// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifdef GFLAGS #ifdef NUMA #include #endif #ifndef OS_WIN #include #endif #include #include #include #include #ifdef __APPLE__ #include #include #include #endif #ifdef __FreeBSD__ #include #endif #include #include #include #include #include #include #include #include #include #include #include #include "db/db_impl/db_impl.h" #include "db/malloc_stats.h" #include "db/version_set.h" #include "monitoring/histogram.h" #include "monitoring/statistics.h" #include "options/cf_options.h" #include "port/port.h" #include "port/stack_trace.h" #include "rocksdb/cache.h" #include "rocksdb/convenience.h" #include "rocksdb/db.h" #include "rocksdb/env.h" #include "rocksdb/filter_policy.h" #include "rocksdb/memtablerep.h" #include "rocksdb/options.h" #include "rocksdb/perf_context.h" #include "rocksdb/persistent_cache.h" #include "rocksdb/rate_limiter.h" #include "rocksdb/secondary_cache.h" #include "rocksdb/slice.h" #include "rocksdb/slice_transform.h" #include "rocksdb/stats_history.h" #include "rocksdb/table.h" #include "rocksdb/utilities/backup_engine.h" #include "rocksdb/utilities/object_registry.h" #include "rocksdb/utilities/optimistic_transaction_db.h" #include "rocksdb/utilities/options_type.h" #include "rocksdb/utilities/options_util.h" #include "rocksdb/utilities/replayer.h" #include "rocksdb/utilities/sim_cache.h" #include "rocksdb/utilities/transaction.h" #include "rocksdb/utilities/transaction_db.h" #include "rocksdb/write_batch.h" #include "test_util/testutil.h" #include "test_util/transaction_test_util.h" #include "tools/simulated_hybrid_file_system.h" #include "util/cast_util.h" #include "util/compression.h" #include "util/crc32c.h" #include "util/file_checksum_helper.h" #include "util/gflags_compat.h" #include "util/mutexlock.h" #include "util/random.h" #include "util/stderr_logger.h" #include "util/string_util.h" #include "util/xxhash.h" #include "utilities/blob_db/blob_db.h" #include "utilities/counted_fs.h" #include "utilities/merge_operators.h" #include "utilities/merge_operators/bytesxor.h" #include "utilities/merge_operators/sortlist.h" #include "utilities/persistent_cache/block_cache_tier.h" #ifdef MEMKIND #include "memory/memkind_kmem_allocator.h" #endif #ifdef OS_WIN #include // open/close #endif using GFLAGS_NAMESPACE::ParseCommandLineFlags; using GFLAGS_NAMESPACE::RegisterFlagValidator; using GFLAGS_NAMESPACE::SetUsageMessage; using GFLAGS_NAMESPACE::SetVersionString; DEFINE_string( benchmarks, "fillseq," "fillseqdeterministic," "fillsync," "fillrandom," "filluniquerandomdeterministic," "overwrite," "readrandom," "newiterator," "newiteratorwhilewriting," "seekrandom," "seekrandomwhilewriting," "seekrandomwhilemerging," "readseq," "readreverse," "compact," "compactall," "flush," "compact0," "compact1," "waitforcompaction," "multireadrandom," "mixgraph," "readseq," "readtorowcache," "readtocache," "readreverse," "readwhilewriting," "readwhilemerging," "readwhilescanning," "readrandomwriterandom," "updaterandom," "xorupdaterandom," "approximatesizerandom," "randomwithverify," "fill100K," "crc32c," "xxhash," "xxhash64," "xxh3," "compress," "uncompress," "acquireload," "fillseekseq," "randomtransaction," "randomreplacekeys," "timeseries," "getmergeoperands,", "readrandomoperands," "backup," "restore" "Comma-separated list of operations to run in the specified" " order. Available benchmarks:\n" "\tfillseq -- write N values in sequential key" " order in async mode\n" "\tfillseqdeterministic -- write N values in the specified" " key order and keep the shape of the LSM tree\n" "\tfillrandom -- write N values in random key order in async" " mode\n" "\tfilluniquerandomdeterministic -- write N values in a random" " key order and keep the shape of the LSM tree\n" "\toverwrite -- overwrite N values in random key order in " "async mode\n" "\tfillsync -- write N/1000 values in random key order in " "sync mode\n" "\tfill100K -- write N/1000 100K values in random order in" " async mode\n" "\tdeleteseq -- delete N keys in sequential order\n" "\tdeleterandom -- delete N keys in random order\n" "\treadseq -- read N times sequentially\n" "\treadtocache -- 1 thread reading database sequentially\n" "\treadreverse -- read N times in reverse order\n" "\treadrandom -- read N times in random order\n" "\treadmissing -- read N missing keys in random order\n" "\treadwhilewriting -- 1 writer, N threads doing random " "reads\n" "\treadwhilemerging -- 1 merger, N threads doing random " "reads\n" "\treadwhilescanning -- 1 thread doing full table scan, " "N threads doing random reads\n" "\treadrandomwriterandom -- N threads doing random-read, " "random-write\n" "\tupdaterandom -- N threads doing read-modify-write for random " "keys\n" "\txorupdaterandom -- N threads doing read-XOR-write for " "random keys\n" "\tappendrandom -- N threads doing read-modify-write with " "growing values\n" "\tmergerandom -- same as updaterandom/appendrandom using merge" " operator. " "Must be used with merge_operator\n" "\treadrandommergerandom -- perform N random read-or-merge " "operations. Must be used with merge_operator\n" "\tnewiterator -- repeated iterator creation\n" "\tseekrandom -- N random seeks, call Next seek_nexts times " "per seek\n" "\tseekrandomwhilewriting -- seekrandom and 1 thread doing " "overwrite\n" "\tseekrandomwhilemerging -- seekrandom and 1 thread doing " "merge\n" "\tcrc32c -- repeated crc32c of data\n" "\txxhash -- repeated xxHash of data\n" "\txxhash64 -- repeated xxHash64 of data\n" "\txxh3 -- repeated XXH3 of data\n" "\tacquireload -- load N*1000 times\n" "\tfillseekseq -- write N values in sequential key, then read " "them by seeking to each key\n" "\trandomtransaction -- execute N random transactions and " "verify correctness\n" "\trandomreplacekeys -- randomly replaces N keys by deleting " "the old version and putting the new version\n\n" "\ttimeseries -- 1 writer generates time series data " "and multiple readers doing random reads on id\n\n" "Meta operations:\n" "\tcompact -- Compact the entire DB; If multiple, randomly choose one\n" "\tcompactall -- Compact the entire DB\n" "\tcompact0 -- compact L0 into L1\n" "\tcompact1 -- compact L1 into L2\n" "\twaitforcompaction - pause until compaction is (probably) done\n" "\tflush - flush the memtable\n" "\tstats -- Print DB stats\n" "\tresetstats -- Reset DB stats\n" "\tlevelstats -- Print the number of files and bytes per level\n" "\tmemstats -- Print memtable stats\n" "\tsstables -- Print sstable info\n" "\theapprofile -- Dump a heap profile (if supported by this port)\n" "\treplay -- replay the trace file specified with trace_file\n" "\tgetmergeoperands -- Insert lots of merge records which are a list of " "sorted ints for a key and then compare performance of lookup for another " "key by doing a Get followed by binary searching in the large sorted list " "vs doing a GetMergeOperands and binary searching in the operands which " "are sorted sub-lists. The MergeOperator used is sortlist.h\n" "\treadrandomoperands -- read random keys using `GetMergeOperands()`. An " "operation includes a rare but possible retry in case it got " "`Status::Incomplete()`. This happens upon encountering more keys than " "have ever been seen by the thread (or eight initially)\n" "\tbackup -- Create a backup of the current DB and verify that a new backup is corrected. " "Rate limit can be specified through --backup_rate_limit\n" "\trestore -- Restore the DB from the latest backup available, rate limit can be specified through --restore_rate_limit\n"); DEFINE_int64(num, 1000000, "Number of key/values to place in database"); DEFINE_int64(numdistinct, 1000, "Number of distinct keys to use. Used in RandomWithVerify to " "read/write on fewer keys so that gets are more likely to find the" " key and puts are more likely to update the same key"); DEFINE_int64(merge_keys, -1, "Number of distinct keys to use for MergeRandom and " "ReadRandomMergeRandom. " "If negative, there will be FLAGS_num keys."); DEFINE_int32(num_column_families, 1, "Number of Column Families to use."); DEFINE_int32( num_hot_column_families, 0, "Number of Hot Column Families. If more than 0, only write to this " "number of column families. After finishing all the writes to them, " "create new set of column families and insert to them. Only used " "when num_column_families > 1."); DEFINE_string(column_family_distribution, "", "Comma-separated list of percentages, where the ith element " "indicates the probability of an op using the ith column family. " "The number of elements