use as a cache of individual rows" " (0 = disabled)."); DEFINE_int32(open_files, rocksdb::Options().max_open_files, "Maximum number of files to keep open at the same time" " (use default if == 0)"); DEFINE_int32(file_opening_threads, rocksdb::Options().max_file_opening_threads, "If open_files is set to -1, this option set the number of " "threads that will be used to open files during DB::Open()"); DEFINE_int32(new_table_reader_for_compaction_inputs, true, "If true, uses a separate file handle for compaction inputs"); DEFINE_int32(compaction_readahead_size, 0, "Compaction readahead size"); DEFINE_int32(random_access_max_buffer_size, 1024 * 1024, "Maximum windows randomaccess buffer size"); DEFINE_int32(writable_file_max_buffer_size, 1024 * 1024, "Maximum write buffer for Writable File"); DEFINE_int32(bloom_bits, -1, "Bloom filter bits per key. Negative means" " use default settings."); DEFINE_double(memtable_bloom_size_ratio, 0, "Ratio of memtable size used for bloom filter. 0 means no bloom " "filter."); DEFINE_bool(memtable_use_huge_page, false, "Try to use huge page in memtables."); DEFINE_bool(use_existing_db, false, "If true, do not destroy the existing" " database. If you set this flag and also specify a benchmark that" " wants a fresh database, that benchmark will fail."); DEFINE_bool(show_table_properties, false, "If true, then per-level table" " properties will be printed on every stats-interval when" " stats_interval is set and stats_per_interval is on."); DEFINE_string(db, "", "Use the db with the following name."); // Read cache flags DEFINE_string(read_cache_path, "", "If not empty string, a read cache will be used in this path"); DEFINE_int64(read_cache_size, 4LL * 1024 * 1024 * 1024, "Maximum size of the read cache"); DEFINE_bool(read_cache_direct_write, true, "Whether to use Direct IO for writing to the read cache"); DEFINE_bool(read_cache_direct_read, true, "Whether to use Direct IO for reading from read cache"); static bool ValidateCacheNumshardbits(const char* flagname, int32_t value) { if (value >= 20) { fprintf(stderr, "Invalid value for --%s: %d, must be < 20\n", flagname, value); return false; } return true; } DEFINE_bool(verify_checksum, false, "Verify checksum for every block read" " from storage"); DEFINE_bool(statistics, false, "Database statistics"); DEFINE_string(statistics_string, "", "Serialized statistics string"); static class std::shared_ptr dbstats; DEFINE_int64(writes, -1, "Number of write operations to do. If negative, do" " --num reads."); DEFINE_bool(finish_after_writes, false, "Write thread terminates after all writes are finished"); DEFINE_bool(sync, false, "Sync all writes to disk"); DEFINE_bool(use_fsync, false, "If true, issue fsync instead of fdatasync"); DEFINE_bool(disable_wal, false, "If true, do not write WAL for write."); DEFINE_string(wal_dir, "", "If not empty, use the given dir for WAL"); DEFINE_string(truth_db, "/dev/shm/truth_db/dbbench", "Truth key/values used when using verify"); DEFINE_int32(num_levels, 7, "The total number of levels"); DEFINE_int64(target_file_size_base, rocksdb::Options().target_file_size_base, "Target file size at level-1"); DEFINE_int32(target_file_size_multiplier, rocksdb::Options().target_file_size_multiplier, "A multiplier to compute target level-N file size (N >= 2)"); DEFINE_uint64(max_bytes_for_level_base, rocksdb::Options().max_bytes_for_level_base, "Max bytes for level-1"); DEFINE_bool(level_compaction_dynamic_level_bytes, false, "Whether level size base is dynamic"); DEFINE_double(max_bytes_for_level_multiplier, 10, "A multiplier to compute max bytes for level-N (N >= 2)"); static std::vector FLAGS_max_bytes_for_level_multiplier_additional_v; DEFINE_string(max_bytes_for_level_multiplier_additional, "", "A vector that specifies additional fanout per level"); DEFINE_int32(level0_stop_writes_trigger, rocksdb::Options().level0_stop_writes_trigger, "Number of files in level-0" " that will trigger put stop."); DEFINE_int32(level0_slowdown_writes_trigger, rocksdb::Options().level0_slowdown_writes_trigger, "Number of files in level-0" " that will slow down writes."); DEFINE_int32(level0_file_num_compaction_trigger, rocksdb::Options().level0_file_num_compaction_trigger, "Number of files in level-0" " when compactions start"); static bool ValidateInt32Percent(const char* flagname, int32_t value) { if (value <= 0 || value>=100) { fprintf(stderr, "Invalid value for --%s: %d, 0< pct <100 \n", flagname, value); return false; } return true; } DEFINE_int32(readwritepercent, 90, "Ratio of reads to reads/writes (expressed" " as percentage) for the ReadRandomWriteRandom workload. The " "default value 90 means 90% operations out of all reads and writes" " operations are reads. In other words, 9 gets for every 1 put."); DEFINE_int32(mergereadpercent, 70, "Ratio of merges to merges&reads (expressed" " as percentage) for the ReadRandomMergeRandom workload. The" " default value 70 means 70% out of all read and merge operations" " are merges. In other words, 7 merges for every 3 gets."); DEFINE_int32(deletepercent, 2, "Percentage of deletes out of reads/writes/" "deletes (used in RandomWithVerify only). RandomWithVerify " "calculates writepercent as (100 - FLAGS_readwritepercent - " "deletepercent), so deletepercent must be smaller than (100 - " "FLAGS_readwritepercent)"); DEFINE_bool(optimize_filters_for_hits, false, "Optimizes bloom filters for workloads for most lookups return " "a value. For now this doesn't create bloom filters for the max " "level of the LSM to reduce metadata that should fit in RAM. "); DEFINE_uint64(delete_obsolete_files_period_micros, 0, "Ignored. Left here for backward compatibility"); DEFINE_int64(writes_per_range_tombstone, 0, "Number of writes between range " "tombstones"); DEFINE_int64(range_tombstone_width, 100, "Number of keys in tombstone's range"); DEFINE_int64(max_num_range_tombstones, 0, "Maximum number of range tombstones " "to insert."); DEFINE_bool(expand_range_tombstones, false, "Expand range tombstone into sequential regular tombstones."); #ifndef ROCKSDB_LITE DEFINE_bool(optimistic_transaction_db, false, "Open a OptimisticTransactionDB instance. " "Required for randomtransaction benchmark."); DEFINE_bool(transaction_db, false, "Open a TransactionDB instance. " "Required for randomtransaction benchmark."); DEFINE_uint64(transaction_sets, 2, "Number of keys each transaction will " "modify (use in RandomTransaction only). Max: 9999"); DEFINE_bool(transaction_set_snapshot, false, "Setting to true will have each transaction call SetSnapshot()" " upon creation."); DEFINE_int32(transaction_sleep, 0, "Max microseconds to sleep in between " "reading and writing a value (used in RandomTransaction only). "); DEFINE_uint64(transaction_lock_timeout, 100, "If using a transaction_db, specifies the lock wait timeout in" " milliseconds before failing a transaction waiting on a lock"); DEFINE_string( options_file, "", "The path to a RocksDB options file. If specified, then db_bench will " "run with the RocksDB options in the default column family of the " "specified options file. " "Note that with this setting, db_bench will ONLY accept the following " "RocksDB options related command-line arguments, all other arguments " "that are related to RocksDB options will be ignored:\n" "\t--use_existing_db\n" "\t--statistics\n" "\t--row_cache_size\n" "\t--row_cache_numshardbits\n" "\t--enable_io_prio\n" "\t--dump_malloc_stats\n" "\t--num_multi_db\n"); DEFINE_uint64(fifo_compaction_max_table_files_size_mb, 0, "The limit of total table file sizes to trigger FIFO compaction"); #endif // ROCKSDB_LITE DEFINE_bool(report_bg_io_stats, false, "Measure times spents on I/Os while in compactions. "); DEFINE_bool(use_stderr_info_logger, false, "Write info logs to stderr instead of to LOG file. "); DEFINE_bool(use_blob_db, false, "Whether to use BlobDB. "); static enum rocksdb::CompressionType StringToCompressionType(const char* ctype) { assert(ctype); if (!strcasecmp(ctype, "none")) return rocksdb::kNoCompression; else if (!strcasecmp(ctype, "snappy")) return rocksdb::kSnappyCompression; else if (!strcasecmp(ctype, "zlib")) return rocksdb::kZlibCompression; else if (!strcasecmp(ctype, "bzip2")) return rocksdb::kBZip2Compression; else if (!strcasecmp(ctype, "lz4")) return rocksdb::kLZ4Compression; else if (!strcasecmp(ctype, "lz4hc")) return rocksdb::kLZ4HCCompression; else if (!strcasecmp(ctype, "xpress")) return rocksdb::kXpressCompression; else if (!strcasecmp(ctype, "zstd")) return rocksdb::kZSTD; fprintf(stdout, "Cannot parse compression type '%s'\n", ctype); return rocksdb::kSnappyCompression; // default value } static std::string ColumnFamilyName(size_t i) { if (i == 0) { return rocksdb::kDefaultColumnFamilyName; } else { char name[100]; snprintf(name, sizeof(name), "column_family_name_%06zu", i); return std::string(name); } } DEFINE_string(compression_type, "snappy", "Algorithm to use to compress the database"); static enum rocksdb::CompressionType FLAGS_compression_type_e = rocksdb::kSnappyCompression; DEFINE_int32(compression_level, -1, "Compression level. For zlib this should be -1 for the " "default level, or between 0 and 9."); DEFINE_int32(compression_max_dict_bytes, 0, "Maximum size of dictionary used to prime the compression " "library."); static bool ValidateCompressionLevel(const char* flagname, int32_t value) { if (value < -1 || value > 9) { fprintf(stderr, "Invalid value for --%s: %d, must be between -1 and 9\n", flagname, value); return false; } return true; } static const bool FLAGS_compression_level_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_compression_level, &ValidateCompressionLevel); DEFINE_int32(min_level_to_compress, -1, "If non-negative, compression starts" " from this level. Levels with number < min_level_to_compress are" " not compressed. Otherwise, apply compression_type to " "all levels."); static bool ValidateTableCacheNumshardbits(const char* flagname, int32_t value) { if (0 >= value || value > 20) { fprintf(stderr, "Invalid value for --%s: %d, must be 0 < val <= 20\n", flagname, value); return false; } return true; } DEFINE_int32(table_cache_numshardbits, 4, ""); #ifndef ROCKSDB_LITE DEFINE_string(env_uri, "", "URI for registry Env lookup. Mutually exclusive" " with --hdfs."); #endif // ROCKSDB_LITE DEFINE_string(hdfs, "", "Name of hdfs environment. Mutually exclusive with" " --env_uri."); static rocksdb::Env* FLAGS_env = rocksdb::Env::Default(); DEFINE_int64(stats_interval, 0, "Stats are reported every N operations when " "this is greater than zero. When 0 the interval grows over time."); DEFINE_int64(stats_interval_seconds, 0, "Report stats every N seconds. This " "overrides stats_interval when both are > 0."); DEFINE_int32(stats_per_interval, 0, "Reports additional stats per interval when" " this is greater than 0."); DEFINE_int64(report_interval_seconds, 0, "If greater than zero, it will write simple stats in CVS format " "to --report_file every N seconds"); DEFINE_string(report_file, "report.csv", "Filename where some simple stats are reported to (if " "--report_interval_seconds is bigger than 0)"); DEFINE_int32(thread_status_per_interval, 0, "Takes and report a snapshot of the current status of each thread" " when this is greater than 0."); DEFINE_int32(perf_level, rocksdb::PerfLevel::kDisable, "Level of perf collection"); static bool ValidateRateLimit(const char* flagname, double value) { const double EPSILON = 1e-10; if ( value < -EPSILON ) { fprintf(stderr, "Invalid value for --%s: %12.6f, must be >= 0.0\n", flagname, value); return false; } return true; } DEFINE_double(soft_rate_limit, 0.0, "DEPRECATED"); DEFINE_double(hard_rate_limit, 0.0, "DEPRECATED"); DEFINE_uint64(soft_pending_compaction_bytes_limit, 64ull * 1024 * 1024 * 1024, "Slowdown writes if pending compaction bytes exceed this number"); DEFINE_uint64(hard_pending_compaction_bytes_limit, 128ull * 1024 * 1024 * 1024, "Stop writes if pending compaction bytes exceed this number"); DEFINE_uint64(delayed_write_rate, 8388608u, "Limited bytes allowed to DB when soft_rate_limit or " "level0_slowdown_writes_trigger triggers"); DEFINE_bool(allow_concurrent_memtable_write, false, "Allow multi-writers to update mem tables in parallel."); DEFINE_bool(enable_write_thread_adaptive_yield, false, "Use a yielding spin loop for brief writer thread waits."); DEFINE_uint64( write_thread_max_yield_usec, 100, "Maximum microseconds for enable_write_thread_adaptive_yield operation."); DEFINE_uint64(write_thread_slow_yield_usec, 3, "The threshold at which a slow yield is considered a signal that " "other processes or threads want the core."); DEFINE_int32(rate_limit_delay_max_milliseconds, 1000, "When hard_rate_limit is set then this is the max time a put will" " be stalled."); DEFINE_uint64(rate_limiter_bytes_per_sec, 0, "Set options.rate_limiter value."); DEFINE_uint64( benchmark_write_rate_limit, 0, "If non-zero, db_bench will rate-limit the writes going into RocksDB. This " "is the global rate in bytes/second."); DEFINE_uint64( benchmark_read_rate_limit, 0, "If non-zero, db_bench will rate-limit the reads from RocksDB. This " "is the global rate in ops/second."); DEFINE_uint64(max_compaction_bytes, rocksdb::Options().max_compaction_bytes, "Max bytes allowed in one compaction"); #ifndef ROCKSDB_LITE DEFINE_bool(readonly, false, "Run read only benchmarks."); #endif // ROCKSDB_LITE DEFINE_bool(disable_auto_compactions, false, "Do not auto trigger compactions"); DEFINE_uint64(wal_ttl_seconds, 0, "Set the TTL for the WAL Files in seconds."); DEFINE_uint64(wal_size_limit_MB, 0, "Set the size limit for the WAL Files" " in MB."); DEFINE_uint64(max_total_wal_size, 0, "Set total max WAL size"); DEFINE_bool(mmap_read, rocksdb::Options().allow_mmap_reads, "Allow reads to occur via mmap-ing files"); DEFINE_bool(mmap_write, rocksdb::Options().allow_mmap_writes, "Allow writes to occur via mmap-ing files"); DEFINE_bool(use_direct_reads, rocksdb::Options().use_direct_reads, "Use O_DIRECT for reading data"); DEFINE_bool(use_direct_io_for_flush_and_compaction, rocksdb::Options().use_direct_io_for_flush_and_compaction, "Use O_DIRECT for background flush and compaction I/O"); DEFINE_bool(advise_random_on_open, rocksdb::Options().advise_random_on_open, "Advise random access on table file open"); DEFINE_string(compaction_fadvice, "NORMAL", "Access pattern advice when a file is compacted"); static auto FLAGS_compaction_fadvice_e = rocksdb::Options().access_hint_on_compaction_start; DEFINE_bool(use_tailing_iterator, false, "Use tailing iterator to access a series of keys instead of get"); DEFINE_bool(use_adaptive_mutex, rocksdb::Options().use_adaptive_mutex, "Use adaptive mutex"); DEFINE_uint64(bytes_per_sync, rocksdb::Options().bytes_per_sync, "Allows OS to incrementally sync SST files to disk while they are" " being written, in the background. Issue one request for every" " bytes_per_sync written. 0 turns it off."); DEFINE_uint64(wal_bytes_per_sync, rocksdb::Options().wal_bytes_per_sync, "Allows OS to incrementally sync WAL files to disk while they are" " being written, in the background. Issue one request for every" " wal_bytes_per_sync written. 0 turns it off."); DEFINE_bool(use_single_deletes, true, "Use single deletes (used in RandomReplaceKeys only)."); DEFINE_double(stddev, 2000.0, "Standard deviation of normal distribution used for picking keys" " (used in RandomReplaceKeys only)."); DEFINE_int32(key_id_range, 100000, "Range of possible value of key id (used in TimeSeries only)."); DEFINE_string(expire_style, "none", "Style to remove expired time entries. Can be one of the options " "below: none (do not expired data), compaction_filter (use a " "compaction filter to remove expired data), delete (seek IDs and " "remove expired data) (used in TimeSeries only)."); DEFINE_uint64( time_range, 100000, "Range of timestamp that store in the database (used in TimeSeries" " only)."); DEFINE_int32(num_deletion_threads, 1, "Number of threads to do deletion (used in TimeSeries and delete " "expire_style only)."); DEFINE_int32(max_successive_merges, 0, "Maximum number of successive merge" " operations on a key in the memtable"); static bool ValidatePrefixSize(const char* flagname, int32_t value) { if (value < 0 || value>=2000000000) { fprintf(stderr, "Invalid value for --%s: %d. 0<= PrefixSize <=2000000000\n", flagname, value); return false; } return true; } DEFINE_int32(prefix_size, 0, "control the prefix size for HashSkipList and " "plain table"); DEFINE_int64(keys_per_prefix, 0, "control average number of keys generated " "per prefix, 0 means no special handling of the prefix, " "i.e. use the prefix comes with the generated random number."); DEFINE_int32(memtable_insert_with_hint_prefix_size, 0, "If non-zero, enable " "memtable insert with hint with the given prefix size."); DEFINE_bool(enable_io_prio, false, "Lower the background flush/compaction " "threads' IO priority"); DEFINE_bool(identity_as_first_hash, false, "the first hash function of cuckoo " "table becomes an identity function. This is only valid when key " "is 8 bytes"); DEFINE_bool(dump_malloc_stats, true, "Dump malloc stats in LOG "); enum RepFactory { kSkipList, kPrefixHash, kVectorRep, kHashLinkedList, kCuckoo }; static enum RepFactory StringToRepFactory(const char* ctype) { assert(ctype); if (!strcasecmp(ctype, "skip_list")) return kSkipList; else if (!strcasecmp(ctype, "prefix_hash")) return kPrefixHash; else if (!strcasecmp(ctype, "vector")) return kVectorRep; else if (!strcasecmp(ctype, "hash_linkedlist")) return kHashLinkedList; else if (!strcasecmp(ctype, "cuckoo")) return kCuckoo; fprintf(stdout, "Cannot parse memreptable %s\n", ctype); return kSkipList; } static enum RepFactory FLAGS_rep_factory; DEFINE_string(memtablerep, "skip_list", ""); DEFINE_int64(hash_bucket_count, 1024 * 1024, "hash bucket count"); DEFINE_bool(use_plain_table, false, "if use plain table " "instead of block-based table format"); DEFINE_bool(use_cuckoo_table, false, "if use cuckoo table format"); DEFINE_double(cuckoo_hash_ratio, 0.9, "Hash ratio for Cuckoo SST table."); DEFINE_bool(use_hash_search, false, "if use kHashSearch " "instead of kBinarySearch. " "This is valid if only we use BlockTable"); DEFINE_bool(use_block_based_filter, false, "if use kBlockBasedFilter " "instead of kFullFilter for filter block. " "This is valid if only we use BlockTable"); DEFINE_string(merge_operator, "", "The merge operator to use with the database." "If a new merge operator is specified, be sure to use fresh" " database The possible merge operators are defined in" " utilities/merge_operators.h"); DEFINE_int32(skip_list_lookahead, 0, "Used with skip_list memtablerep; try " "linear search first for this many steps from the previous " "position"); DEFINE_bool(report_file_operations, false, "if report number of file " "operations"); static const bool FLAGS_soft_rate_limit_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_soft_rate_limit, &ValidateRateLimit); static const bool FLAGS_hard_rate_limit_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_hard_rate_limit, &ValidateRateLimit); static const bool FLAGS_prefix_size_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_prefix_size, &ValidatePrefixSize); static const bool FLAGS_key_size_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_key_size, &ValidateKeySize); static const bool FLAGS_cache_numshardbits_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_cache_numshardbits, &ValidateCacheNumshardbits); static const bool FLAGS_readwritepercent_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_readwritepercent, &ValidateInt32Percent); DEFINE_int32(disable_seek_compaction, false, "Not used, left here for backwards compatibility"); static const bool FLAGS_deletepercent_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_deletepercent, &ValidateInt32Percent); static const bool FLAGS_table_cache_numshardbits_dummy __attribute__((unused)) = RegisterFlagValidator(&FLAGS_table_cache_numshardbits, &ValidateTableCacheNumshardbits); namespace rocksdb { namespace { struct ReportFileOpCounters { std::atomic open_counter_; std::atomic read_counter_; std::atomic append_counter_; std::atomic bytes_read_; std::atomic bytes_written_; }; // A special Env to records and report file operations in db_bench class ReportFileOpEnv : public EnvWrapper { public: explicit ReportFileOpEnv(Env* base) : EnvWrapper(base) { reset(); } void reset() { counters_.open_counter_ = 0; counters_.read_counter_ = 0; counters_.append_counter_ = 0; counters_.bytes_read_ = 0; counters_.bytes_written_ = 0; } Status NewSequentialFile(const std::string& f, unique_ptr* r, const EnvOptions& soptions) override { class CountingFile : public SequentialFile { private: unique_ptr target_; ReportFileOpCounters* counters_; public: CountingFile(unique_ptr&& target, ReportFileOpCounters* counters) : target_(std::move(target)), counters_(counters) {} virtual Status Read(size_t n, Slice* result, char* scratch) override { counters_->read_counter_.fetch_add(1, std::memory_order_relaxed); Status rv = target_->Read(n, result, scratch); counters_->bytes_read_.fetch_add(result->size(), std::memory_order_relaxed); return rv; } virtual Status Skip(uint64_t n) override { return target_->Skip(n); } }; Status s = target()->NewSequentialFile(f, r, soptions); if (s.ok()) { counters()->open_counter_.fetch_add(1, std::memory_order_relaxed); r->reset(new CountingFile(std::move(*r), counters())); } return s; } Status NewRandomAccessFile(const std::string& f, unique_ptr* r, const EnvOptions& soptions) override { class CountingFile : public RandomAccessFile { private: unique_ptr target_; ReportFileOpCounters* counters_; public: CountingFile(unique_ptr&& target, ReportFileOpCounters* counters) : target_(std::move(target)), counters_(counters) {} virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { counters_->read_counter_.fetch_add(1, std::memory_order_relaxed); Status rv = target_->Read(offset, n, result, scratch); counters_->bytes_read_.fetch_add(result->size(), std::memory_order_relaxed); return rv; } }; Status s = target()->NewRandomAccessFile(f, r, soptions); if (s.ok()) { counters()->open_counter_.fetch_add(1, std::memory_order_relaxed); r->reset(new CountingFile(std::move(*r), counters())); } return s; } Status NewWritableFile(const std::string& f, unique_ptr* r, const EnvOptions& soptions) override { class CountingFile : public WritableFile { private: unique_ptr target_; ReportFileOpCounters* counters_; public: CountingFile(unique_ptr&& target, ReportFileOpCounters* counters) : target_(std::move(target)), counters_(counters) {} Status Append(const Slice& data) override { counters_->append_counter_.fetch_add(1, std::memory_order_relaxed); Status rv = target_->Append(data); counters_->bytes_written_.fetch_add(data.size(), std::memory_order_relaxed); return rv; } Status Truncate(uint64_t size) override { return target_->Truncate(size); } Status Close() override { return target_->Close(); } Status Flush() override { return target_->Flush(); } Status Sync() override { return target_->Sync(); } }; Status s = target()->NewWritableFile(f, r, soptions); if (s.ok()) { counters()->open_counter_.fetch_add(1, std::memory_order_relaxed); r->reset(new CountingFile(std::move(*r), counters())); } return s; } // getter ReportFileOpCounters* counters() { return &counters_; } private: ReportFileOpCounters counters_; }; } // namespace // Helper for quickly generating random data. class RandomGenerator { private: std::string data_; unsigned int pos_; public: RandomGenerator() { // We use a limited amount of data over and over again and ensure // that it is larger than the compression window (32KB), and also // large enough to serve all typical value sizes we want to write. Random rnd(301); std::string piece; while (data_.size() < (unsigned)std::max(1048576, FLAGS_value_size)) { // Add a short fragment that is as compressible as specified // by FLAGS_compression_ratio. test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece); data_.append(piece); } pos_ = 0; } Slice Generate(unsigned int len) { assert(len <= data_.size()); if (pos_ + len > data_.size()) { pos_ = 0; } pos_ += len; return Slice(data_.data() + pos_ - len, len); } }; static void AppendWithSpace(std::string* str, Slice msg) { if (msg.empty()) return; if (!str->empty()) { str->push_back(' '); } str->append(msg.data(), msg.size()); } struct DBWithColumnFamilies { std::vector cfh; DB* db; #ifndef ROCKSDB_LITE OptimisticTransactionDB* opt_txn_db; #endif // ROCKSDB_LITE std::atomic num_created; // Need to be updated after all the // new entries in cfh are set. size_t num_hot; // Number of column families to be queried at each moment. // After each CreateNewCf(), another num_hot number of new // Column families will be created and used to be queried. port::Mutex create_cf_mutex; // Only one thread can execute CreateNewCf() DBWithColumnFamilies() : db(nullptr) #ifndef ROCKSDB_LITE , opt_txn_db(nullptr) #endif // ROCKSDB_LITE { cfh.clear(); num_created = 0; num_hot = 0; } DBWithColumnFamilies(const DBWithColumnFamilies& other) : cfh(other.cfh), db(other.db), #ifndef ROCKSDB_LITE opt_txn_db(other.opt_txn_db), #endif // ROCKSDB_LITE num_created(other.num_created.load()), num_hot(other.num_hot) {} void DeleteDBs() { std::for_each(cfh.begin(), cfh.end(), [](ColumnFamilyHandle* cfhi) { delete cfhi; }); cfh.clear(); #ifndef ROCKSDB_LITE if (opt_txn_db) { delete opt_txn_db; opt_txn_db = nullptr; } else { delete db; db = nullptr; } #else delete db; db = nullptr; #endif // ROCKSDB_LITE } ColumnFamilyHandle* GetCfh(int64_t rand_num) { assert(num_hot > 0); return cfh[num_created.load(std::memory_order_acquire) - num_hot + rand_num % num_hot]; } // stage: assume CF from 0 to stage * num_hot has be created. Need to create // stage * num_hot + 1 to stage * (num_hot + 1). void CreateNewCf(ColumnFamilyOptions options, int64_t stage) { MutexLock l(&create_cf_mutex); if ((stage + 1) * num_hot <= num_created) { // Already created. return; } auto new_num_created = num_created + num_hot; assert(new_num_created <= cfh.size()); for (size_t i = num_created; i < new_num_created; i++) { Status s = db->CreateColumnFamily(options, ColumnFamilyName(i), &(cfh[i])); if (!s.ok()) { fprintf(stderr, "create column family error: %s\n", s.ToString().c_str()); abort(); } } num_created.store(new_num_created, std::memory_order_release); } }; // a class that reports stats to CSV file class ReporterAgent { public: ReporterAgent(Env* env, const std::string& fname, uint64_t report_interval_secs) : env_(env), total_ops_done_(0), last_report_(0), report_interval_secs_(report_interval_secs), stop_(false) { auto s = env_->NewWritableFile(fname, &report_file_, EnvOptions()); if (s.ok()) { s = report_file_->Append(Header() + "\n"); } if (s.ok()) { s = report_file_->Flush(); } if (!s.ok()) { fprintf(stderr, "Can't open %s: %s\n", fname.c_str(), s.ToString().c_str()); abort(); } reporting_thread_ = port::Thread([&]() { SleepAndReport(); }); } ~ReporterAgent() { { std::unique_lock lk(mutex_); stop_ = true; stop_cv_.notify_all(); } reporting_thread_.join(); } // thread safe void ReportFinishedOps(int64_t num_ops) { total_ops_done_.fetch_add(num_ops); } private: std::string Header() const { return "secs_elapsed,interval_qps"; } void SleepAndReport() { uint64_t kMicrosInSecond = 1000 * 1000; auto time_started = env_->NowMicros(); while (true) { { std::unique_lock lk(mutex_); if (stop_ || stop_cv_.wait_for(lk, std::chrono::seconds(report_interval_secs_), [&]() { return stop_; })) { // stopping break; } // else -> timeout, which means time for a report! } auto total_ops_done_snapshot = total_ops_done_.load(); // round the seconds elapsed auto secs_elapsed = (env_->NowMicros() - time_started + kMicrosInSecond / 2) / kMicrosInSecond; std::string report = ToString(secs_elapsed) + "," + ToString(total_ops_done_snapshot - last_report_) + "\n"; auto s = report_file_->Append(report); if (s.ok()) { s = report_file_->Flush(); } if (!s.ok()) { fprintf(stderr, "Can't write to report file (%s), stopping the reporting\n", s.ToString().c_str()); break; } last_report_ = total_ops_done_snapshot; } } Env* env_; std::unique_ptr report_file_; std::atomic total_ops_done_; int64_t last_report_; const uint64_t report_interval_secs_; rocksdb::port::Thread reporting_thread_; std::mutex mutex_; // will notify on stop std::condition_variable stop_cv_; bool stop_; }; enum OperationType : unsigned char { kRead = 0, kWrite, kDelete, kSeek, kMerge, kUpdate, kCompress, kUncompress, kCrc, kHash, kOthers }; static std::unordered_map> OperationTypeString = { {kRead, "read"}, {kWrite, "write"}, {kDelete, "delete"}, {kSeek, "seek"}, {kMerge, "merge"}, {kUpdate, "update"}, {kCompress, "compress"}, {kCompress, "uncompress"}, {kCrc, "crc"}, {kHash, "hash"}, {kOthers, "op"} }; class CombinedStats; class Stats { private: int id_; uint64_t start_; uint64_t finish_; double seconds_; uint64_t done_; uint64_t last_report_done_; uint64_t next_report_; uint64_t bytes_; uint64_t last_op_finish_; uint64_t last_report_finish_; std::unordered_map, std::hash> hist_; std::string message_; bool exclude_from_merge_; ReporterAgent* reporter_agent_; // does not own friend class CombinedStats; public: Stats() { Start(-1); } void SetReporterAgent(ReporterAgent* reporter_agent) { reporter_agent_ = reporter_agent; } void Start(int id) { id_ = id; next_report_ = FLAGS_stats_interval ? FLAGS_stats_interval : 100; last_op_finish_ = start_; hist_.clear(); done_ = 0; last_report_done_ = 0; bytes_ = 0; seconds_ = 0; start_ = FLAGS_env->NowMicros(); finish_ = start_; last_report_finish_ = start_; message_.clear(); // When set, stats from this thread won't be merged with others. exclude_from_merge_ = false; } void Merge(const Stats& other) { if (other.exclude_from_merge_) return; for (auto it = other.hist_.begin(); it != other.hist_.end(); ++it) { auto this_it = hist_.find(it->first); if (this_it != hist_.end()) { this_it->second->Merge(*(other.hist_.at(it->first))); } else { hist_.insert({ it->first, it->second }); } } done_ += other.done_; bytes_ += other.bytes_; seconds_ += other.seconds_; if (other.start_ < start_) start_ = other.start_; if (other.finish_ > finish_) finish_ = other.finish_; // Just keep the messages from one thread if (message_.empty()) message_ = other.message_; } void Stop() { finish_ = FLAGS_env->NowMicros(); seconds_ = (finish_ - start_) * 1e-6; } void AddMessage(Slice msg) { AppendWithSpace(&message_, msg); } void SetId(int id) { id_ = id; } void SetExcludeFromMerge() { exclude_from_merge_ = true; } void PrintThreadStatus() { std::vector thread_list; FLAGS_env->GetThreadList(&thread_list); fprintf(stderr, "\n%18s %10s %12s %20s %13s %45s %12s %s\n", "ThreadID", "ThreadType", "cfName", "Operation", "ElapsedTime", "Stage", "State", "OperationProperties"); int64_t current_time = 0; Env::Default()->GetCurrentTime(¤t_time); for (auto ts : thread_list) { fprintf(stderr, "%18" PRIu64 " %10s %12s %20s %13s %45s %12s", ts.thread_id, ThreadStatus::GetThreadTypeName(ts.thread_type).c_str(), ts.cf_name.c_str(), ThreadStatus::GetOperationName(ts.operation_type).c_str(), ThreadStatus::MicrosToString(ts.op_elapsed_micros).c_str(), ThreadStatus::GetOperationStageName(ts.operation_stage).c_str(), ThreadStatus::GetStateName(ts.state_type).c_str()); auto op_properties = ThreadStatus::InterpretOperationProperties( ts.operation_type, ts.op_properties); for (const auto& op_prop : op_properties) { fprintf(stderr, " %s %" PRIu64" |", op_prop.first.c_str(), op_prop.second); } fprintf(stderr, "\n"); } } void ResetLastOpTime() { // Set to now to avoid latency from calls to SleepForMicroseconds last_op_finish_ = FLAGS_env->NowMicros(); } void FinishedOps(DBWithColumnFamilies* db_with_cfh, DB* db, int64_t num_ops, enum OperationType op_type = kOthers) { if (reporter_agent_) { reporter_agent_->ReportFinishedOps(num_ops); } if (FLAGS_histogram) { uint64_t now = FLAGS_env->NowMicros(); uint64_t micros = now - last_op_finish_; if (hist_.find(op_type) == hist_.end()) { auto hist_temp = std::make_shared(); hist_.insert({op_type, std::move(hist_temp)}); } hist_[op_type]->Add(micros); if (micros > 20000 && !FLAGS_stats_interval) { fprintf(stderr, "long op: %" PRIu64 " micros%30s\r", micros, ""); fflush(stderr); } last_op_finish_ = now; } done_ += num_ops; if (done_ >= next_report_) { if (!FLAGS_stats_interval) { if (next_report_ < 1000) next_report_ += 100; else if (next_report_ < 5000) next_report_ += 500; else if (next_report_ < 10000) next_report_ += 1000; else if (next_report_ < 50000) next_report_ += 5000; else if (next_report_ < 100000) next_report_ += 10000; else if (next_report_ < 500000) next_report_ += 50000; else next_report_ += 100000; fprintf(stderr, "... finished %" PRIu64 " ops%30s\r", done_, ""); } else { uint64_t now = FLAGS_env->NowMicros(); int64_t usecs_since_last = now - last_report_finish_; // Determine whether to print status where interval is either // each N operations or each N seconds. if (FLAGS_stats_interval_seconds && usecs_since_last < (FLAGS_stats_interval_seconds * 1000000)) { // Don't check again for this many operations next_report_ += FLAGS_stats_interval; } else { fprintf(stderr, "%s ... thread %d: (%" PRIu64 ",%" PRIu64 ") ops and " "(%.1f,%.1f) ops/second in (%.6f,%.6f) seconds\n", FLAGS_env->TimeToString(now/1000000).c_str(), id_, done_ - last_report_done_, done_, (done_ - last_report_done_) / (usecs_since_last / 1000000.0), done_ / ((now - start_) / 1000000.0), (now - last_report_finish_) / 1000000.0, (now - start_) / 1000000.0); if (id_ == 0 && FLAGS_stats_per_interval) { std::string stats; if (db_with_cfh && db_with_cfh->num_created.load()) { for (size_t i = 0; i < db_with_cfh->num_created.load(); ++i) { if (db->GetProperty(db_with_cfh->cfh[i], "rocksdb.cfstats", &stats)) fprintf(stderr, "%s\n", stats.c_str()); if (FLAGS_show_table_properties) { for (int level = 0; level < FLAGS_num_levels; ++level) { if (db->GetProperty( db_with_cfh->cfh[i], "rocksdb.aggregated-table-properties-at-level" + ToString(level), &stats)) { if (stats.find("# entries=0") == std::string::npos) { fprintf(stderr, "Level[%d]: %s\n", level, stats.c_str()); } } } } } } else if (db) { if (db->GetProperty("rocksdb.stats", &stats)) { fprintf(stderr, "%s\n", stats.c_str()); } if (FLAGS_show_table_properties) { for (int level = 0; level < FLAGS_num_levels; ++level) { if (db->GetProperty( "rocksdb.aggregated-table-properties-at-level" + ToString(level), &stats)) { if (stats.find("# entries=0") == std::string::npos) { fprintf(stderr, "Level[%d]: %s\n", level, stats.c_str()); } } } } } } next_report_ += FLAGS_stats_interval; last_report_finish_ = now; last_report_done_ = done_; } } if (id_ == 0 && FLAGS_thread_status_per_interval) { PrintThreadStatus(); } fflush(stderr); } } void AddBytes(int64_t n) { bytes_ += n; } void Report(const Slice& name) { // Pretend at least one op was done in case we are running a benchmark // that does not call FinishedOps(). if (done_ < 1) done_ = 1; std::string extra; if (bytes_ > 0) { // Rate is computed on actual elapsed time, not the sum of per-thread // elapsed times. double elapsed = (finish_ - start_) * 1e-6; char rate[100]; snprintf(rate, sizeof(rate), "%6.1f MB/s", (bytes_ / 1048576.0) / elapsed); extra = rate; } AppendWithSpace(&extra, message_); double elapsed = (finish_ - start_) * 1e-6; double throughput = (double)done_/elapsed; fprintf(stdout, "%-12s : %11.3f micros/op %ld ops/sec;%s%s\n", name.ToString().c_str(), elapsed * 1e6 / done_, (long)throughput, (extra.empty() ? "" : " "), extra.c_str()); if (FLAGS_histogram) { for (auto it = hist_.begin(); it != hist_.end(); ++it) { fprintf(stdout, "Microseconds per %s:\n%s\n", OperationTypeString[it->first].c_str(), it->second->ToString().c_str()); } } if (FLAGS_report_file_operations) { ReportFileOpEnv* env = static_cast(FLAGS_env); ReportFileOpCounters* counters = env->counters(); fprintf(stdout, "Num files opened: %d\n", counters->open_counter_.load(std::memory_order_relaxed)); fprintf(stdout, "Num Read(): %d\n", counters->read_counter_.load(std::memory_order_relaxed)); fprintf(stdout, "Num Append(): %d\n", counters->append_counter_.load(std::memory_order_relaxed)); fprintf(stdout, "Num bytes read: %" PRIu64 "\n", counters->bytes_read_.load(std::memory_order_relaxed)); fprintf(stdout, "Num bytes written: %" PRIu64 "\n", counters->bytes_written_.load(std::memory_order_relaxed)); env->reset(); } fflush(stdout); } }; class CombinedStats { public: void AddStats(const Stats& stat) { uint64_t total_ops = stat.done_; uint64_t total_bytes_ = stat.bytes_; double elapsed; if (total_ops < 1) { total_ops = 1; } elapsed = (stat.finish_ - stat.start_) * 1e-6; throughput_ops_.emplace_back(total_ops / elapsed); if (total_bytes_ > 0) { double mbs = (total_bytes_ / 1048576.0); throughput_mbs_.emplace_back(mbs / elapsed); } } void Report(const std::string& bench_name) { const char* name = bench_name.c_str(); int num_runs = static_cast(throughput_ops_.size()); if (throughput_mbs_.size() == throughput_ops_.size()) { fprintf(stdout, "%s [AVG %d runs] : %d ops/sec; %6.1f MB/sec\n" "%s [MEDIAN %d runs] : %d ops/sec; %6.1f MB/sec\n", name, num_runs, static_cast(CalcAvg(throughput_ops_)), CalcAvg(throughput_mbs_), name, num_runs, static_cast(CalcMedian(throughput_ops_)), CalcMedian(throughput_mbs_)); } else { fprintf(stdout, "%s [AVG %d runs] : %d ops/sec\n" "%s [MEDIAN %d runs] : %d ops/sec\n", name, num_runs, static_cast(CalcAvg(throughput_ops_)), name, num_runs, static_cast(CalcMedian(throughput_ops_))); } } private: double CalcAvg(std::vector data) { double avg = 0; for (double x : data) { avg += x; } avg = avg / data.size(); return avg; } double CalcMedian(std::vector data) { assert(data.size() > 0); std::sort(data.begin(), data.end()); size_t mid = data.size() / 2; if (data.size() % 2 == 1) { // Odd number of entries return data[mid]; } else { // Even number of entries return (data[mid] + data[mid - 1]) / 2; } } std::vector throughput_ops_; std::vector throughput_mbs_; }; class TimestampEmulator { private: std::atomic timestamp_; public: TimestampEmulator() : timestamp_(0) {} uint64_t Get() const { return timestamp_.load(); } void Inc() { timestamp_++; } }; // State shared by all concurrent executions of the same benchmark. struct SharedState { port::Mutex mu; port::CondVar cv; int total; int perf_level; std::shared_ptr write_rate_limiter; std::shared_ptr read_rate_limiter; // Each thread goes through the following states: // (1) initializing // (2) waiting for others to be initialized // (3) running // (4) done long num_initialized; long num_done; bool start; SharedState() : cv(&mu), perf_level(FLAGS_perf_level) { } }; // Per-thread state for concurrent executions of the same benchmark. struct ThreadState { int tid; // 0..n-1 when running in n threads Random64 rand; // Has different seeds for different threads Stats stats; SharedState* shared; /* implicit */ ThreadState(int index) : tid(index), rand((FLAGS_seed ? FLAGS_seed : 1000) + index) { } }; class Duration { public: Duration(uint64_t max_seconds, int64_t max_ops, int64_t ops_per_stage = 0) { max_seconds_ = max_seconds; max_ops_= max_ops; ops_per_stage_ = (ops_per_stage > 0) ? ops_per_stage : max_ops; ops_ = 0; start_at_ = FLAGS_env->NowMicros(); } int64_t GetStage() { return std::min(ops_, max_ops_ - 1) / ops_per_stage_; } bool Done(int64_t increment) { if (increment <= 0) increment = 1; // avoid Done(0) and infinite loops ops_ += increment; if (max_seconds_) { // Recheck every appx 1000 ops (exact iff increment is factor of 1000) if ((ops_/1000) != ((ops_-increment)/1000)) { uint64_t now = FLAGS_env->NowMicros(); return ((now - start_at_) / 1000000) >= max_seconds_; } else { return false; } } else { return ops_ > max_ops_; } } private: uint64_t max_seconds_; int64_t max_ops_; int64_t ops_per_stage_; int64_t ops_; uint64_t start_at_; }; class Benchmark { private: std::shared_ptr cache_; std::shared_ptr compressed_cache_; std::shared_ptr filter_policy_; const SliceTransform* prefix_extractor_; DBWithColumnFamilies db_; std::vector multi_dbs_; int64_t num_; int value_size_; int key_size_; int prefix_size_; int64_t keys_per_prefix_; int64_t entries_per_batch_; int64_t writes_per_range_tombstone_; int64_t range_tombstone_width_; int64_t max_num_range_tombstones_; WriteOptions write_options_; Options open_options_; // keep options around to properly destroy db later int64_t reads_; int64_t deletes_; double read_random_exp_range_; int64_t writes_; int64_t readwrites_; int64_t merge_keys_; bool report_file_operations_; bool SanityCheck() { if (FLAGS_compression_ratio > 1) { fprintf(stderr, "compression_ratio should be between 0 and 1\n"); return false; } return true; } inline bool CompressSlice(const Slice& input, std::string* compressed) { bool ok = true; switch (FLAGS_compression_type_e) { case rocksdb::kSnappyCompression: ok = Snappy_Compress(Options().compression_opts, input.data(), input.size(), compressed); break; case rocksdb::kZlibCompression: ok = Zlib_Compress(Options().compression_opts, 2, input.data(), input.size(), compressed); break; case rocksdb::kBZip2Compression: ok = BZip2_Compress(Options().compression_opts, 2, input.data(), input.size(), compressed); break; case rocksdb::kLZ4Compression: ok = LZ4_Compress(Options().compression_opts, 2, input.data(), input.size(), compressed); break; case rocksdb::kLZ4HCCompression: ok = LZ4HC_Compress(Options().compression_opts, 2, input.data(), input.size(), compressed); break; case rocksdb::kXpressCompression: ok = XPRESS_Compress(input.data(), input.size(), compressed); break; case rocksdb::kZSTD: ok = ZSTD_Compress(Options().compression_opts, input.data(), input.size(), compressed); break; default: ok = false; } return ok; } void PrintHeader() { PrintEnvironment(); fprintf(stdout, "Keys: %d bytes each\n", FLAGS_key_size); fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n", FLAGS_value_size, static_cast(FLAGS_value_size * FLAGS_compression_ratio + 0.5)); fprintf(stdout, "Entries: %" PRIu64 "\n", num_); fprintf(stdout, "Prefix: %d bytes\n", FLAGS_prefix_size); fprintf(stdout, "Keys per prefix: %" PRIu64 "\n", keys_per_prefix_); fprintf(stdout, "RawSize: %.1f MB (estimated)\n", ((static_cast(FLAGS_key_size + FLAGS_value_size) * num_) / 1048576.0)); fprintf(stdout, "FileSize: %.1f MB (estimated)\n", (((FLAGS_key_size + FLAGS_value_size * FLAGS_compression_ratio) * num_) / 1048576.0)); fprintf(stdout, "Write rate: %" PRIu64 " bytes/second\n", FLAGS_benchmark_write_rate_limit); fprintf(stdout, "Read rate: %" PRIu64 " ops/second\n", FLAGS_benchmark_read_rate_limit); if (FLAGS_enable_numa) { fprintf(stderr, "Running in NUMA enabled mode.\n"); #ifndef NUMA fprintf(stderr, "NUMA is not defined in the system.\n"); exit(1); #else if (numa_available() == -1) { fprintf(stderr, "NUMA is not supported by the system.\n"); exit(1); } #endif } auto compression = CompressionTypeToString(FLAGS_compression_type_e); fprintf(stdout, "Compression: %s\n", compression.c_str()); switch (FLAGS_rep_factory) { case kPrefixHash: fprintf(stdout, "Memtablerep: prefix_hash\n"); break; case kSkipList: fprintf(stdout, "Memtablerep: skip_list\n"); break; case kVectorRep: fprintf(stdout, "Memtablerep: vector\n"); break; case kHashLinkedList: fprintf(stdout, "Memtablerep: hash_linkedlist\n"); break; case kCuckoo: fprintf(stdout, "Memtablerep: cuckoo\n"); break; } fprintf(stdout, "Perf Level: %d\n", FLAGS_perf_level); PrintWarnings(compression.c_str()); fprintf(stdout, "------------------------------------------------\n"); } void PrintWarnings(const char* compression) { #if defined(__GNUC__) && !defined(__OPTIMIZE__) fprintf(stdout, "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n" ); #endif #ifndef NDEBUG fprintf(stdout, "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n"); #endif if (FLAGS_compression_type_e != rocksdb::kNoCompression) { // The test string should not be too small. const int len = FLAGS_block_size; std::string input_str(len, 'y'); std::string compressed; bool result = CompressSlice(Slice(input_str), &compressed); if (!result) { fprintf(stdout, "WARNING: %s compression is not enabled\n", compression); } else if (compressed.size() >= input_str.size()) { fprintf(stdout, "WARNING: %s compression is not effective\n", compression); } } } // Current the following isn't equivalent to OS_LINUX. #if defined(__linux) static Slice TrimSpace(Slice s) { unsigned int start = 0; while (start < s.size() && isspace(s[start])) { start++; } unsigned int limit = static_cast(s.size()); while (limit > start && isspace(s[limit-1])) { limit--; } return Slice(s.data() + start, limit - start); } #endif void PrintEnvironment() { fprintf(stderr, "RocksDB: version %d.%d\n", kMajorVersion, kMinorVersion); #if defined(__linux) time_t now = time(nullptr); char buf[52]; // Lint complains about ctime() usage, so replace it with ctime_r(). The // requirement is to provide a buffer which is at least 26 bytes. fprintf(stderr, "Date: %s", ctime_r(&now, buf)); // ctime_r() adds newline FILE* cpuinfo = fopen("/proc/cpuinfo", "r"); if (cpuinfo != nullptr) { char line[1000]; int num_cpus = 0; std::string cpu_type; std::string cache_size; while (fgets(line, sizeof(line), cpuinfo) != nullptr) { const char* sep = strchr(line, ':'); if (sep == nullptr) { continue; } Slice key = TrimSpace(Slice(line, sep - 1 - line)); Slice val = TrimSpace(Slice(sep + 1)); if (key == "model name") { ++num_cpus; cpu_type = val.ToString(); } else if (key == "cache size") { cache_size = val.ToString(); } } fclose(cpuinfo); fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str()); fprintf(stderr, "CPUCache: %s\n", cache_size.c_str()); } #endif } static bool KeyExpired(const TimestampEmulator* timestamp_emulator, const Slice& key) { const char* pos = key.data(); pos += 8; uint64_t timestamp = 0; if (port::kLittleEndian) { int bytes_to_fill = 8; for (int i = 0; i < bytes_to_fill; ++i) { timestamp |= (static_cast(static_cast(pos[i])) << ((bytes_to_fill - i - 1) << 3)); } } else { memcpy(×tamp, pos, sizeof(timestamp)); } return timestamp_emulator->Get() - timestamp > FLAGS_time_range; } class ExpiredTimeFilter : public CompactionFilter { public: explicit ExpiredTimeFilter( const std::shared_ptr& timestamp_emulator) : timestamp_emulator_(timestamp_emulator) {} bool Filter(int level, const Slice& key, const Slice& existing_value, std::string* new_value, bool* value_changed) const override { return KeyExpired(timestamp_emulator_.get(), key); } const char* Name() const override { return "ExpiredTimeFilter"; } private: std::shared_ptr timestamp_emulator_; }; std::shared_ptr NewCache(int64_t capacity) { if (capacity <= 0) { return nullptr; } if (FLAGS_use_clock_cache) { auto cache = NewClockCache((size_t)capacity, FLAGS_cache_numshardbits); if (!cache) { fprintf(stderr, "Clock cache not supported."); exit(1); } return cache; } else { return NewLRUCache((size_t)capacity, FLAGS_cache_numshardbits, false /*strict_capacity_limit*/, FLAGS_cache_high_pri_pool_ratio); } } public: Benchmark() : cache_(NewCache(FLAGS_cache_size)), compressed_cache_(NewCache(FLAGS_compressed_cache_size)), filter_policy_(FLAGS_bloom_bits >= 0 ? NewBloomFilterPolicy(FLAGS_bloom_bits, FLAGS_use_block_based_filter) : nullptr), prefix_extractor_(NewFixedPrefixTransform(FLAGS_prefix_size)), num_(FLAGS_num), value_size_(FLAGS_value_size), key_size_(FLAGS_key_size), prefix_size_(FLAGS_prefix_size), keys_per_prefix_(FLAGS_keys_per_prefix), entries_per_batch_(1), reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads), read_random_exp_range_(0.0), writes_(FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes), readwrites_( (FLAGS_writes < 0 && FLAGS_reads < 0) ? FLAGS_num : ((FLAGS_writes > FLAGS_reads) ? FLAGS_writes : FLAGS_reads)), merge_keys_(FLAGS_merge_keys < 0 ? FLAGS_num : FLAGS_merge_keys), report_file_operations_(FLAGS_report_file_operations) { // use simcache instead of cache if (FLAGS_simcache_size >= 0) { if (FLAGS_cache_numshardbits >= 1) { cache_ = NewSimCache(cache_, FLAGS_simcache_size, FLAGS_cache_numshardbits); } else { cache_ = NewSimCache(cache_, FLAGS_simcache_size, 0); } } if (report_file_operations_) { if (!FLAGS_hdfs.empty()) { fprintf(stderr, "--hdfs and --report_file_operations cannot be enabled " "at the same time"); exit(1); } FLAGS_env = new ReportFileOpEnv(rocksdb::Env::Default()); } if (FLAGS_prefix_size > FLAGS_key_size) { fprintf(stderr, "prefix size is larger than key size"); exit(1); } std::vector files; FLAGS_env->GetChildren(FLAGS_db, &files); for (size_t i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("heap-")) { FLAGS_env->DeleteFile(FLAGS_db + "/" + files[i]); } } if (!FLAGS_use_existing_db) { Options options; if (!FLAGS_wal_dir.empty()) { options.wal_dir = FLAGS_wal_dir; } DestroyDB(FLAGS_db, options); if (!FLAGS_wal_dir.empty()) { FLAGS_env->DeleteDir(FLAGS_wal_dir); } if (FLAGS_num_multi_db > 1) { FLAGS_env->CreateDir(FLAGS_db); if (!FLAGS_wal_dir.empty()) { FLAGS_env->CreateDir(FLAGS_wal_dir); } } } } ~Benchmark() { db_.DeleteDBs(); delete prefix_extractor_; if (cache_.get() != nullptr) { // this will leak, but we're shutting down so nobody cares cache_->DisownData(); } } Slice AllocateKey(std::unique_ptr* key_guard) { char* data = new char[key_size_]; const char* const_data = data; key_guard->reset(const_data); return Slice(key_guard->get(), key_size_); } // Generate key according to the given specification and random number. // The resulting key will have the following format (if keys_per_prefix_ // is positive), extra trailing bytes are either cut off or padded with '0'. // The prefix value is derived from key value. // ---------------------------- // | prefix 00000 | key 00000 | // ---------------------------- // If keys_per_prefix_ is 0, the key is simply a binary representation of // random number followed by trailing '0's // ---------------------------- // | key 00000 | // ---------------------------- void GenerateKeyFromInt(uint64_t v, int64_t num_keys, Slice* key) { char* start = const_cast(key->data()); char* pos = start; if (keys_per_prefix_ > 0) { int64_t num_prefix = num_keys / keys_per_prefix_; int64_t prefix = v % num_prefix; int bytes_to_fill = std::min(prefix_size_, 8); if (port::kLittleEndian) { for (int i = 0; i < bytes_to_fill; ++i) { pos[i] = (prefix >> ((bytes_to_fill - i - 1) << 3)) & 0xFF; } } else { memcpy(pos, static_cast(&prefix), bytes_to_fill); } if (prefix_size_ > 8) { // fill the rest with 0s memset(pos + 8, '0', prefix_size_ - 8); } pos += prefix_size_; } int bytes_to_fill = std::min(key_size_ - static_cast(pos - start), 8); if (port::kLittleEndian) { for (int i = 0; i < bytes_to_fill; ++i) { pos[i] = (v >> ((bytes_to_fill - i - 1) << 3)) & 0xFF; } } else { memcpy(pos, static_cast(&v), bytes_to_fill); } pos += bytes_to_fill; if (key_size_ > pos - start) { memset(pos, '0', key_size_ - (pos - start)); } } std::string GetPathForMultiple(std::string base_name, size_t id) { if (!base_name.empty()) { #ifndef OS_WIN if (base_name.back() != '/') { base_name += '/'; } #else if (base_name.back() != '\\') { base_name += '\\'; } #endif } return base_name + ToString(id); } void VerifyDBFromDB(std::string& truth_db_name) { DBWithColumnFamilies truth_db; auto s = DB::OpenForReadOnly(open_options_, truth_db_name, &truth_db.db); if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } ReadOptions ro; ro.total_order_seek = true; std::unique_ptr truth_iter(truth_db.db->NewIterator(ro)); std::unique_ptr db_iter(db_.db->NewIterator(ro)); // Verify that all the key/values in truth_db are retrivable in db with ::Get fprintf(stderr, "Verifying db >= truth_db with ::Get...