must be `num_hot_column_families` if " "specified; otherwise, it must be `num_column_families`. The " "sum of elements must be 100. E.g., if `num_column_families=4`, " "and `num_hot_column_families=0`, a valid list could be " "\"10,20,30,40\"."); DEFINE_int64(reads, -1, "Number of read operations to do. " "If negative, do FLAGS_num reads."); DEFINE_int64(deletes, -1, "Number of delete operations to do. " "If negative, do FLAGS_num deletions."); DEFINE_int32(bloom_locality, 0, "Control bloom filter probes locality"); DEFINE_int64(seed, 0, "Seed base for random number generators. " "When 0 it is derived from the current time."); static std::optional seed_base; DEFINE_int32(threads, 1, "Number of concurrent threads to run."); DEFINE_int32(duration, 0, "Time in seconds for the random-ops tests to run." " When 0 then num & reads determine the test duration"); DEFINE_string(value_size_distribution_type, "fixed", "Value size distribution type: fixed, uniform, normal"); DEFINE_int32(value_size, 100, "Size of each value in fixed distribution"); static unsigned int value_size = 100; DEFINE_int32(value_size_min, 100, "Min size of random value"); DEFINE_int32(value_size_max, 102400, "Max size of random value"); DEFINE_int32(seek_nexts, 0, "How many times to call Next() after Seek() in " "fillseekseq, seekrandom, seekrandomwhilewriting and " "seekrandomwhilemerging"); DEFINE_bool(reverse_iterator, false, "When true use Prev rather than Next for iterators that do " "Seek and then Next"); DEFINE_bool(auto_prefix_mode, false, "Set auto_prefix_mode for seek benchmark"); DEFINE_int64(max_scan_distance, 0, "Used to define iterate_upper_bound (or iterate_lower_bound " "if FLAGS_reverse_iterator is set to true) when value is nonzero"); DEFINE_bool(use_uint64_comparator, false, "use Uint64 user comparator"); DEFINE_int64(batch_size, 1, "Batch size"); static bool ValidateKeySize(const char* /*flagname*/, int32_t /*value*/) { return true; } static bool ValidateUint32Range(const char* flagname, uint64_t value) { if (value > std::numeric_limits::max()) { fprintf(stderr, "Invalid value for --%s: %lu, overflow\n", flagname, (unsigned long)value); return false; } return true; } DEFINE_int32(key_size, 16, "size of each key"); DEFINE_int32(user_timestamp_size, 0, "number of bytes in a user-defined timestamp"); DEFINE_int32(num_multi_db, 0, "Number of DBs used in the benchmark. 0 means single DB."); DEFINE_double(compression_ratio, 0.5, "Arrange to generate values that shrink to this fraction of " "their original size after compression"); DEFINE_double( overwrite_probability, 0.0, "Used in 'filluniquerandom' benchmark: for each write operation, " "we give a probability to perform an overwrite instead. The key used for " "the overwrite is randomly chosen from the last 'overwrite_window_size' " "keys previously inserted into the DB. " "Valid overwrite_probability values: [0.0, 1.0]."); DEFINE_uint32(overwrite_window_size, 1, "Used in 'filluniquerandom' benchmark. For each write operation," " when the overwrite_probability flag is set by the user, the " "key used to perform an overwrite is randomly chosen from the " "last 'overwrite_window_size' keys previously inserted into DB. " "Warning: large values can affect throughput. " "Valid overwrite_window_size values: [1, kMaxUint32]."); DEFINE_uint64( disposable_entries_delete_delay, 0, "Minimum delay in microseconds for the series of Deletes " "to be issued. When 0 the insertion of the last disposable entry is " "immediately followed by the issuance of the Deletes. " "(only compatible with fillanddeleteuniquerandom benchmark)."); DEFINE_uint64(disposable_entries_batch_size, 0, "Number of consecutively inserted disposable KV entries " "that will be deleted after 'delete_delay' microseconds. " "A series of Deletes is always issued once all the " "disposable KV entries it targets have been inserted " "into the DB. When 0 no deletes are issued and a " "regular 'filluniquerandom' benchmark occurs. " "(only compatible with fillanddeleteuniquerandom benchmark)"); DEFINE_int32(disposable_entries_value_size, 64, "Size of the values (in bytes) of the entries targeted by " "selective deletes. " "(only compatible with fillanddeleteuniquerandom benchmark)"); DEFINE_uint64( persistent_entries_batch_size, 