\n"); for (truth_iter->SeekToFirst(); truth_iter->Valid(); truth_iter->Next()) { std::string value; s = db_.db->Get(ro, truth_iter->key(), &value); assert(s.ok()); // TODO(myabandeh): provide debugging hints assert(Slice(value) == truth_iter->value()); } // Verify that the db iterator does not give any extra key/value fprintf(stderr, "Verifying db == truth_db...\n"); for (db_iter->SeekToFirst(), truth_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next(), truth_iter->Next()) { assert(truth_iter->Valid()); assert(truth_iter->value() == db_iter->value()); } // No more key should be left unchecked in truth_db assert(!truth_iter->Valid()); fprintf(stderr, "...Verified\n"); } void Run() { if (!SanityCheck()) { exit(1); } Open(&open_options_); PrintHeader(); std::stringstream benchmark_stream(FLAGS_benchmarks); std::string name; std::unique_ptr filter; while (std::getline(benchmark_stream, name, ',')) { // Sanitize parameters num_ = FLAGS_num; reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads); writes_ = (FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes); deletes_ = (FLAGS_deletes < 0 ? FLAGS_num : FLAGS_deletes); value_size_ = FLAGS_value_size; key_size_ = FLAGS_key_size; entries_per_batch_ = FLAGS_batch_size; writes_per_range_tombstone_ = FLAGS_writes_per_range_tombstone; range_tombstone_width_ = FLAGS_range_tombstone_width; max_num_range_tombstones_ = FLAGS_max_num_range_tombstones; write_options_ = WriteOptions(); read_random_exp_range_ = FLAGS_read_random_exp_range; if (FLAGS_sync) { write_options_.sync = true; } write_options_.disableWAL = FLAGS_disable_wal; void (Benchmark::*method)(ThreadState*) = nullptr; void (Benchmark::*post_process_method)() = nullptr; bool fresh_db = false; int num_threads = FLAGS_threads; int num_repeat = 1; int num_warmup = 0; if (!name.empty() && *name.rbegin() == ']') { auto it = name.find('['); if (it == std::string::npos) { fprintf(stderr, "unknown benchmark arguments '%s'\n", name.c_str()); exit(1); } std::string args = name.substr(it + 1); args.resize(args.size() - 1); name.resize(it); std::string bench_arg; std::stringstream args_stream(args); while (std::getline(args_stream, bench_arg, '-')) { if (bench_arg.empty()) { continue; } if (bench_arg[0] == 'X') { // Repeat the benchmark n times std::string num_str = bench_arg.substr(1); num_repeat = std::stoi(num_str); } else if (bench_arg[0] == 'W') { // Warm up the benchmark for n times std::string num_str = bench_arg.substr(1); num_warmup = std::stoi(num_str); } } } // Both fillseqdeterministic and filluniquerandomdeterministic // fill the levels except the max level with UNIQUE_RANDOM // and fill the max level with fillseq and filluniquerandom, respectively if (name == "fillseqdeterministic" || name == "filluniquerandomdeterministic") { if (!FLAGS_disable_auto_compactions) { fprintf(stderr, "Please disable_auto_compactions in FillDeterministic " "benchmark\n"); exit(1); } if (num_threads > 1) { fprintf(stderr, "filldeterministic multithreaded not supported" ", use 1 thread\n"); num_threads = 1; } fresh_db = true; if (name == "fillseqdeterministic") { method = &Benchmark::WriteSeqDeterministic; } else { method = &Benchmark::WriteUniqueRandomDeterministic; } } else if (name == "fillseq") { fresh_db = true; method = &Benchmark::WriteSeq; } else if (name == "fillbatch") { fresh_db = true; entries_per_batch_ = 1000; method = &Benchmark::WriteSeq; } else if (name == "fillrandom") { fresh_db = true; method = &Benchmark::WriteRandom; } else if (name == "filluniquerandom") { fresh_db = true; if (num_threads > 1) { fprintf(stderr, "filluniquerandom multithreaded not supported" ", use 1 thread"); num_threads = 1; } method = &Benchmark::WriteUniqueRandom; } else if (name == "overwrite") { method = &Benchmark::WriteRandom; } else if (name == "fillsync") { fresh_db = true; num_ /= 1000; write_options_.sync = true; method = &Benchmark::WriteRandom; } else if (name == "fill100K") { fresh_db = true; num_ /= 1000; value_size_ = 100 * 1000; method = &Benchmark::WriteRandom; } else if (name == "readseq") { method = &Benchmark::ReadSequential; } else if (name == "readtocache") { method = &Benchmark::ReadSequential; num_threads = 1; reads_ = num_; } else if (name == "readreverse") { method = &Benchmark::ReadReverse; } else if (name == "readrandom") { method = &Benchmark::ReadRandom; } else if (name == "readrandomfast") { method = &Benchmark::ReadRandomFast; } else if (name == "multireadrandom") { fprintf(stderr, "entries_per_batch = %" PRIi64 "\n", entries_per_batch_); method = &Benchmark::MultiReadRandom; } else if (name == "readmissing") { ++key_size_; method = &Benchmark::ReadRandom; } else if (name == "newiterator") { method = &Benchmark::IteratorCreation; } else if (name == "newiteratorwhilewriting") { num_threads++; // Add extra thread for writing method = &Benchmark::IteratorCreationWhileWriting; } else if (name == "seekrandom") { method = &Benchmark::SeekRandom; } else if (name == "seekrandomwhilewriting") { num_threads++; // Add extra thread for writing method = &Benchmark::SeekRandomWhileWriting; } else if (name == "seekrandomwhilemerging") { num_threads++; // Add extra thread for merging method = &Benchmark::SeekRandomWhileMerging; } else if (name == "readrandomsmall") { reads_ /= 1000; method = &Benchmark::ReadRandom; } else if (name == "deleteseq") { method = &Benchmark::DeleteSeq; } else if (name == "deleterandom") { method = &Benchmark::DeleteRandom; } else if (name == "readwhilewriting") { num_threads++; // Add extra thread for writing method = &Benchmark::ReadWhileWriting; } else if (name == "readwhilemerging") { num_threads++; // Add extra thread for writing method = &Benchmark::ReadWhileMerging; } else if (name == "readrandomwriterandom") { method = &Benchmark::ReadRandomWriteRandom; } else if (name == "readrandommergerandom") { if (FLAGS_merge_operator.empty()) { fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n", name.c_str()); exit(1); } method = &Benchmark::ReadRandomMergeRandom; } else if (name == "updaterandom") { method = &Benchmark::UpdateRandom; } else if (name == "appendrandom") { method = &Benchmark::AppendRandom; } else if (name == "mergerandom") { if (FLAGS_merge_operator.empty()) { fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n", name.c_str()); exit(1); } method = &Benchmark::MergeRandom; } else if (name == "randomwithverify") { method = &Benchmark::RandomWithVerify; } else if (name == "fillseekseq") { method = &Benchmark::WriteSeqSeekSeq; } else if (name == "compact") { method = &Benchmark::Compact; } else if (name == "crc32c") { method = &Benchmark::Crc32c; } else if (name == "xxhash") { method = &Benchmark::xxHash; } else if (name == "acquireload") { method = &Benchmark::AcquireLoad; } else if (name == "compress") { method = &Benchmark::Compress; } else if (name == "uncompress") { method = &Benchmark::Uncompress; #ifndef ROCKSDB_LITE } else if (name == "randomtransaction") { method = &Benchmark::RandomTransaction; post_process_method = &Benchmark::RandomTransactionVerify; #endif // ROCKSDB_LITE } else if (name == "randomreplacekeys") { fresh_db = true; method = &Benchmark::RandomReplaceKeys; } else if (name == "timeseries") { timestamp_emulator_.reset(new TimestampEmulator()); if (FLAGS_expire_style == "compaction_filter") { filter.reset(new ExpiredTimeFilter(timestamp_emulator_)); fprintf(stdout, "Compaction filter is used to remove expired data"); open_options_.compaction_filter = filter.get(); } fresh_db = true; method = &Benchmark::TimeSeries; } else if (name == "stats") { PrintStats("rocksdb.stats"); } else if (name == "resetstats") { ResetStats(); } else if (name == "verify") { VerifyDBFromDB(FLAGS_truth_db); } else if (name == "levelstats") { PrintStats("rocksdb.levelstats"); } else if (name == "sstables") { PrintStats("rocksdb.sstables"); } else if (!name.empty()) { // No error message for empty name fprintf(stderr, "unknown benchmark '%s'\n", name.c_str()); exit(1); } if (fresh_db) { if (FLAGS_use_existing_db) { fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n", name.c_str()); method = nullptr; } else { if (db_.db != nullptr) { db_.DeleteDBs(); DestroyDB(FLAGS_db, open_options_); } Options options = open_options_; for (size_t i = 0; i < multi_dbs_.size(); i++) { delete multi_dbs_[i].db; if (!open_options_.wal_dir.empty()) { options.wal_dir = GetPathForMultiple(open_options_.wal_dir, i); } DestroyDB(GetPathForMultiple(FLAGS_db, i), options); } multi_dbs_.clear(); } Open(&open_options_); // use open_options for the last accessed } if (method != nullptr) { fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str()); if (num_warmup > 0) { printf("Warming up benchmark by running %d times\n", num_warmup); } for (int i = 0; i < num_warmup; i++) { RunBenchmark(num_threads, name, method); } if (num_repeat > 1) { printf("Running benchmark for %d times\n", num_repeat); } CombinedStats combined_stats; for (int i = 0; i < num_repeat; i++) { Stats stats = RunBenchmark(num_threads, name, method); combined_stats.AddStats(stats); } if (num_repeat > 1) { combined_stats.Report(name); } } if (post_process_method != nullptr) { (this->*post_process_method)(); } } if (FLAGS_statistics) { fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str()); } if (FLAGS_simcache_size >= 0) { fprintf(stdout, "SIMULATOR CACHE STATISTICS:\n%s\n", std::dynamic_pointer_cast(cache_)->ToString().c_str()); } } private: std::shared_ptr timestamp_emulator_; struct ThreadArg { Benchmark* bm; SharedState* shared; ThreadState* thread; void (Benchmark::*method)(ThreadState*); }; static void ThreadBody(void* v) { ThreadArg* arg = reinterpret_cast(v); SharedState* shared = arg->shared; ThreadState* thread = arg->thread; { MutexLock l(&shared->mu); shared->num_initialized++; if (shared->num_initialized >= shared->total) { shared->cv.SignalAll(); } while (!shared->start) { shared->cv.Wait(); } } SetPerfLevel(static_cast (shared->perf_level)); thread->stats.Start(thread->tid); (arg->bm->*(arg->method))(thread); thread->stats.Stop(); { MutexLock l(&shared->mu); shared->num_done++; if (shared->num_done >= shared->total) { shared->cv.SignalAll(); } } } Stats RunBenchmark(int n, Slice name, void (Benchmark::*method)(ThreadState*)) { SharedState shared; shared.total = n; shared.num_initialized = 0; shared.num_done = 0; shared.start = false; if (FLAGS_benchmark_write_rate_limit > 0) { shared.write_rate_limiter.reset( NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit)); } if (FLAGS_benchmark_read_rate_limit > 0) { shared.read_rate_limiter.reset( NewGenericRateLimiter(FLAGS_benchmark_read_rate_limit)); } std::unique_ptr reporter_agent; if (FLAGS_report_interval_seconds > 0) { reporter_agent.reset(new ReporterAgent(FLAGS_env, FLAGS_report_file, FLAGS_report_interval_seconds)); } ThreadArg* arg = new ThreadArg[n]; for (int i = 0; i < n; i++) { #ifdef NUMA if (FLAGS_enable_numa) { // Performs a local allocation of memory to threads in numa node. int n_nodes = numa_num_task_nodes(); // Number of nodes in NUMA. numa_exit_on_error = 1; int numa_node = i % n_nodes; bitmask* nodes = numa_allocate_nodemask(); numa_bitmask_clearall(nodes); numa_bitmask_setbit(nodes, numa_node); // numa_bind() call binds the process to the node and these // properties are passed on to the thread that is created in // StartThread method called later in the loop. numa_bind(nodes); numa_set_strict(1); numa_free_nodemask(nodes); } #endif arg[i].bm = this; arg[i].method = method; arg[i].shared = &shared; arg[i].thread = new ThreadState(i); arg[i].thread->stats.SetReporterAgent(reporter_agent.get()); arg[i].thread->shared = &shared; FLAGS_env->StartThread(ThreadBody, &arg[i]); } shared.mu.Lock(); while (shared.num_initialized < n) { shared.cv.Wait(); } shared.start = true; shared.cv.SignalAll(); while (shared.num_done < n) { shared.cv.Wait(); } shared.mu.Unlock(); // Stats for some threads can be excluded. Stats merge_stats; for (int i = 0; i < n; i++) { merge_stats.Merge(arg[i].thread->stats); } merge_stats.Report(name); for (int i = 0; i < n; i++) { delete arg[i].thread; } delete[] arg; return merge_stats; } void Crc32c(ThreadState* thread) { // Checksum about 500MB of data total const int size = 4096; const char* label = "(4K per op)"; std::string data(size, 'x'); int64_t bytes = 0; uint32_t crc = 0; while (bytes < 500 * 1048576) { crc = crc32c::Value(data.data(), size); thread->stats.FinishedOps(nullptr, nullptr, 1, kCrc); bytes += size; } // Print so result is not dead fprintf(stderr, "... crc=0x%x\r", static_cast(crc)); thread->stats.AddBytes(bytes); thread->stats.AddMessage(label); } void xxHash(ThreadState* thread) { // Checksum about 500MB of data total const int size = 4096; const char* label = "(4K per op)"; std::string data(size, 'x'); int64_t bytes = 0; unsigned int xxh32 = 0; while (bytes < 500 * 1048576) { xxh32 = XXH32(data.data(), size, 0); thread->stats.FinishedOps(nullptr, nullptr, 1, kHash); bytes += size; } // Print so result is not dead fprintf(stderr, "... xxh32=0x%x\r", static_cast(xxh32)); thread->stats.AddBytes(bytes); thread->stats.AddMessage(label); } void AcquireLoad(ThreadState* thread) { int dummy; std::atomic ap(&dummy); int count = 0; void *ptr = nullptr; thread->stats.AddMessage("(each op is 1000 loads)"); while (count < 100000) { for (int i = 0; i < 1000; i++) { ptr = ap.load(std::memory_order_acquire); } count++; thread->stats.FinishedOps(nullptr, nullptr, 1, kOthers); } if (ptr == nullptr) exit(1); // Disable unused variable warning. } void Compress(ThreadState *thread) { RandomGenerator gen; Slice input = gen.Generate(FLAGS_block_size); int64_t bytes = 0; int64_t produced = 0; bool ok = true; std::string compressed; // Compress 1G while (ok && bytes < int64_t(1) << 30) { compressed.clear(); ok = CompressSlice(input, &compressed); produced += compressed.size(); bytes += input.size(); thread->stats.FinishedOps(nullptr, nullptr, 1, kCompress); } if (!ok) { thread->stats.AddMessage("(compression failure)"); } else { char buf[340]; snprintf(buf, sizeof(buf), "(output: %.1f%%)", (produced * 100.0) / bytes); thread->stats.AddMessage(buf); thread->stats.AddBytes(bytes); } } void Uncompress(ThreadState *thread) { RandomGenerator gen; Slice input = gen.Generate(FLAGS_block_size); std::string compressed; bool ok = CompressSlice(input, &compressed); int64_t bytes = 0; int decompress_size; while (ok && bytes < 1024 * 1048576) { char *uncompressed = nullptr; switch (FLAGS_compression_type_e) { case rocksdb::kSnappyCompression: { // get size and allocate here to make comparison fair size_t ulength = 0; if (!Snappy_GetUncompressedLength(compressed.data(), compressed.size(), &ulength)) { ok = false; break; } uncompressed = new char[ulength]; ok = Snappy_Uncompress(compressed.data(), compressed.size(), uncompressed); break; } case rocksdb::kZlibCompression: uncompressed = Zlib_Uncompress(compressed.data(), compressed.size(), &decompress_size, 2); ok = uncompressed != nullptr; break; case rocksdb::kBZip2Compression: uncompressed = BZip2_Uncompress(compressed.data(), compressed.size(), &decompress_size, 2); ok = uncompressed != nullptr; break; case rocksdb::kLZ4Compression: uncompressed = LZ4_Uncompress(compressed.data(), compressed.size(), &decompress_size, 2); ok = uncompressed != nullptr; break; case rocksdb::kLZ4HCCompression: uncompressed = LZ4_Uncompress(compressed.data(), compressed.size(), &decompress_size, 2); ok = uncompressed != nullptr; break; case rocksdb::kXpressCompression: uncompressed = XPRESS_Uncompress(compressed.data(), compressed.size(), &decompress_size); ok = uncompressed != nullptr; break; case rocksdb::kZSTD: uncompressed = ZSTD_Uncompress(compressed.data(), compressed.size(), &decompress_size); ok = uncompressed != nullptr; break; default: ok = false; } delete[] uncompressed; bytes += input.size(); thread->stats.FinishedOps(nullptr, nullptr, 1, kUncompress); } if (!ok) { thread->stats.AddMessage("(compression failure)"); } else { thread->stats.AddBytes(bytes); } } // Returns true if the options is initialized from the specified // options file. bool InitializeOptionsFromFile(Options* opts) { #ifndef ROCKSDB_LITE printf("Initializing RocksDB Options from the specified file\n"); DBOptions db_opts; std::vector cf_descs; if (FLAGS_options_file != "") { auto s = LoadOptionsFromFile(FLAGS_options_file, Env::Default(), &db_opts, &cf_descs); if (s.ok()) { *opts = Options(db_opts, cf_descs[0].options); return true; } fprintf(stderr, "Unable to load options file %s --- %s\n", FLAGS_options_file.c_str(), s.ToString().c_str()); exit(1); } #endif return false; } void InitializeOptionsFromFlags(Options* opts) { printf("Initializing RocksDB Options from command-line flags\n"); Options& options = *opts; assert(db_.db == nullptr); options.create_missing_column_families = FLAGS_num_column_families > 1; options.max_open_files = FLAGS_open_files; options.db_write_buffer_size = FLAGS_db_write_buffer_size; options.write_buffer_size = FLAGS_write_buffer_size; options.max_write_buffer_number = FLAGS_max_write_buffer_number; options.min_write_buffer_number_to_merge = FLAGS_min_write_buffer_number_to_merge; options.max_write_buffer_number_to_maintain = FLAGS_max_write_buffer_number_to_maintain; options.base_background_compactions = FLAGS_base_background_compactions; options.max_background_compactions = FLAGS_max_background_compactions; options.max_subcompactions = static_cast(FLAGS_subcompactions); options.max_background_flushes = FLAGS_max_background_flushes; options.compaction_style = FLAGS_compaction_style_e; options.compaction_pri = FLAGS_compaction_pri_e; options.allow_mmap_reads = FLAGS_mmap_read; options.allow_mmap_writes = FLAGS_mmap_write; options.use_direct_reads = FLAGS_use_direct_reads; options.use_direct_io_for_flush_and_compaction = FLAGS_use_direct_io_for_flush_and_compaction; #ifndef ROCKSDB_LITE options.compaction_options_fifo = CompactionOptionsFIFO( FLAGS_fifo_compaction_max_table_files_size_mb * 1024 * 1024); #endif // ROCKSDB_LITE if (FLAGS_prefix_size != 0) { options.prefix_extractor.reset( NewFixedPrefixTransform(FLAGS_prefix_size)); } if (FLAGS_use_uint64_comparator) { options.comparator = test::Uint64Comparator(); if (FLAGS_key_size != 8) { fprintf(stderr, "Using Uint64 comparator but key size is not 8.\n"); exit(1); } } if (FLAGS_use_stderr_info_logger) { options.info_log.reset(new StderrLogger()); } options.memtable_huge_page_size = FLAGS_memtable_use_huge_page ? 2048 : 0; options.memtable_prefix_bloom_size_ratio = FLAGS_memtable_bloom_size_ratio; if (FLAGS_memtable_insert_with_hint_prefix_size > 0) { options.memtable_insert_with_hint_prefix_extractor.reset( NewCappedPrefixTransform( FLAGS_memtable_insert_with_hint_prefix_size)); } options.bloom_locality = FLAGS_bloom_locality; options.max_file_opening_threads = FLAGS_file_opening_threads; options.new_table_reader_for_compaction_inputs = FLAGS_new_table_reader_for_compaction_inputs; options.compaction_readahead_size = FLAGS_compaction_readahead_size; options.random_access_max_buffer_size = FLAGS_random_access_max_buffer_size; options.writable_file_max_buffer_size = FLAGS_writable_file_max_buffer_size; options.use_fsync = FLAGS_use_fsync; options.num_levels = FLAGS_num_levels; options.target_file_size_base = FLAGS_target_file_size_base; options.target_file_size_multiplier = FLAGS_target_file_size_multiplier; options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base; options.level_compaction_dynamic_level_bytes = FLAGS_level_compaction_dynamic_level_bytes; options.max_bytes_for_level_multiplier = FLAGS_max_bytes_for_level_multiplier; if ((FLAGS_prefix_size == 0) && (FLAGS_rep_factory == kPrefixHash || FLAGS_rep_factory == kHashLinkedList)) { fprintf(stderr, "prefix_size should be non-zero if PrefixHash or " "HashLinkedList memtablerep is used\n"); exit(1); } switch (FLAGS_rep_factory) { case kSkipList: options.memtable_factory.reset(new SkipListFactory( FLAGS_skip_list_lookahead)); break; #ifndef ROCKSDB_LITE case kPrefixHash: options.memtable_factory.reset( NewHashSkipListRepFactory(FLAGS_hash_bucket_count)); break; case kHashLinkedList: options.memtable_factory.reset(NewHashLinkListRepFactory( FLAGS_hash_bucket_count)); break; case kVectorRep: options.memtable_factory.reset( new VectorRepFactory ); break; case kCuckoo: options.memtable_factory.reset(NewHashCuckooRepFactory( options.write_buffer_size, FLAGS_key_size + FLAGS_value_size)); break; #else default: fprintf(stderr, "Only skip list is supported in lite mode\n"); exit(1); #endif // ROCKSDB_LITE } if (FLAGS_use_plain_table) { #ifndef ROCKSDB_LITE if (FLAGS_rep_factory != kPrefixHash && FLAGS_rep_factory != kHashLinkedList) { fprintf(stderr, "Waring: plain table is used with skipList\n"); } int bloom_bits_per_key = FLAGS_bloom_bits; if (bloom_bits_per_key < 0) { bloom_bits_per_key = 0; } PlainTableOptions plain_table_options; plain_table_options.user_key_len = FLAGS_key_size; plain_table_options.bloom_bits_per_key = bloom_bits_per_key; plain_table_options.hash_table_ratio = 0.75; options.table_factory = std::shared_ptr( NewPlainTableFactory(plain_table_options)); #else fprintf(stderr, "Plain table is not supported in lite mode\n"); exit(1); #endif // ROCKSDB_LITE } else if (FLAGS_use_cuckoo_table) { #ifndef ROCKSDB_LITE if (FLAGS_cuckoo_hash_ratio > 1 || FLAGS_cuckoo_hash_ratio < 0) { fprintf(stderr, "Invalid cuckoo_hash_ratio\n"); exit(1); } rocksdb::CuckooTableOptions table_options; table_options.hash_table_ratio = FLAGS_cuckoo_hash_ratio; table_options.identity_as_first_hash = FLAGS_identity_as_first_hash; options.table_factory = std::shared_ptr( NewCuckooTableFactory(table_options)); #else fprintf(stderr, "Cuckoo table is not supported in lite mode\n"); exit(1); #endif // ROCKSDB_LITE } else { BlockBasedTableOptions block_based_options; if (FLAGS_use_hash_search) { if (FLAGS_prefix_size == 0) { fprintf(stderr, "prefix_size not assigned when enable use_hash_search \n"); exit(1); } block_based_options.index_type = BlockBasedTableOptions::kHashSearch; } else { block_based_options.index_type = BlockBasedTableOptions::kBinarySearch; } if (cache_ == nullptr) { block_based_options.no_block_cache = true; } block_based_options.cache_index_and_filter_blocks = FLAGS_cache_index_and_filter_blocks; block_based_options.pin_l0_filter_and_index_blocks_in_cache = FLAGS_pin_l0_filter_and_index_blocks_in_cache; if (FLAGS_cache_high_pri_pool_ratio > 1e-6) { // > 0.0 + eps block_based_options.cache_index_and_filter_blocks_with_high_priority = true; } block_based_options.block_cache = cache_; block_based_options.block_cache_compressed = compressed_cache_; block_based_options.block_size = FLAGS_block_size; block_based_options.block_restart_interval = FLAGS_block_restart_interval; block_based_options.index_block_restart_interval = FLAGS_index_block_restart_interval; block_based_options.filter_policy = filter_policy_; block_based_options.format_version = 2; block_based_options.read_amp_bytes_per_bit = FLAGS_read_amp_bytes_per_bit; if (FLAGS_read_cache_path != "") { #ifndef ROCKSDB_LITE Status rc_status; // Read cache need to be provided with a the Logger, we will put all // reac cache logs in the read cache path in a file named rc_LOG rc_status = FLAGS_env->CreateDirIfMissing(FLAGS_read_cache_path); std::shared_ptr read_cache_logger; if (rc_status.ok()) { rc_status = FLAGS_env->NewLogger(FLAGS_read_cache_path + "/rc_LOG", &read_cache_logger); } if (rc_status.ok()) { PersistentCacheConfig rc_cfg(FLAGS_env, FLAGS_read_cache_path, FLAGS_read_cache_size, read_cache_logger); rc_cfg.enable_direct_reads = FLAGS_read_cache_direct_read; rc_cfg.enable_direct_writes = FLAGS_read_cache_direct_write; rc_cfg.writer_qdepth = 4; rc_cfg.writer_dispatch_size = 4 * 1024; auto pcache = std::make_shared(rc_cfg); block_based_options.persistent_cache = pcache; rc_status = pcache->Open(); } if (!rc_status.ok()) { fprintf(stderr, "Error initializing read cache, %s\n", rc_status.ToString().c_str()); exit(1); } #else fprintf(stderr, "Read cache is not supported in LITE\n"); exit(1); #endif } options.table_factory.reset( NewBlockBasedTableFactory(block_based_options)); } if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() > 0) { if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() != (unsigned int)FLAGS_num_levels) { fprintf(stderr, "Insufficient number of fanouts specified %d\n", (int)FLAGS_max_bytes_for_level_multiplier_additional_v.size()); exit(1); } options.max_bytes_for_level_multiplier_additional = FLAGS_max_bytes_for_level_multiplier_additional_v; } options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger; options.level0_file_num_compaction_trigger = FLAGS_level0_file_num_compaction_trigger; options.level0_slowdown_writes_trigger = FLAGS_level0_slowdown_writes_trigger; options.compression = FLAGS_compression_type_e; options.compression_opts.level = FLAGS_compression_level; options.compression_opts.max_dict_bytes = FLAGS_compression_max_dict_bytes; options.WAL_ttl_seconds = FLAGS_wal_ttl_seconds; options.WAL_size_limit_MB = FLAGS_wal_size_limit_MB; options.max_total_wal_size = FLAGS_max_total_wal_size; if (FLAGS_min_level_to_compress >= 0) { assert(FLAGS_min_level_to_compress <= FLAGS_num_levels); options.compression_per_level.resize(FLAGS_num_levels); for (int i = 0; i < FLAGS_min_level_to_compress; i++) { options.compression_per_level[i] = kNoCompression; } for (int i = FLAGS_min_level_to_compress; i < FLAGS_num_levels; i++) { options.compression_per_level[i] = FLAGS_compression_type_e; } } options.soft_rate_limit = FLAGS_soft_rate_limit; options.hard_rate_limit = FLAGS_hard_rate_limit; options.soft_pending_compaction_bytes_limit = FLAGS_soft_pending_compaction_bytes_limit; options.hard_pending_compaction_bytes_limit = FLAGS_hard_pending_compaction_bytes_limit; options.delayed_write_rate = FLAGS_delayed_write_rate; options.allow_concurrent_memtable_write = FLAGS_allow_concurrent_memtable_write; options.enable_write_thread_adaptive_yield = FLAGS_enable_write_thread_adaptive_yield; options.write_thread_max_yield_usec = FLAGS_write_thread_max_yield_usec; options.write_thread_slow_yield_usec = FLAGS_write_thread_slow_yield_usec; options.rate_limit_delay_max_milliseconds = FLAGS_rate_limit_delay_max_milliseconds; options.table_cache_numshardbits = FLAGS_table_cache_numshardbits; options.max_compaction_bytes = FLAGS_max_compaction_bytes; options.disable_auto_compactions = FLAGS_disable_auto_compactions; options.optimize_filters_for_hits = FLAGS_optimize_filters_for_hits; // fill storage options options.advise_random_on_open = FLAGS_advise_random_on_open; options.access_hint_on_compaction_start = FLAGS_compaction_fadvice_e; options.use_adaptive_mutex = FLAGS_use_adaptive_mutex; options.bytes_per_sync = FLAGS_bytes_per_sync; options.wal_bytes_per_sync = FLAGS_wal_bytes_per_sync; // merge operator options options.merge_operator = MergeOperators::CreateFromStringId( FLAGS_merge_operator); if (options.merge_operator == nullptr && !FLAGS_merge_operator.empty()) { fprintf(stderr, "invalid merge operator: %s\n", FLAGS_merge_operator.c_str()); exit(1); } options.max_successive_merges = FLAGS_max_successive_merges; options.report_bg_io_stats = FLAGS_report_bg_io_stats; // set universal style compaction configurations, if applicable if (FLAGS_universal_size_ratio != 0) { options.compaction_options_universal.size_ratio = FLAGS_universal_size_ratio; } if (FLAGS_universal_min_merge_width != 0) { options.compaction_options_universal.min_merge_width = FLAGS_universal_min_merge_width; } if (FLAGS_universal_max_merge_width != 0) { options.compaction_options_universal.max_merge_width = FLAGS_universal_max_merge_width; } if (FLAGS_universal_max_size_amplification_percent != 0) { options.compaction_options_universal.max_size_amplification_percent = FLAGS_universal_max_size_amplification_percent; } if (FLAGS_universal_compression_size_percent != -1) { options.compaction_options_universal.compression_size_percent = FLAGS_universal_compression_size_percent; } options.compaction_options_universal.allow_trivial_move = FLAGS_universal_allow_trivial_move; if (FLAGS_thread_status_per_interval > 0) { options.enable_thread_tracking = true; } if (FLAGS_rate_limiter_bytes_per_sec > 0) { options.rate_limiter.reset( NewGenericRateLimiter(FLAGS_rate_limiter_bytes_per_sec)); } #ifndef ROCKSDB_LITE if (FLAGS_readonly && FLAGS_transaction_db) { fprintf(stderr, "Cannot use readonly flag with transaction_db\n"); exit(1); } #endif // ROCKSDB_LITE } void InitializeOptionsGeneral(Options* opts) { Options& options = *opts; options.statistics = dbstats; options.wal_dir = FLAGS_wal_dir; options.create_if_missing = !FLAGS_use_existing_db; options.dump_malloc_stats = FLAGS_dump_malloc_stats; if (FLAGS_row_cache_size) { if (FLAGS_cache_numshardbits >= 1) { options.row_cache = NewLRUCache(FLAGS_row_cache_size, FLAGS_cache_numshardbits); } else { options.row_cache = NewLRUCache(FLAGS_row_cache_size); } } if (FLAGS_enable_io_prio) { FLAGS_env->LowerThreadPoolIOPriority(Env::LOW); FLAGS_env->LowerThreadPoolIOPriority(Env::HIGH); } options.env = FLAGS_env; if (FLAGS_num_multi_db <= 1) { OpenDb(options, FLAGS_db, &db_); } else { multi_dbs_.clear(); multi_dbs_.resize(FLAGS_num_multi_db); auto wal_dir = options.wal_dir; for (int i = 0; i < FLAGS_num_multi_db; i++) { if (!wal_dir.empty()) { options.wal_dir = GetPathForMultiple(wal_dir, i); } OpenDb(options, GetPathForMultiple(FLAGS_db, i), &multi_dbs_[i]); } options.wal_dir = wal_dir; } } void Open(Options* opts) { if (!InitializeOptionsFromFile(opts)) { InitializeOptionsFromFlags(opts); } InitializeOptionsGeneral(opts); } void OpenDb(const Options& options, const std::string& db_name, DBWithColumnFamilies* db) { Status s; // Open with column families if necessary. if (FLAGS_num_column_families > 1) { size_t num_hot = FLAGS_num_column_families; if (FLAGS_num_hot_column_families > 0 && FLAGS_num_hot_column_families < FLAGS_num_column_families) { num_hot = FLAGS_num_hot_column_families; } else { FLAGS_num_hot_column_families = FLAGS_num_column_families; } std::vector column_families; for (size_t i = 0; i < num_hot; i++) { column_families.push_back(ColumnFamilyDescriptor( ColumnFamilyName(i), ColumnFamilyOptions(options))); } #ifndef ROCKSDB_LITE if (FLAGS_readonly) { s = DB::OpenForReadOnly(options, db_name, column_families, &db->cfh, &db->db); } else if (FLAGS_optimistic_transaction_db) { s = OptimisticTransactionDB::Open(options, db_name, column_families, &db->cfh, &db->opt_txn_db); if (s.ok()) { db->db = db->opt_txn_db->GetBaseDB(); } } else if (FLAGS_transaction_db) { TransactionDB* ptr; TransactionDBOptions txn_db_options; s = TransactionDB::Open(options, txn_db_options, db_name, column_families, &db->cfh, &ptr); if (s.ok()) { db->db = ptr; } } else { s = DB::Open(options, db_name, column_families, &db->cfh, &db->db); } #else s = DB::Open(options, db_name, column_families, &db->cfh, &db->db); #endif // ROCKSDB_LITE db->cfh.resize(FLAGS_num_column_families); db->num_created = num_hot; db->num_hot = num_hot; #ifndef ROCKSDB_LITE } else if (FLAGS_readonly) { s = DB::OpenForReadOnly(options, db_name, &db->db); } else if (FLAGS_optimistic_transaction_db) { s = OptimisticTransactionDB::Open(options, db_name, &db->opt_txn_db); if (s.ok()) { db->db = db->opt_txn_db->GetBaseDB(); } } else if (FLAGS_transaction_db) { TransactionDB* ptr; TransactionDBOptions txn_db_options; s = TransactionDB::Open(options, txn_db_options, db_name, &ptr); if (s.ok()) { db->db = ptr; } #endif // ROCKSDB_LITE } else if (FLAGS_use_blob_db) { s = NewBlobDB(options, db_name, &db->db); } else { s = DB::Open(options, db_name, &db->db); } if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } } enum WriteMode { RANDOM, SEQUENTIAL, UNIQUE_RANDOM }; void WriteSeqDeterministic(ThreadState* thread) { DoDeterministicCompact(thread, open_options_.compaction_style, SEQUENTIAL); } void WriteUniqueRandomDeterministic(ThreadState* thread) { DoDeterministicCompact(thread, open_options_.compaction_style, UNIQUE_RANDOM); } void WriteSeq(ThreadState* thread) { DoWrite(thread, SEQUENTIAL); } void WriteRandom(ThreadState* thread) { DoWrite(thread, RANDOM); } void WriteUniqueRandom(ThreadState* thread) { DoWrite(thread, UNIQUE_RANDOM); } class KeyGenerator { public: KeyGenerator(Random64* rand, WriteMode mode, uint64_t num, uint64_t num_per_set = 64 * 1024) : rand_(rand), mode_(mode), num_(num), next_(0) { if (mode_ == UNIQUE_RANDOM) { // NOTE: if memory consumption of this approach becomes a concern, // we can either break it into pieces and only random shuffle a section // each time. Alternatively, use a bit map implementation // (https://reviews.facebook.net/differential/diff/54627/) values_.resize(num_); for (uint64_t i = 0; i < num_; ++i) { values_[i] = i; } std::shuffle( values_.begin(), values_.end(), std::default_random_engine(static_cast(FLAGS_seed))); } } uint64_t Next() { switch (mode_) { case SEQUENTIAL: return next_++; case RANDOM: return rand_->Next() % num_; case UNIQUE_RANDOM: assert(next_ + 1 < num_); return values_[next_++]; } assert(false); return std::numeric_limits::max(); } private: Random64* rand_; WriteMode mode_; const uint64_t num_; uint64_t next_; std::vector values_; }; DB* SelectDB(ThreadState* thread) { return SelectDBWithCfh(thread)->db; } DBWithColumnFamilies* SelectDBWithCfh(ThreadState* thread) { return SelectDBWithCfh(thread->rand.Next()); } DBWithColumnFamilies* SelectDBWithCfh(uint64_t rand_int) { if (db_.db != nullptr) { return &db_; } else { return &multi_dbs_[rand_int % multi_dbs_.size()]; } } void DoWrite(ThreadState* thread, WriteMode write_mode) { const int test_duration = write_mode == RANDOM ? FLAGS_duration : 0; const int64_t num_ops = writes_ == 0 ? num_ : writes_; size_t num_key_gens = 1; if (db_.db == nullptr) { num_key_gens = multi_dbs_.size(); } std::vector> key_gens(num_key_gens); int64_t max_ops = num_ops * num_key_gens; int64_t ops_per_stage = max_ops; if (FLAGS_num_column_families > 1 && FLAGS_num_hot_column_families > 0) { ops_per_stage = (max_ops - 1) / (FLAGS_num_column_families / FLAGS_num_hot_column_families) + 1; } Duration duration(test_duration, max_ops, ops_per_stage); for (size_t i = 0; i < num_key_gens; i++) { key_gens[i].reset(new KeyGenerator(&(thread->rand), write_mode, num_, ops_per_stage)); } if (num_ != FLAGS_num) { char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " ops)", num_); thread->stats.AddMessage(msg); } RandomGenerator gen; WriteBatch batch; Status s; int64_t bytes = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::unique_ptr begin_key_guard; Slice begin_key = AllocateKey(&begin_key_guard); std::unique_ptr end_key_guard; Slice end_key = AllocateKey(&end_key_guard); std::vector> expanded_key_guards; std::vector expanded_keys; if (FLAGS_expand_range_tombstones) { expanded_key_guards.resize(range_tombstone_width_); for (auto& expanded_key_guard : expanded_key_guards) { expanded_keys.emplace_back(AllocateKey(&expanded_key_guard)); } } int64_t stage = 0; int64_t num_written = 0; while (!duration.Done(entries_per_batch_)) { if (duration.GetStage() != stage) { stage = duration.GetStage(); if (db_.db != nullptr) { db_.CreateNewCf(open_options_, stage); } else { for (auto& db : multi_dbs_) { db.CreateNewCf(open_options_, stage); } } } size_t id = thread->rand.Next() % num_key_gens; DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(id); batch.Clear(); if (thread->shared->write_rate_limiter.get() != nullptr) { thread->shared->write_rate_limiter->Request( entries_per_batch_ * (value_size_ + key_size_), Env::IO_HIGH, nullptr /* stats */); // Set time at which last op finished to Now() to hide latency and // sleep from rate limiter. Also, do the check once per batch, not // once per write. thread->stats.ResetLastOpTime(); } for (int64_t j = 0; j < entries_per_batch_; j++) { int64_t rand_num = key_gens[id]->Next(); GenerateKeyFromInt(rand_num, FLAGS_num, &key); if (FLAGS_use_blob_db) { s = db_with_cfh->db->Put(write_options_, key, gen.Generate(value_size_)); } else if (FLAGS_num_column_families <= 1) { batch.Put(key, gen.Generate(value_size_)); } else { // We use same rand_num as seed for key and column family so that we // can deterministically find the cfh corresponding to a particular // key while reading the key. batch.Put(db_with_cfh->GetCfh(rand_num), key, gen.Generate(value_size_)); } bytes += value_size_ + key_size_; ++num_written; if (writes_per_range_tombstone_ > 0 && num_written / writes_per_range_tombstone_ < max_num_range_tombstones_ && num_written % writes_per_range_tombstone_ == 0) { int64_t begin_num = key_gens[id]->Next(); if (FLAGS_expand_range_tombstones) { for (int64_t offset = 0; offset < range_tombstone_width_; ++offset) { GenerateKeyFromInt(begin_num + offset, FLAGS_num, &expanded_keys[offset]); if (FLAGS_use_blob_db) { s = db_with_cfh->db->Delete(write_options_, expanded_keys[offset]); } else if (FLAGS_num_column_families <= 1) { batch.Delete(expanded_keys[offset]); } else { batch.Delete(db_with_cfh->GetCfh(rand_num), expanded_keys[offset]); } } } else { GenerateKeyFromInt(begin_num, FLAGS_num, &begin_key); GenerateKeyFromInt(begin_num + range_tombstone_width_, FLAGS_num, &end_key); if (FLAGS_use_blob_db) { s = db_with_cfh->db->DeleteRange( write_options_, db_with_cfh->db->DefaultColumnFamily(), begin_key, end_key); } else if (FLAGS_num_column_families <= 1) { batch.DeleteRange(begin_key, end_key); } else { batch.DeleteRange(db_with_cfh->GetCfh(rand_num), begin_key, end_key); } } } } if (!FLAGS_use_blob_db) { s = db_with_cfh->db->Write(write_options_, &batch); } thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, entries_per_batch_, kWrite); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } } thread->stats.AddBytes(bytes); } Status DoDeterministicCompact(ThreadState* thread, CompactionStyle compaction_style, WriteMode write_mode) { #ifndef ROCKSDB_LITE ColumnFamilyMetaData meta; std::vector db_list; if (db_.db != nullptr) { db_list.push_back(db_.db); } else { for (auto& db : multi_dbs_) { db_list.push_back(db.db); } } std::vector options_list; for (auto db : db_list) { options_list.push_back(db->GetOptions()); if (compaction_style != kCompactionStyleFIFO) { db->SetOptions({{"disable_auto_compactions", "1"}, {"level0_slowdown_writes_trigger", "400000000"}, {"level0_stop_writes_trigger", "400000000"}}); } else { db->SetOptions({{"disable_auto_compactions", "1"}}); } } assert(!db_list.empty()); auto num_db = db_list.size(); size_t num_levels = static_cast(open_options_.num_levels); size_t output_level = open_options_.num_levels - 1; std::vector>> sorted_runs(num_db); std::vector num_files_at_level0(num_db, 0); if (compaction_style == kCompactionStyleLevel) { if (num_levels == 0) { return Status::InvalidArgument("num_levels should be larger than 1"); } bool should_stop = false; while (!should_stop) { if (sorted_runs[0].empty()) { DoWrite(thread, write_mode); } else { DoWrite(thread, UNIQUE_RANDOM); } for (size_t i = 0; i < num_db; i++) { auto db = db_list[i]; db->Flush(FlushOptions()); db->GetColumnFamilyMetaData(&meta); if (num_files_at_level0[i] == meta.levels[0].files.size() || writes_ == 0) { should_stop = true; continue; } sorted_runs[i].emplace_back( meta.levels[0].files.begin(), meta.levels[0].files.end() - num_files_at_level0[i]); num_files_at_level0[i] = meta.levels[0].files.size(); if (sorted_runs[i].back().size() == 1) { should_stop = true; continue; } if (sorted_runs[i].size() == output_level) { auto& L1 = sorted_runs[i].back(); L1.erase(L1.begin(), L1.begin() + L1.size() / 3); should_stop = true; continue; } } writes_ /= static_cast(open_options_.max_bytes_for_level_multiplier); } for (size_t i = 0; i < num_db; i++) { if (sorted_runs[i].size() < num_levels - 1) { fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n", num_levels); exit(1); } } for (size_t i = 0; i < num_db; i++) { auto db = db_list[i]; auto compactionOptions = CompactionOptions(); auto options = db->GetOptions(); MutableCFOptions mutable_cf_options(options); for (size_t j = 0; j < sorted_runs[i].size(); j++) { compactionOptions.output_file_size_limit = mutable_cf_options.MaxFileSizeForLevel( static_cast(output_level)); std::cout << sorted_runs[i][j].size() << std::endl; db->CompactFiles(compactionOptions, {sorted_runs[i][j].back().name, sorted_runs[i][j].front().name}, static_cast(output_level - j) /*level*/); } } } else if (compaction_style == kCompactionStyleUniversal) { auto ratio = open_options_.compaction_options_universal.size_ratio; bool should_stop = false; while (!should_stop) { if (sorted_runs[0].empty()) { DoWrite(thread, write_mode); } else { DoWrite(thread, UNIQUE_RANDOM); } for (size_t i = 0; i < num_db; i++) { auto db = db_list[i]; db->Flush(FlushOptions()); db->GetColumnFamilyMetaData(&meta); if (num_files_at_level0[i] == meta.levels[0].files.size() || writes_ == 0) { should_stop = true; continue; } sorted_runs[i].emplace_back( meta.levels[0].files.begin(), meta.levels[0].files.end() - num_files_at_level0[i]); num_files_at_level0[i] = meta.levels[0].files.size(); if (sorted_runs[i].back().size() == 1) { should_stop = true; continue; } num_files_at_level0[i] = meta.levels[0].files.size(); } writes_ = static_cast(writes_* static_cast(100) / (ratio + 200)); } for (size_t i = 0; i < num_db; i++) { if (sorted_runs[i].size() < num_levels) { fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n", num_levels); exit(1); } } for (size_t i = 0; i < num_db; i++) { auto db = db_list[i]; auto compactionOptions = CompactionOptions(); auto options = db->GetOptions(); MutableCFOptions mutable_cf_options(options); for (size_t j = 0; j < sorted_runs[i].size(); j++) { compactionOptions.output_file_size_limit = mutable_cf_options.MaxFileSizeForLevel( static_cast(output_level)); db->CompactFiles( compactionOptions, {sorted_runs[i][j].back().name, sorted_runs[i][j].front().name}, (output_level > j ? static_cast(output_level - j) : 0) /*level*/); } } } else if (compaction_style == kCompactionStyleFIFO) { if (num_levels != 1) { return Status::InvalidArgument( "num_levels should be 1 for FIFO compaction"); } if (FLAGS_num_multi_db != 0) { return Status::InvalidArgument("Doesn't support multiDB"); } auto db = db_list[0]; std::vector file_names; while (true) { if (sorted_runs[0].empty()) { DoWrite(thread, write_mode); } else { DoWrite(thread, UNIQUE_RANDOM); } db->Flush(FlushOptions()); db->GetColumnFamilyMetaData(&meta); auto total_size = meta.levels[0].size; if (total_size >= db->GetOptions().compaction_options_fifo.max_table_files_size) { for (auto file_meta : meta.levels[0].files) { file_names.emplace_back(file_meta.name); } break; } } // TODO(shuzhang1989): Investigate why CompactFiles not working // auto compactionOptions = CompactionOptions(); // db->CompactFiles(compactionOptions, file_names, 0); auto compactionOptions = CompactRangeOptions(); db->CompactRange(compactionOptions, nullptr, nullptr); } else { fprintf(stdout, "%-12s : skipped (-compaction_stype=kCompactionStyleNone)\n", "filldeterministic"); return Status::InvalidArgument("None compaction is not supported"); } // Verify seqno and key range // Note: the seqno get changed at the max level by implementation // optimization, so skip the check of the max level. #ifndef NDEBUG for (size_t k = 0; k < num_db; k++) { auto db = db_list[k]; db->GetColumnFamilyMetaData(&meta); // verify the number of sorted runs if (compaction_style == kCompactionStyleLevel) { assert(num_levels - 1 == sorted_runs[k].size()); } else if (compaction_style == kCompactionStyleUniversal) { assert(meta.levels[0].files.size() + num_levels - 1 == sorted_runs[k].size()); } else if (compaction_style == kCompactionStyleFIFO) { // TODO(gzh): FIFO compaction db->GetColumnFamilyMetaData(&meta); auto total_size = meta.levels[0].size; assert(total_size <= db->GetOptions().compaction_options_fifo.max_table_files_size); break; } // verify smallest/largest seqno and key range of each sorted run auto max_level = num_levels - 1; int level; for (size_t i = 0; i < sorted_runs[k].size(); i++) { level = static_cast(max_level - i); SequenceNumber sorted_run_smallest_seqno = kMaxSequenceNumber; SequenceNumber sorted_run_largest_seqno = 0; std::string sorted_run_smallest_key, sorted_run_largest_key; bool first_key = true; for (auto fileMeta : sorted_runs[k][i]) { sorted_run_smallest_seqno = std::min(sorted_run_smallest_seqno, fileMeta.smallest_seqno); sorted_run_largest_seqno = std::max(sorted_run_largest_seqno, fileMeta.largest_seqno); if (first_key || db->DefaultColumnFamily()->GetComparator()->Compare( fileMeta.smallestkey, sorted_run_smallest_key) < 0) { sorted_run_smallest_key = fileMeta.smallestkey; } if (first_key || db->DefaultColumnFamily()->GetComparator()->Compare( fileMeta.largestkey, sorted_run_largest_key) > 0) { sorted_run_largest_key = fileMeta.largestkey; } first_key = false; } if (compaction_style == kCompactionStyleLevel || (compaction_style == kCompactionStyleUniversal && level > 0)) { SequenceNumber level_smallest_seqno = kMaxSequenceNumber; SequenceNumber level_largest_seqno = 0; for (auto fileMeta : meta.levels[level].files) { level_smallest_seqno = std::min(level_smallest_seqno, fileMeta.smallest_seqno); level_largest_seqno = std::max(level_largest_seqno, fileMeta.largest_seqno); } assert(sorted_run_smallest_key == meta.levels[level].files.front().smallestkey); assert(sorted_run_largest_key == meta.levels[level].files.back().largestkey); if (level != static_cast(max_level)) { // compaction at max_level would change sequence number assert(sorted_run_smallest_seqno == level_smallest_seqno); assert(sorted_run_largest_seqno == level_largest_seqno); } } else if (compaction_style == kCompactionStyleUniversal) { // level <= 0 means sorted runs on level 0 auto level0_file = meta.levels[0].files[sorted_runs[k].size() - 1 - i]; assert(sorted_run_smallest_key == level0_file.smallestkey); assert(sorted_run_largest_key == level0_file.largestkey); if (level != static_cast(max_level)) { assert(sorted_run_smallest_seqno == level0_file.smallest_seqno); assert(sorted_run_largest_seqno == level0_file.largest_seqno); } } } } #endif // print the size of each sorted_run for (size_t k = 0; k < num_db; k++) { auto db = db_list[k]; fprintf(stdout, "---------------------- DB %" ROCKSDB_PRIszt " LSM ---------------------\n", k); db->GetColumnFamilyMetaData(&meta); for (auto& levelMeta : meta.levels) { if (levelMeta.files.empty()) { continue; } if (levelMeta.level == 0) { for (auto& fileMeta : levelMeta.files) { fprintf(stdout, "Level[%d]: %s(size: %" PRIu64 " bytes)\n", levelMeta.level, fileMeta.name.c_str(), fileMeta.size); } } else { fprintf(stdout, "Level[%d]: %s - %s(total size: %" PRIi64 " bytes)\n", levelMeta.level, levelMeta.files.front().name.c_str(), levelMeta.files.back().name.c_str(), levelMeta.size); } } } for (size_t i = 0; i < num_db; i++) { db_list[i]->SetOptions( {{"disable_auto_compactions", std::to_string(options_list[i].disable_auto_compactions)}, {"level0_slowdown_writes_trigger", std::to_string(options_list[i].level0_slowdown_writes_trigger)}, {"level0_stop_writes_trigger", std::to_string(options_list[i].level0_stop_writes_trigger)}}); } return Status::OK(); #else fprintf(stderr, "Rocksdb Lite doesn't support filldeterministic\n"); return Status::NotSupported( "Rocksdb Lite doesn't support filldeterministic"); #endif // ROCKSDB_LITE } void ReadSequential(ThreadState* thread) { if (db_.db != nullptr) { ReadSequential(thread, db_.db); } else { for (const auto& db_with_cfh : multi_dbs_) { ReadSequential(thread, db_with_cfh.db); } } } void ReadSequential(ThreadState* thread, DB* db) { ReadOptions options(FLAGS_verify_checksum, true); options.tailing = FLAGS_use_tailing_iterator; Iterator* iter = db->NewIterator(options); int64_t i = 0; int64_t bytes = 0; for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedOps(nullptr, db, 1, kRead); ++i; if (thread->shared->read_rate_limiter.get() != nullptr && i % 1024 == 1023) { thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH, nullptr /* stats */); } } delete iter; thread->stats.AddBytes(bytes); if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) { thread->stats.AddMessage(perf_context.ToString()); } } void ReadReverse(ThreadState* thread) { if (db_.db != nullptr) { ReadReverse(thread, db_.db); } else { for (const auto& db_with_cfh : multi_dbs_) { ReadReverse(thread, db_with_cfh.db); } } } void ReadReverse(ThreadState* thread, DB* db) { Iterator* iter = db->NewIterator(ReadOptions(FLAGS_verify_checksum, true)); int64_t i = 0; int64_t bytes = 0; for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedOps(nullptr, db, 1, kRead); ++i; if (thread->shared->read_rate_limiter.get() != nullptr && i % 1024 == 1023) { thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH, nullptr /* stats */); } } delete iter; thread->stats.AddBytes(bytes); } void ReadRandomFast(ThreadState* thread) { int64_t read = 0; int64_t found = 0; int64_t nonexist = 0; ReadOptions options(FLAGS_verify_checksum, true); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::string value; DB* db = SelectDBWithCfh(thread)->db; int64_t pot = 1; while (pot < FLAGS_num) { pot <<= 1; } Duration duration(FLAGS_duration, reads_); do { for (int i = 0; i < 100; ++i) { int64_t key_rand = thread->rand.Next() & (pot - 1); GenerateKeyFromInt(key_rand, FLAGS_num, &key); ++read; auto status = db->Get(options, key, &value); if (status.ok()) { ++found; } else if (!status.IsNotFound()) { fprintf(stderr, "Get returned an error: %s\n", status.ToString().c_str()); abort(); } if (key_rand >= FLAGS_num) { ++nonexist; } } if (thread->shared->read_rate_limiter.get() != nullptr) { thread->shared->read_rate_limiter->Request(100, Env::IO_HIGH, nullptr /* stats */); } thread->stats.FinishedOps(nullptr, db, 100, kRead); } while (!duration.Done(100)); char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found, " "issued %" PRIu64 " non-exist keys)\n", found, read, nonexist); thread->stats.AddMessage(msg); if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) { thread->stats.AddMessage(perf_context.ToString()); } } int64_t