0, "Number of KV entries being inserted right before the deletes " "targeting the disposable KV entries are issued. These " "persistent keys are not targeted by the deletes, and will always " "remain valid in the DB. (only compatible with " "--benchmarks='fillanddeleteuniquerandom' " "and used when--disposable_entries_batch_size is > 0)."); DEFINE_int32(persistent_entries_value_size, 64, "Size of the values (in bytes) of the entries not targeted by " "deletes. (only compatible with " "--benchmarks='fillanddeleteuniquerandom' " "and used when--disposable_entries_batch_size is > 0)."); DEFINE_double(read_random_exp_range, 0.0, "Read random's key will be generated using distribution of " "num * exp(-r) where r is uniform number from 0 to this value. " "The larger the number is, the more skewed the reads are. " "Only used in readrandom and multireadrandom benchmarks."); DEFINE_bool(histogram, false, "Print histogram of operation timings"); DEFINE_bool(confidence_interval_only, false, "Print 95% confidence interval upper and lower bounds only for " "aggregate stats."); DEFINE_bool(enable_numa, false, "Make operations aware of NUMA architecture and bind memory " "and cpus corresponding to nodes together. In NUMA, memory " "in same node as CPUs are closer when compared to memory in " "other nodes. Reads can be faster when the process is bound to " "CPU and memory of same node. Use \"$numactl --hardware\" command " "to see NUMA memory architecture."); DEFINE_int64(db_write_buffer_size, ROCKSDB_NAMESPACE::Options().db_write_buffer_size, "Number of bytes to buffer in all memtables before compacting"); DEFINE_bool(cost_write_buffer_to_cache, false, "The usage of memtable is costed to the block cache"); DEFINE_int64(arena_block_size, ROCKSDB_NAMESPACE::Options().arena_block_size, "The size, in bytes, of one block in arena memory allocation."); DEFINE_int64(write_buffer_size, ROCKSDB_NAMESPACE::Options().write_buffer_size, "Number of bytes to buffer in memtable before compacting"); DEFINE_int32(max_write_buffer_number, ROCKSDB_NAMESPACE::Options().max_write_buffer_number, "The number of in-memory memtables. Each memtable is of size" " write_buffer_size bytes."); DEFINE_int32(min_write_buffer_number_to_merge, ROCKSDB_NAMESPACE::Options().min_write_buffer_number_to_merge, "The minimum number of write buffers that will be merged together" "before writing to storage. This is cheap because it is an" "in-memory merge. If this feature is not enabled, then all these" "write buffers are flushed to L0 as separate files and this " "increases read amplification because a get request has to check" " in all of these files. Also, an in-memory merge may result in" " writing less data to storage if there are duplicate records " " in each of these individual write buffers."); DEFINE_int32(max_write_buffer_number_to_maintain, ROCKSDB_NAMESPACE::Options().max_write_buffer_number_to_maintain, "The total maximum number of write buffers to maintain in memory " "including copies of buffers that have already been flushed. " "Unlike max_write_buffer_number, this parameter does not affect " "flushing. This controls the minimum amount of write history " "that will be available in memory for conflict checking when " "Transactions are used. If this value is too low, some " "transactions may fail at commit time due to not being able to " "determine whether there were any write conflicts. Setting this " "value to 0 will cause write buffers to be freed immediately " "after they are flushed. If this value is set to -1, " "'max_write_buffer_number' will be used."); DEFINE_int64(max_write_buffer_size_to_maintain, ROCKSDB_NAMESPACE::Options().max_write_buffer_size_to_maintain, "The total maximum size of write buffers to maintain in memory " "including copies of buffers that have already been flushed. " "Unlike max_write_buffer_number, this parameter does not affect " "flushing. This controls the minimum amount of write history " "that will be available in memory for conflict checking when " "Transactions are used. If this value is too low, some " "transactions may fail at commit time due to not being able to " "determine whether there were any write conflicts. Setting this " "value to 0 will cause write buffers to be freed immediately " "after