GetRandomKey(Random64* rand) { uint64_t rand_int = rand->Next(); int64_t key_rand; if (read_random_exp_range_ == 0) { key_rand = rand_int % FLAGS_num; } else { const uint64_t kBigInt = static_cast(1U) << 62; long double order = -static_cast(rand_int % kBigInt) / static_cast(kBigInt) * read_random_exp_range_; long double exp_ran = std::exp(order); uint64_t rand_num = static_cast(exp_ran * static_cast(FLAGS_num)); // Map to a different number to avoid locality. const uint64_t kBigPrime = 0x5bd1e995; // Overflow is like %(2^64). Will have little impact of results. key_rand = static_cast((rand_num * kBigPrime) % FLAGS_num); } return key_rand; } void ReadRandom(ThreadState* thread) { int64_t read = 0; int64_t found = 0; int64_t bytes = 0; ReadOptions options(FLAGS_verify_checksum, true); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::string value; PinnableSlice pinnable_val; Duration duration(FLAGS_duration, reads_); while (!duration.Done(1)) { DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread); // We use same key_rand as seed for key and column family so that we can // deterministically find the cfh corresponding to a particular key, as it // is done in DoWrite method. int64_t key_rand = GetRandomKey(&thread->rand); GenerateKeyFromInt(key_rand, FLAGS_num, &key); read++; Status s; if (FLAGS_num_column_families > 1) { s = db_with_cfh->db->Get(options, db_with_cfh->GetCfh(key_rand), key, &value); } else { if (LIKELY(FLAGS_pin_slice == 1)) { pinnable_val.Reset(); s = db_with_cfh->db->Get(options, db_with_cfh->db->DefaultColumnFamily(), key, &pinnable_val); } else { s = db_with_cfh->db->Get( options, db_with_cfh->db->DefaultColumnFamily(), key, &value); } } if (s.ok()) { found++; bytes += key.size() + (FLAGS_pin_slice == 1 ? pinnable_val.size() : value.size()); } else if (!s.IsNotFound()) { fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str()); abort(); } if (thread->shared->read_rate_limiter.get() != nullptr && read % 256 == 255) { thread->shared->read_rate_limiter->Request(256, Env::IO_HIGH, nullptr /* stats */); } thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead); } char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found, read); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) { thread->stats.AddMessage(perf_context.ToString()); } } // Calls MultiGet over a list of keys from a random distribution. // Returns the total number of keys found. void MultiReadRandom(ThreadState* thread) { int64_t read = 0; int64_t num_multireads = 0; int64_t found = 0; ReadOptions options(FLAGS_verify_checksum, true); std::vector keys; std::vector > key_guards; std::vector values(entries_per_batch_); while (static_cast(keys.size()) < entries_per_batch_) { key_guards.push_back(std::unique_ptr()); keys.push_back(AllocateKey(&key_guards.back())); } Duration duration(FLAGS_duration, reads_); while (!duration.Done(1)) { DB* db = SelectDB(thread); for (int64_t i = 0; i < entries_per_batch_; ++i) { GenerateKeyFromInt(GetRandomKey(&thread->rand), FLAGS_num, &keys[i]); } std::vector statuses = db->MultiGet(options, keys, &values); assert(static_cast(statuses.size()) == entries_per_batch_); read += entries_per_batch_; num_multireads++; for (int64_t i = 0; i < entries_per_batch_; ++i) { if (statuses[i].ok()) { ++found; } else if (!statuses[i].IsNotFound()) { fprintf(stderr, "MultiGet returned an error: %s\n", statuses[i].ToString().c_str()); abort(); } } if (thread->shared->read_rate_limiter.get() != nullptr && num_multireads % 256 == 255) { thread->shared->read_rate_limiter->Request( 256 * entries_per_batch_, Env::IO_HIGH, nullptr /* stats */); } thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kRead); } char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found, read); thread->stats.AddMessage(msg); } void IteratorCreation(ThreadState* thread) { Duration duration(FLAGS_duration, reads_); ReadOptions options(FLAGS_verify_checksum, true); while (!duration.Done(1)) { DB* db = SelectDB(thread); Iterator* iter = db->NewIterator(options); delete iter; thread->stats.FinishedOps(nullptr, db, 1, kOthers); } } void IteratorCreationWhileWriting(ThreadState* thread) { if (thread->tid > 0) { IteratorCreation(thread); } else { BGWriter(thread, kWrite); } } void SeekRandom(ThreadState* thread) { int64_t read = 0; int64_t found = 0; int64_t bytes = 0; ReadOptions options(FLAGS_verify_checksum, true); options.tailing = FLAGS_use_tailing_iterator; Iterator* single_iter = nullptr; std::vector multi_iters; if (db_.db != nullptr) { single_iter = db_.db->NewIterator(options); } else { for (const auto& db_with_cfh : multi_dbs_) { multi_iters.push_back(db_with_cfh.db->NewIterator(options)); } } std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); Duration duration(FLAGS_duration, reads_); char value_buffer[256]; while (!duration.Done(1)) { if (!FLAGS_use_tailing_iterator) { if (db_.db != nullptr) { delete single_iter; single_iter = db_.db->NewIterator(options); } else { for (auto iter : multi_iters) { delete iter; } multi_iters.clear(); for (const auto& db_with_cfh : multi_dbs_) { multi_iters.push_back(db_with_cfh.db->NewIterator(options)); } } } // Pick a Iterator to use Iterator* iter_to_use = single_iter; if (single_iter == nullptr) { iter_to_use = multi_iters[thread->rand.Next() % multi_iters.size()]; } GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); iter_to_use->Seek(key); read++; if (iter_to_use->Valid() && iter_to_use->key().compare(key) == 0) { found++; } for (int j = 0; j < FLAGS_seek_nexts && iter_to_use->Valid(); ++j) { // Copy out iterator's value to make sure we read them. Slice value = iter_to_use->value(); memcpy(value_buffer, value.data(), std::min(value.size(), sizeof(value_buffer))); bytes += iter_to_use->key().size() + iter_to_use->value().size(); if (!FLAGS_reverse_iterator) { iter_to_use->Next(); } else { iter_to_use->Prev(); } assert(iter_to_use->status().ok()); } if (thread->shared->read_rate_limiter.get() != nullptr && read % 256 == 255) { thread->shared->read_rate_limiter->Request(256, Env::IO_HIGH, nullptr /* stats */); } thread->stats.FinishedOps(&db_, db_.db, 1, kSeek); } delete single_iter; for (auto iter : multi_iters) { delete iter; } char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found, read); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) { thread->stats.AddMessage(perf_context.ToString()); } } void SeekRandomWhileWriting(ThreadState* thread) { if (thread->tid > 0) { SeekRandom(thread); } else { BGWriter(thread, kWrite); } } void SeekRandomWhileMerging(ThreadState* thread) { if (thread->tid > 0) { SeekRandom(thread); } else { BGWriter(thread, kMerge); } } void DoDelete(ThreadState* thread, bool seq) { WriteBatch batch; Duration duration(seq ? 0 : FLAGS_duration, deletes_); int64_t i = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); while (!duration.Done(entries_per_batch_)) { DB* db = SelectDB(thread); batch.Clear(); for (int64_t j = 0; j < entries_per_batch_; ++j) { const int64_t k = seq ? i + j : (thread->rand.Next() % FLAGS_num); GenerateKeyFromInt(k, FLAGS_num, &key); batch.Delete(key); } auto s = db->Write(write_options_, &batch); thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kDelete); if (!s.ok()) { fprintf(stderr, "del error: %s\n", s.ToString().c_str()); exit(1); } i += entries_per_batch_; } } void DeleteSeq(ThreadState* thread) { DoDelete(thread, true); } void DeleteRandom(ThreadState* thread) { DoDelete(thread, false); } void ReadWhileWriting(ThreadState* thread) { if (thread->tid > 0) { ReadRandom(thread); } else { BGWriter(thread, kWrite); } } void ReadWhileMerging(ThreadState* thread) { if (thread->tid > 0) { ReadRandom(thread); } else { BGWriter(thread, kMerge); } } void BGWriter(ThreadState* thread, enum OperationType write_merge) { // Special thread that keeps writing until other threads are done. RandomGenerator gen; int64_t bytes = 0; std::unique_ptr write_rate_limiter; if (FLAGS_benchmark_write_rate_limit > 0) { write_rate_limiter.reset( NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit)); } // Don't merge stats from this thread with the readers. thread->stats.SetExcludeFromMerge(); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); uint32_t written = 0; bool hint_printed = false; while (true) { DB* db = SelectDB(thread); { MutexLock l(&thread->shared->mu); if (FLAGS_finish_after_writes && written == writes_) { fprintf(stderr, "Exiting the writer after %u writes...\n", written); break; } if (thread->shared->num_done + 1 >= thread->shared->num_initialized) { // Other threads have finished if (FLAGS_finish_after_writes) { // Wait for the writes to be finished if (!hint_printed) { fprintf(stderr, "Reads are finished. Have %d more writes to do\n", (int)writes_ - written); hint_printed = true; } } else { // Finish the write immediately break; } } } GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); Status s; if (write_merge == kWrite) { s = db->Put(write_options_, key, gen.Generate(value_size_)); } else { s = db->Merge(write_options_, key, gen.Generate(value_size_)); } written++; if (!s.ok()) { fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str()); exit(1); } bytes += key.size() + value_size_; thread->stats.FinishedOps(&db_, db_.db, 1, kWrite); if (FLAGS_benchmark_write_rate_limit > 0) { write_rate_limiter->Request( entries_per_batch_ * (value_size_ + key_size_), Env::IO_HIGH, nullptr /* stats */); } } thread->stats.AddBytes(bytes); } // Given a key K and value V, this puts (K+"0", V), (K+"1", V), (K+"2", V) // in DB atomically i.e in a single batch. Also refer GetMany. Status PutMany(DB* db, const WriteOptions& writeoptions, const Slice& key, const Slice& value) { std::string suffixes[3] = {"2", "1", "0"}; std::string keys[3]; WriteBatch batch; Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; batch.Put(keys[i], value); } s = db->Write(writeoptions, &batch); return s; } // Given a key K, this deletes (K+"0", V), (K+"1", V), (K+"2", V) // in DB atomically i.e in a single batch. Also refer GetMany. Status DeleteMany(DB* db, const WriteOptions& writeoptions, const Slice& key) { std::string suffixes[3] = {"1", "2", "0"}; std::string keys[3]; WriteBatch batch; Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; batch.Delete(keys[i]); } s = db->Write(writeoptions, &batch); return s; } // Given a key K and value V, this gets values for K+"0", K+"1" and K+"2" // in the same snapshot, and verifies that all the values are identical. // ASSUMES that PutMany was used to put (K, V) into the DB. Status GetMany(DB* db, const ReadOptions& readoptions, const Slice& key, std::string* value) { std::string suffixes[3] = {"0", "1", "2"}; std::string keys[3]; Slice key_slices[3]; std::string values[3]; ReadOptions readoptionscopy = readoptions; readoptionscopy.snapshot = db->GetSnapshot(); Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; key_slices[i] = keys[i]; s = db->Get(readoptionscopy, key_slices[i], value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); values[i] = ""; // we continue after error rather than exiting so that we can // find more errors if any } else if (s.IsNotFound()) { values[i] = ""; } else { values[i] = *value; } } db->ReleaseSnapshot(readoptionscopy.snapshot); if ((values[0] != values[1]) || (values[1] != values[2])) { fprintf(stderr, "inconsistent values for key %s: %s, %s, %s\n", key.ToString().c_str(), values[0].c_str(), values[1].c_str(), values[2].c_str()); // we continue after error rather than exiting so that we can // find more errors if any } return s; } // Differs from readrandomwriterandom in the following ways: // (a) Uses GetMany/PutMany to read/write key values. Refer to those funcs. // (b) Does deletes as well (per FLAGS_deletepercent) // (c) In order to achieve high % of 'found' during lookups, and to do // multiple writes (including puts and deletes) it uses upto // FLAGS_numdistinct distinct keys instead of FLAGS_num distinct keys. // (d) Does not have a MultiGet option. void RandomWithVerify(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; int64_t found = 0; int get_weight = 0; int put_weight = 0; int delete_weight = 0; int64_t gets_done = 0; int64_t puts_done = 0; int64_t deletes_done = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); // the number of iterations is the larger of read_ or write_ for (int64_t i = 0; i < readwrites_; i++) { DB* db = SelectDB(thread); if (get_weight == 0 && put_weight == 0 && delete_weight == 0) { // one batch completed, reinitialize for next batch get_weight = FLAGS_readwritepercent; delete_weight = FLAGS_deletepercent; put_weight = 100 - get_weight - delete_weight; } GenerateKeyFromInt(thread->rand.Next() % FLAGS_numdistinct, FLAGS_numdistinct, &key); if (get_weight > 0) { // do all the gets first Status s = GetMany(db, options, key, &value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "getmany error: %s\n", s.ToString().c_str()); // we continue after error rather than exiting so that we can // find more errors if any } else if (!s.IsNotFound()) { found++; } get_weight--; gets_done++; thread->stats.FinishedOps(&db_, db_.db, 1, kRead); } else if (put_weight > 0) { // then do all the corresponding number of puts // for all the gets we have done earlier Status s = PutMany(db, write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "putmany error: %s\n", s.ToString().c_str()); exit(1); } put_weight--; puts_done++; thread->stats.FinishedOps(&db_, db_.db, 1, kWrite); } else if (delete_weight > 0) { Status s = DeleteMany(db, write_options_, key); if (!s.ok()) { fprintf(stderr, "deletemany error: %s\n", s.ToString().c_str()); exit(1); } delete_weight--; deletes_done++; thread->stats.FinishedOps(&db_, db_.db, 1, kDelete); } } char msg[100]; snprintf(msg, sizeof(msg), "( get:%" PRIu64 " put:%" PRIu64 " del:%" PRIu64 " total:%" \ PRIu64 " found:%" PRIu64 ")", gets_done, puts_done, deletes_done, readwrites_, found); thread->stats.AddMessage(msg); } // This is different from ReadWhileWriting because it does not use // an extra thread. void ReadRandomWriteRandom(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; int64_t found = 0; int get_weight = 0; int put_weight = 0; int64_t reads_done = 0; int64_t writes_done = 0; Duration duration(FLAGS_duration, readwrites_); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); // the number of iterations is the larger of read_ or write_ while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); if (get_weight == 0 && put_weight == 0) { // one batch completed, reinitialize for next batch get_weight = FLAGS_readwritepercent; put_weight = 100 - get_weight; } if (get_weight > 0) { // do all the gets first Status s = db->Get(options, key, &value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); // we continue after error rather than exiting so that we can // find more errors if any } else if (!s.IsNotFound()) { found++; } get_weight--; reads_done++; thread->stats.FinishedOps(nullptr, db, 1, kRead); } else if (put_weight > 0) { // then do all the corresponding number of puts // for all the gets we have done earlier Status s = db->Put(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } put_weight--; writes_done++; thread->stats.FinishedOps(nullptr, db, 1, kWrite); } } char msg[100]; snprintf(msg, sizeof(msg), "( reads:%" PRIu64 " writes:%" PRIu64 \ " total:%" PRIu64 " found:%" PRIu64 ")", reads_done, writes_done, readwrites_, found); thread->stats.AddMessage(msg); } // // Read-modify-write for random keys void UpdateRandom(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; int64_t found = 0; int64_t bytes = 0; Duration duration(FLAGS_duration, readwrites_); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); // the number of iterations is the larger of read_ or write_ while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); auto status = db->Get(options, key, &value); if (status.ok()) { ++found; bytes += key.size() + value.size(); } else if (!status.IsNotFound()) { fprintf(stderr, "Get returned an error: %s\n", status.ToString().c_str()); abort(); } Status s = db->Put(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } bytes += key.size() + value_size_; thread->stats.FinishedOps(nullptr, db, 1, kUpdate); } char msg[100]; snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")", readwrites_, found); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } // Read-modify-write for random keys. // Each operation causes the key grow by value_size (simulating an append). // Generally used for benchmarking against merges of similar type void AppendRandom(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; int64_t found = 0; int64_t bytes = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); // The number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); auto status = db->Get(options, key, &value); if (status.ok()) { ++found; bytes += key.size() + value.size(); } else if (!status.IsNotFound()) { fprintf(stderr, "Get returned an error: %s\n", status.ToString().c_str()); abort(); } else { // If not existing, then just assume an empty string of data value.clear(); } // Update the value (by appending data) Slice operand = gen.Generate(value_size_); if (value.size() > 0) { // Use a delimiter to match the semantics for StringAppendOperator value.append(1,','); } value.append(operand.data(), operand.size()); // Write back to the database Status s = db->Put(write_options_, key, value); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } bytes += key.size() + value.size(); thread->stats.FinishedOps(nullptr, db, 1, kUpdate); } char msg[100]; snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")", readwrites_, found); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } // Read-modify-write for random keys (using MergeOperator) // The merge operator to use should be defined by FLAGS_merge_operator // Adjust FLAGS_value_size so that the keys are reasonable for this operator // Assumes that the merge operator is non-null (i.e.: is well-defined) // // For example, use FLAGS_merge_operator="uint64add" and FLAGS_value_size=8 // to simulate random additions over 64-bit integers using merge. // // The number of merges on the same key can be controlled by adjusting // FLAGS_merge_keys. void MergeRandom(ThreadState* thread) { RandomGenerator gen; int64_t bytes = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); // The number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % merge_keys_, merge_keys_, &key); Status s = db->Merge(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "merge error: %s\n", s.ToString().c_str()); exit(1); } bytes += key.size() + value_size_; thread->stats.FinishedOps(nullptr, db, 1, kMerge); } // Print some statistics char msg[100]; snprintf(msg, sizeof(msg), "( updates:%" PRIu64 ")", readwrites_); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } // Read and merge random keys. The amount of reads and merges are controlled // by adjusting FLAGS_num and FLAGS_mergereadpercent. The number of distinct // keys (and thus also the number of reads and merges on the same key) can be // adjusted with FLAGS_merge_keys. // // As with MergeRandom, the merge operator to use should be defined by // FLAGS_merge_operator. void ReadRandomMergeRandom(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); RandomGenerator gen; std::string value; int64_t num_hits = 0; int64_t num_gets = 0; int64_t num_merges = 0; size_t max_length = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); // the number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % merge_keys_, merge_keys_, &key); bool do_merge = int(thread->rand.Next() % 100) < FLAGS_mergereadpercent; if (do_merge) { Status s = db->Merge(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "merge error: %s\n", s.ToString().c_str()); exit(1); } num_merges++; thread->stats.FinishedOps(nullptr, db, 1, kMerge); } else { Status s = db->Get(options, key, &value); if (value.length() > max_length) max_length = value.length(); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); // we continue after error rather than exiting so that we can // find more errors if any } else if (!s.IsNotFound()) { num_hits++; } num_gets++; thread->stats.FinishedOps(nullptr, db, 1, kRead); } } char msg[100]; snprintf(msg, sizeof(msg), "(reads:%" PRIu64 " merges:%" PRIu64 " total:%" PRIu64 " hits:%" PRIu64 " maxlength:%" ROCKSDB_PRIszt ")", num_gets, num_merges, readwrites_, num_hits, max_length); thread->stats.AddMessage(msg); } void WriteSeqSeekSeq(ThreadState* thread) { writes_ = FLAGS_num; DoWrite(thread, SEQUENTIAL); // exclude writes from the ops/sec calculation thread->stats.Start(thread->tid); DB* db = SelectDB(thread); std::unique_ptr iter( db->NewIterator(ReadOptions(FLAGS_verify_checksum, true))); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); for (int64_t i = 0; i < FLAGS_num; ++i) { GenerateKeyFromInt(i, FLAGS_num, &key); iter->Seek(key); assert(iter->Valid() && iter->key() == key); thread->stats.FinishedOps(nullptr, db, 1, kSeek); for (int j = 0; j < FLAGS_seek_nexts && i + 1 < FLAGS_num; ++j) { if (!FLAGS_reverse_iterator) { iter->Next(); } else { iter->Prev(); } GenerateKeyFromInt(++i, FLAGS_num, &key); assert(iter->Valid() && iter->key() == key); thread->stats.FinishedOps(nullptr, db, 1, kSeek); } iter->Seek(key); assert(iter->Valid() && iter->key() == key); thread->stats.FinishedOps(nullptr, db, 1, kSeek); } } #ifndef ROCKSDB_LITE // This benchmark stress tests Transactions. For a given --duration (or // total number of --writes, a Transaction will perform a read-modify-write // to increment the value of a key in each of N(--transaction-sets) sets of // keys (where each set has --num keys). If --threads is set, this will be // done in parallel. // // To test transactions, use --transaction_db=true. Not setting this // parameter // will run the same benchmark without transactions. // // RandomTransactionVerify() will then validate the correctness of the results // by checking if the sum of all keys in each set is the same. void RandomTransaction(ThreadState* thread) { ReadOptions options(FLAGS_verify_checksum, true); Duration duration(FLAGS_duration, readwrites_); ReadOptions read_options(FLAGS_verify_checksum, true); uint16_t num_prefix_ranges = static_cast(FLAGS_transaction_sets); uint64_t transactions_done = 0; if (num_prefix_ranges == 0 || num_prefix_ranges > 9999) { fprintf(stderr, "invalid value for transaction_sets\n"); abort(); } TransactionOptions txn_options; txn_options.lock_timeout = FLAGS_transaction_lock_timeout; txn_options.set_snapshot = FLAGS_transaction_set_snapshot; RandomTransactionInserter inserter(&thread->rand, write_options_, read_options, FLAGS_num, num_prefix_ranges); if (FLAGS_num_multi_db > 1) { fprintf(stderr, "Cannot run RandomTransaction benchmark with " "FLAGS_multi_db > 1."); abort(); } while (!duration.Done(1)) { bool success; // RandomTransactionInserter will attempt to insert a key for each // # of FLAGS_transaction_sets if (FLAGS_optimistic_transaction_db) { success = inserter.OptimisticTransactionDBInsert(db_.opt_txn_db); } else if (FLAGS_transaction_db) { TransactionDB* txn_db = reinterpret_cast(db_.db); success = inserter.TransactionDBInsert(txn_db, txn_options); } else { success = inserter.DBInsert(db_.db); } if (!success) { fprintf(stderr, "Unexpected error: %s\n", inserter.GetLastStatus().ToString().c_str()); abort(); } thread->stats.FinishedOps(nullptr, db_.db, 1, kOthers); transactions_done++; } char msg[100]; if (FLAGS_optimistic_transaction_db || FLAGS_transaction_db) { snprintf(msg, sizeof(msg), "( transactions:%" PRIu64 " aborts:%" PRIu64 ")", transactions_done, inserter.GetFailureCount()); } else { snprintf(msg, sizeof(msg), "( batches:%" PRIu64 " )", transactions_done); } thread->stats.AddMessage(msg); if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) { thread->stats.AddMessage(perf_context.ToString()); } } // Verifies consistency of data after RandomTransaction() has been run. // Since each iteration of RandomTransaction() incremented a key in each set // by the same value, the sum of the keys in each set should be the same. void RandomTransactionVerify() { if (!FLAGS_transaction_db && !FLAGS_optimistic_transaction_db) { // transactions not used, nothing to verify. return; } Status s = RandomTransactionInserter::Verify(db_.db, static_cast(FLAGS_transaction_sets)); if (s.ok()) { fprintf(stdout, "RandomTransactionVerify Success.\n"); } else { fprintf(stdout, "RandomTransactionVerify FAILED!!\n"); } } #endif // ROCKSDB_LITE // Writes and deletes random keys without overwriting keys. // // This benchmark is intended to partially replicate the behavior of MyRocks // secondary indices: All data is stored in keys and updates happen by // deleting the old version of the key and inserting the new version. void RandomReplaceKeys(ThreadState* thread) { std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::vector counters(FLAGS_numdistinct, 0); size_t max_counter = 50; RandomGenerator gen; Status s; DB* db = SelectDB(thread); for (int64_t i = 0; i < FLAGS_numdistinct; i++) { GenerateKeyFromInt(i * max_counter, FLAGS_num, &key); s = db->Put(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str()); exit(1); } } db->GetSnapshot(); std::default_random_engine generator; std::normal_distribution distribution(FLAGS_numdistinct / 2.0, FLAGS_stddev); Duration duration(FLAGS_duration, FLAGS_num); while (!duration.Done(1)) { int64_t rnd_id = static_cast(distribution(generator)); int64_t key_id = std::max(std::min(FLAGS_numdistinct - 1, rnd_id), static_cast(0)); GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num, &key); s = FLAGS_use_single_deletes ? db->SingleDelete(write_options_, key) : db->Delete(write_options_, key); if (s.ok()) { counters[key_id] = (counters[key_id] + 1) % max_counter; GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num, &key); s = db->Put(write_options_, key, Slice()); } if (!s.ok()) { fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str()); exit(1); } thread->stats.FinishedOps(nullptr, db, 1, kOthers); } char msg[200]; snprintf(msg, sizeof(msg), "use single deletes: %d, " "standard deviation: %lf\n", FLAGS_use_single_deletes, FLAGS_stddev); thread->stats.AddMessage(msg); } void TimeSeriesReadOrDelete(ThreadState* thread, bool do_deletion) { ReadOptions options(FLAGS_verify_checksum, true); int64_t read = 0; int64_t found = 0; int64_t bytes = 0; Iterator* iter = nullptr; // Only work on single database assert(db_.db != nullptr); iter = db_.db->NewIterator(options); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); char value_buffer[256]; while (true) { { MutexLock l(&thread->shared->mu); if (thread->shared->num_done >= 1) { // Write thread have finished break; } } if (!FLAGS_use_tailing_iterator) { delete iter; iter = db_.db->NewIterator(options); } // Pick a Iterator to use int64_t key_id = thread->rand.Next() % FLAGS_key_id_range; GenerateKeyFromInt(key_id, FLAGS_num, &key); // Reset last 8 bytes to 0 char* start = const_cast(key.data()); start += key.size() - 8; memset(start, 0, 8); ++read; bool key_found = false; // Seek the prefix for (iter->Seek(key); iter->Valid() && iter->key().starts_with(key); iter->Next()) { key_found = true; // Copy out iterator's value to make sure we read them. if (do_deletion) { bytes += iter->key().size(); if (KeyExpired(timestamp_emulator_.get(), iter->key())) { thread->stats.FinishedOps(&db_, db_.db, 1, kDelete); db_.db->Delete(write_options_, iter->key()); } else { break; } } else { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedOps(&db_, db_.db, 1, kRead); Slice value = iter->value(); memcpy(value_buffer, value.data(), std::min(value.size(), sizeof(value_buffer))); assert(iter->status().ok()); } } found += key_found; if (thread->shared->read_rate_limiter.get() != nullptr) { thread->shared->read_rate_limiter->Request(1, Env::IO_HIGH, nullptr /* stats */); } } delete iter; char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found, read); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) { thread->stats.AddMessage(perf_context.ToString()); } } void TimeSeriesWrite(ThreadState* thread) { // Special thread that keeps writing until other threads are done. RandomGenerator gen; int64_t bytes = 0; // Don't merge stats from this thread with the readers. thread->stats.SetExcludeFromMerge(); std::unique_ptr write_rate_limiter; if (FLAGS_benchmark_write_rate_limit > 0) { write_rate_limiter.reset( NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit)); } std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); Duration duration(FLAGS_duration, writes_); while (!duration.Done(1)) { DB* db = SelectDB(thread); uint64_t key_id = thread->rand.Next() % FLAGS_key_id_range; // Write key id GenerateKeyFromInt(key_id, FLAGS_num, &key); // Write timestamp char* start = const_cast(key.data()); char* pos = start + 8; int bytes_to_fill = std::min(key_size_ - static_cast(pos - start), 8); uint64_t timestamp_value = timestamp_emulator_->Get(); if (port::kLittleEndian) { for (int i = 0; i < bytes_to_fill; ++i) { pos[i] = (timestamp_value >> ((bytes_to_fill - i - 1) << 3)) & 0xFF; } } else { memcpy(pos, static_cast(×tamp_value), bytes_to_fill); } timestamp_emulator_->Inc(); Status s; s = db->Put(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } bytes = key.size() + value_size_; thread->stats.FinishedOps(&db_, db_.db, 1, kWrite); thread->stats.AddBytes(bytes); if (FLAGS_benchmark_write_rate_limit > 0) { write_rate_limiter->Request( entries_per_batch_ * (value_size_ + key_size_), Env::IO_HIGH, nullptr /* stats */); } } } void TimeSeries(ThreadState* thread) { if (thread->tid > 0) { bool do_deletion = FLAGS_expire_style == "delete" && thread->tid <= FLAGS_num_deletion_threads; TimeSeriesReadOrDelete(thread, do_deletion); } else { TimeSeriesWrite(thread); thread->stats.Stop(); thread->stats.Report("timeseries write"); } } void Compact(ThreadState* thread) { DB* db = SelectDB(thread); db->CompactRange(CompactRangeOptions(), nullptr, nullptr); } void ResetStats() { if (db_.db != nullptr) { db_.db->ResetStats(); } for (const auto& db_with_cfh : multi_dbs_) { db_with_cfh.db->ResetStats(); } } void PrintStats(const char* key) { if (db_.db != nullptr) { PrintStats(db_.db, key, false); } for (const auto& db_with_cfh : multi_dbs_) { PrintStats(db_with_cfh.db, key, true); } } void PrintStats(DB* db, const char* key, bool print_header = false) { if (print_header) { fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str()); } std::string stats; if (!db->GetProperty(key, &stats)) { stats = "(failed)"; } fprintf(stdout, "\n%s\n", stats.c_str()); } }; int db_bench_tool(int argc, char** argv) { rocksdb::port::InstallStackTraceHandler(); static bool initialized = false; if (!initialized) { SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) + " [OPTIONS]..."); initialized = true; } ParseCommandLineFlags(&argc, &argv, true); FLAGS_compaction_style_e = (rocksdb::CompactionStyle) FLAGS_compaction_style; #ifndef ROCKSDB_LITE if (FLAGS_statistics && !FLAGS_statistics_string.empty()) { fprintf(stderr, "Cannot provide both --statistics and --statistics_string.\n"); exit(1); } if (!FLAGS_statistics_string.empty()) { std::unique_ptr custom_stats_guard; dbstats.reset(NewCustomObject(FLAGS_statistics_string, &custom_stats_guard)); custom_stats_guard.release(); if (dbstats == nullptr) { fprintf(stderr, "No Statistics registered matching string: %s\n", FLAGS_statistics_string.c_str()); exit(1); } } #endif // ROCKSDB_LITE if (FLAGS_statistics) { dbstats = rocksdb::CreateDBStatistics(); } FLAGS_compaction_pri_e = (rocksdb::CompactionPri)FLAGS_compaction_pri; std::vector fanout = rocksdb::StringSplit( FLAGS_max_bytes_for_level_multiplier_additional, ','); for (size_t j = 0; j < fanout.size(); j++) { FLAGS_max_bytes_for_level_multiplier_additional_v.push_back( #ifndef CYGWIN std::stoi(fanout[j])); #else stoi(fanout[j])); #endif } FLAGS_compression_type_e = StringToCompressionType(FLAGS_compression_type.c_str()); #ifndef ROCKSDB_LITE std::unique_ptr custom_env_guard; if (!FLAGS_hdfs.empty() && !FLAGS_env_uri.empty()) { fprintf(stderr, "Cannot provide both --hdfs and --env_uri.\n"); exit(1); } else if (!FLAGS_env_uri.empty()) { FLAGS_env = NewCustomObject(FLAGS_env_uri, &custom_env_guard); if (FLAGS_env == nullptr) { fprintf(stderr, "No Env registered for URI: %s\n", FLAGS_env_uri.c_str()); exit(1); } } #endif // ROCKSDB_LITE if (!FLAGS_hdfs.empty()) { FLAGS_env = new rocksdb::HdfsEnv(FLAGS_hdfs); } if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NONE")) FLAGS_compaction_fadvice_e = rocksdb::Options::NONE; else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NORMAL")) FLAGS_compaction_fadvice_e = rocksdb::Options::NORMAL; else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "SEQUENTIAL")) FLAGS_compaction_fadvice_e = rocksdb::Options::SEQUENTIAL; else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "WILLNEED")) FLAGS_compaction_fadvice_e = rocksdb::Options::WILLNEED; else { fprintf(stdout, "Unknown compaction fadvice:%s\n", FLAGS_compaction_fadvice.c_str()); } FLAGS_rep_factory = StringToRepFactory(FLAGS_memtablerep.c_str()); // The number of background threads should be at least as much the // max number of concurrent compactions. FLAGS_env->SetBackgroundThreads(FLAGS_max_background_compactions); FLAGS_env->SetBackgroundThreads(FLAGS_max_background_flushes, rocksdb::Env::Priority::HIGH); // Choose a location for the test database if none given with --db= if (FLAGS_db.empty()) { std::string default_db_path; rocksdb::Env::Default()->GetTestDirectory(&default_db_path); default_db_path += "/dbbench"; FLAGS_db = default_db_path; } if (FLAGS_stats_interval_seconds > 0) { // When both are set then FLAGS_stats_interval determines the frequency // at which the timer is checked for FLAGS_stats_interval_seconds FLAGS_stats_interval = 1000; } rocksdb::Benchmark benchmark; benchmark.Run(); return 0; } } // namespace rocksdb #endif