they are flushed. If this value is set to -1, " "'max_write_buffer_number' will be used."); DEFINE_int32(max_background_jobs, ROCKSDB_NAMESPACE::Options().max_background_jobs, "The maximum number of concurrent background jobs that can occur " "in parallel."); DEFINE_int32(num_bottom_pri_threads, 0, "The number of threads in the bottom-priority thread pool (used " "by universal compaction only)."); DEFINE_int32(num_high_pri_threads, 0, "The maximum number of concurrent background compactions" " that can occur in parallel."); DEFINE_int32(num_low_pri_threads, 0, "The maximum number of concurrent background compactions" " that can occur in parallel."); DEFINE_int32(max_background_compactions, ROCKSDB_NAMESPACE::Options().max_background_compactions, "The maximum number of concurrent background compactions" " that can occur in parallel."); DEFINE_uint64(subcompactions, 1, "For CompactRange, set max_subcompactions for each compaction " "job in this CompactRange, for auto compactions, this is " "Maximum number of subcompactions to divide L0-L1 compactions " "into."); static const bool FLAGS_subcompactions_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_subcompactions, &ValidateUint32Range); DEFINE_int32(max_background_flushes, ROCKSDB_NAMESPACE::Options().max_background_flushes, "The maximum number of concurrent background flushes" " that can occur in parallel."); static ROCKSDB_NAMESPACE::CompactionStyle FLAGS_compaction_style_e; DEFINE_int32(compaction_style, (int32_t)ROCKSDB_NAMESPACE::Options().compaction_style, "style of compaction: level-based, universal and fifo"); static ROCKSDB_NAMESPACE::CompactionPri FLAGS_compaction_pri_e; DEFINE_int32(compaction_pri, (int32_t)ROCKSDB_NAMESPACE::Options().compaction_pri, "priority of files to compaction: by size or by data age"); DEFINE_int32(universal_size_ratio, 0, "Percentage flexibility while comparing file size " "(for universal compaction only)."); DEFINE_int32(universal_min_merge_width, 0, "The minimum number of files in a single compaction run " "(for universal compaction only)."); DEFINE_int32(universal_max_merge_width, 0, "The max number of files to compact in universal style " "compaction"); DEFINE_int32(universal_max_size_amplification_percent, 0, "The max size amplification for universal style compaction"); DEFINE_int32(universal_compression_size_percent, -1, "The percentage of the database to compress for universal " "compaction. -1 means compress everything."); DEFINE_bool(universal_allow_trivial_move, false, "Allow trivial move in universal compaction."); DEFINE_bool(universal_incremental, false, "Enable incremental compactions in universal compaction."); DEFINE_int64(cache_size, 32 << 20, // 32MB "Number of bytes to use as a cache of uncompressed data"); DEFINE_int32(cache_numshardbits, -1, "Number of shards for the block cache" " is 2 ** cache_numshardbits. Negative means use default settings." " This is applied only if FLAGS_cache_size is non-negative."); DEFINE_double(cache_high_pri_pool_ratio, 0.0, "Ratio of block cache reserve for high pri blocks. " "If > 0.0, we also enable " "cache_index_and_filter_blocks_with_high_priority."); DEFINE_double(cache_low_pri_pool_ratio, 0.0, "Ratio of block cache reserve for low pri blocks."); DEFINE_string(cache_type, "lru_cache", "Type of block cache."); DEFINE_bool(use_compressed_secondary_cache, false, "Use the CompressedSecondaryCache as the secondary cache."); DEFINE_int64(compressed_secondary_cache_size, 32 << 20, // 32MB "Number of bytes to use as a cache of data"); DEFINE_int32(compressed_secondary_cache_numshardbits, 6, "Number of shards for the block cache" " is 2 ** compressed_secondary_cache_numshardbits." " Negative means use default settings." " This is applied only if FLAGS_cache_size is non-negative."); DEFINE_double(compressed_secondary_cache_high_pri_pool_ratio, 0.0, "Ratio of block cache reserve for high pri blocks. " "If > 0.0, we also enable " "cache_index_and_filter_blocks_with_high_priority."); DEFINE_double(compressed_secondary_cache_low_pri_pool_ratio, 0.0, "Ratio of block cache reserve for low pri blocks."); DEFINE_string(compressed_secondary_cache_compression_type, "lz4", "The compression algorithm to use for large " "values stored in CompressedSecondaryCache."); static enum ROCKSDB_NAMESPACE::CompressionType FLAGS_compressed_secondary_cache_compression_type_e = ROCKSDB_NAMESPACE::kLZ4Compression; DEFINE_uint32( compressed_secondary_cache_compress_format_version, 2, "compress_format_version can have two values: " "compress_format_version == 1 -- decompressed size is not included" " in the block header." "compress_format_version == 2 -- decompressed size is included" " in the block header in varint32 format."); DEFINE_int64(simcache_size, -1, "Number of bytes to use as a simcache of " "uncompressed data. Nagative value disables simcache."); DEFINE_bool(cache_index_and_filter_blocks, false, "Cache index/filter blocks in block cache."); DEFINE_bool(use_cache_jemalloc_no_dump_allocator, false, "Use JemallocNodumpAllocator for block/blob cache."); DEFINE_bool(use_cache_memkind_kmem_allocator, false, "Use memkind kmem allocator for block/blob cache."); DEFINE_bool(partition_index_and_filters, false, "Partition index and filter blocks."); DEFINE_bool(partition_index, false, "Partition index blocks"); DEFINE_bool(index_with_first_key, false, "Include first key in the index"); DEFINE_bool( optimize_filters_for_memory, ROCKSDB_NAMESPACE::BlockBasedTableOptions().optimize_filters_for_memory, "Minimize memory footprint of filters"); DEFINE_int64( index_shortening_mode, 2, "mode to shorten index: 0 for no shortening; 1 for only shortening " "separaters; 2 for shortening shortening and successor"); DEFINE_int64(metadata_block_size, ROCKSDB_NAMESPACE::BlockBasedTableOptions().metadata_block_size, "Max partition size when partitioning index/filters"); // The default reduces the overhead of reading time with flash. With HDD, which // offers much less throughput, however, this number better to be set to 1. DEFINE_int32(ops_between_duration_checks, 1000, "Check duration limit every x ops"); DEFINE_bool(pin_l0_filter_and_index_blocks_in_cache, false, "Pin index/filter blocks of L0 files in block cache."); DEFINE_bool( pin_top_level_index_and_filter, false, "Pin top-level index of partitioned index/filter blocks in block cache."); DEFINE_int32(block_size, static_cast( ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_size), "Number of bytes in a block."); DEFINE_int32(format_version, static_cast( ROCKSDB_NAMESPACE::BlockBasedTableOptions().format_version), "Format version of SST files."); DEFINE_int32(block_restart_interval, ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_restart_interval, "Number of keys between restart points " "for delta encoding of keys in data block."); DEFINE_int32( index_block_restart_interval, ROCKSDB_NAMESPACE::BlockBasedTableOptions().index_block_restart_interval, "Number of keys between restart points " "for delta encoding of keys in index block."); DEFINE_int32(read_amp_bytes_per_bit, ROCKSDB_NAMESPACE::BlockBasedTableOptions().read_amp_bytes_per_bit, "Number of bytes per bit to be used in block read-amp bitmap"); DEFINE_bool( enable_index_compression, ROCKSDB_NAMESPACE::BlockBasedTableOptions().enable_index_compression, "Compress the index block"); DEFINE_bool(block_align, ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_align, "Align data blocks on page size"); DEFINE_int64(prepopulate_block_cache, 0, "Pre-populate hot/warm blocks in block cache. 0 to disable and 1 " "to insert during flush"); DEFINE_bool(use_data_block_hash_index, false, "if use kDataBlockBinaryAndHash " "instead of kDataBlockBinarySearch. " "This is valid if only we use BlockTable"); DEFINE_double(data_block_hash_table_util_ratio, 0.75, "util ratio for data block hash index table. " "This is only valid if use_data_block_hash_index is " "set to true"); DEFINE_int64(compressed_cache_size, -1, "Number of bytes to use as a cache of compressed data."); DEFINE_int64(row_cache_size, 0, "Number of bytes to use as a cache of individual rows" " (0 = disabled)."); DEFINE_int32(open_files, ROCKSDB_NAMESPACE::Options().max_open_files, "Maximum number of files to keep open at the same time" " (use default if == 0)"); DEFINE_int32(file_opening_threads, ROCKSDB_NAMESPACE::Options().max_file_opening_threads, "If open_files is set to -1, this option set the number of " "threads that will be used to open files during DB::Open()"); DEFINE_int32(compaction_readahead_size, 0, "Compaction readahead size"); DEFINE_int32(log_readahead_size, 0, "WAL and manifest readahead size"); DEFINE_int32(random_access_max_buffer_size, 1024 * 1024, "Maximum windows randomaccess buffer size"); DEFINE_int32(writable_file_max_buffer_size, 1024 * 1024, "Maximum write buffer for Writable File"); DEFINE_int32(bloom_bits, -1, "Bloom filter bits per key. Negative means use default." "Zero disables."); DEFINE_bool(use_ribbon_filter, false, "Use Ribbon instead of Bloom filter"); DEFINE_double(memtable_bloom_size_ratio, 0, "Ratio of memtable size used for bloom filter. 0 means no bloom " "filter."); DEFINE_bool(memtable_whole_key_filtering, false, "Try to use whole key bloom filter in memtables."); DEFINE_bool(memtable_use_huge_page, false, "Try to use huge page in memtables."); DEFINE_bool(whole_key_filtering, ROCKSDB_NAMESPACE::BlockBasedTableOptions().whole_key_filtering, "Use whole keys (in addition to prefixes) in SST bloom filter."); DEFINE_bool(use_existing_db, false, "If true, do not destroy the existing database. If you set this " "flag and also specify a benchmark that wants a fresh database, " "that benchmark will fail."); DEFINE_bool(use_existing_keys, false, "If true, uses existing keys in the DB, " "rather than generating new ones. This involves some startup " "latency to load all keys into memory. It is supported for the " "same read/overwrite benchmarks as `-use_existing_db=true`, which " "must also be set for this flag to be enabled. When this flag is " "set, the value for `-num` will be ignored."); DEFINE_bool(show_table_properties, false, "If true, then per-level table" " properties will be printed on every stats-interval when" " stats_interval is set and stats_per_interval is on."); DEFINE_string(db, "", "Use the db with the following name."); DEFINE_bool(progress_reports, true, "If true, db_bench will report number of finished operations."); // Read cache flags DEFINE_string(read_cache_path, "", "If not empty string, a read cache will be used in this path"); DEFINE_int64(read_cache_size, 4LL * 1024 * 1024 * 1024, "Maximum size of the read cache"); DEFINE_bool(read_cache_direct_write, true, "Whether to use Direct IO for writing to the read cache"); DEFINE_bool(read_cache_direct_read, true, "Whether to use Direct IO for reading from read cache"); DEFINE_bool(use_keep_filter, false, "Whether to use a noop compaction filter"); static bool ValidateCacheNumshardbits(const char* flagname, int32_t value) { if (value >= 20) { fprintf(stderr, "Invalid value for --%s: %d, must be < 20\n", flagname, value); return false; } return true; } DEFINE_bool(verify_checksum, true, "Verify checksum for every block read from storage"); DEFINE_int32(checksum_type, ROCKSDB_NAMESPACE::BlockBasedTableOptions().checksum, "ChecksumType as an int"); DEFINE_bool(statistics, false, "Database statistics"); DEFINE_int32(stats_level, ROCKSDB_NAMESPACE::StatsLevel::kExceptDetailedTimers, "stats level for statistics"); DEFINE_string(statistics_string, "", "Serialized statistics string"); static class std::shared_ptr dbstats; DEFINE_int64(writes, -1, "Number of write operations to do. If negative, do --num reads."); DEFINE_bool(finish_after_writes, false, "Write thread terminates after all writes are finished"); DEFINE_bool(sync, false, "Sync all writes to disk"); DEFINE_bool(use_fsync, false, "If true, issue fsync instead of fdatasync"); DEFINE_bool(disable_wal, false, "If true, do not write WAL for write."); DEFINE_bool(manual_wal_flush, false, "If true, buffer WAL until buffer is full or a manual FlushWAL()."); DEFINE_string(wal_compression, "none", "Algorithm to use for WAL compression. none to disable."); static enum ROCKSDB_NAMESPACE::CompressionType FLAGS_wal_compression_e = ROCKSDB_NAMESPACE::kNoCompression; DEFINE_string(wal_dir, "", "If not empty, use the given dir for WAL"); DEFINE_string(truth_db, "/dev/shm/truth_db/dbbench", "Truth key/values used when using verify"); DEFINE_int32(num_levels, 7, "The total number of levels"); DEFINE_int64(target_file_size_base, ROCKSDB_NAMESPACE::Options().target_file_size_base, "Target file size at level-1"); DEFINE_int32(target_file_size_multiplier, ROCKSDB_NAMESPACE::Options().target_file_size_multiplier, "A multiplier to compute target level-N file size (N >= 2)"); DEFINE_uint64(max_bytes_for_level_base, ROCKSDB_NAMESPACE::Options().max_bytes_for_level_base, "Max bytes for level-1"); DEFINE_bool(level_compaction_dynamic_level_bytes, false, "Whether level size base is dynamic"); DEFINE_double(max_bytes_for_level_multiplier, 10, "A multiplier to compute max bytes for level-N (N >= 2)"); static std::vector FLAGS_max_bytes_for_level_multiplier_additional_v; DEFINE_string(max_bytes_for_level_multiplier_additional, "", "A vector that specifies additional fanout per level"); DEFINE_int32(level0_stop_writes_trigger, ROCKSDB_NAMESPACE::Options().level0_stop_writes_trigger, "Number of files in level-0 that will trigger put stop."); DEFINE_int32(level0_slowdown_writes_trigger, ROCKSDB_NAMESPACE::Options().level0_slowdown_writes_trigger, "Number of files in level-0 that will slow down writes."); DEFINE_int32(level0_file_num_compaction_trigger, ROCKSDB_NAMESPACE::Options().level0_file_num_compaction_trigger, "Number of files in level-0 when compactions start."); DEFINE_uint64(periodic_compaction_seconds, ROCKSDB_NAMESPACE::Options().periodic_compaction_seconds, "Files older than this will be picked up for compaction and" " rewritten to the same level"); DEFINE_uint64(ttl_seconds, ROCKSDB_NAMESPACE::Options().ttl, "Set options.ttl"); static bool ValidateInt32Percent(const char* flagname, int32_t value) { if (value <= 0 || value >= 100) { fprintf(stderr, "Invalid value for --%s: %d, 0< pct <100 \n", flagname, value); return false; } return true; } DEFINE_int32(readwritepercent, 90, "Ratio of reads to reads/writes (expressed as percentage) for " "the ReadRandomWriteRandom workload. The default value 90 means " "90% operations out of all reads and writes operations are " "reads. In other words, 9 gets for every 1 put."); DEFINE_int32(mergereadpercent, 70, "Ratio of merges to merges&reads (expressed as percentage) for " "the ReadRandomMergeRandom workload. The default value 70 means " "70% out of all read and merge operations are merges. In other " "words, 7 merges for every 3 gets."); DEFINE_int32(deletepercent, 2, "Percentage of deletes out of reads/writes/deletes (used in " "RandomWithVerify only). RandomWithVerify " "calculates writepercent as (100 - FLAGS_readwritepercent - " "deletepercent), so deletepercent must be smaller than (100 - " "FLAGS_readwritepercent)"); DEFINE_bool(optimize_filters_for_hits, ROCKSDB_NAMESPACE::Options().optimize_filters_for_hits, "Optimizes bloom filters for workloads for most lookups return " "a value. For now this doesn't create bloom filters for the max " "level of the LSM to reduce metadata that should fit in RAM. "); DEFINE_bool(paranoid_checks, ROCKSDB_NAMESPACE::Options().paranoid_checks, "RocksDB will aggressively check consistency of the data."); DEFINE_bool(force_consistency_checks, ROCKSDB_NAMESPACE::Options().force_consistency_checks, "Runs consistency checks on the LSM every time a change is " "applied."); DEFINE_bool(check_flush_compaction_key_order, ROCKSDB_NAMESPACE::Options().check_flush_compaction_key_order, "During flush or compaction, check whether keys inserted to " "output files are in order."); DEFINE_uint64(delete_obsolete_files_period_micros, 0, "Ignored. Left here for backward compatibility"); DEFINE_int64(writes_before_delete_range, 0, "Number of writes before DeleteRange is called regularly."); DEFINE_int64(writes_per_range_tombstone, 0, "Number of writes between range tombstones"); DEFINE_int64(range_tombstone_width, 100, "Number of keys in tombstone's range"); DEFINE_int64(max_num_range_tombstones, 0, "Maximum number of range tombstones to insert."); DEFINE_bool(expand_range_tombstones, false, "Expand range tombstone into sequential regular tombstones."); // Transactions Options DEFINE_bool(optimistic_transaction_db, false, "Open a OptimisticTransactionDB instance. " "Required for randomtransaction benchmark."); DEFINE_bool(transaction_db, false, "Open a TransactionDB instance. " "Required for randomtransaction benchmark."); DEFINE_uint64(transaction_sets, 2, "Number of keys each transaction will " "modify (use in RandomTransaction only). Max: 9999"); DEFINE_bool(transaction_set_snapshot, false, "Setting to true will have each transaction call SetSnapshot()" " upon creation."); DEFINE_int32(transaction_sleep, 0, "Max microseconds to sleep in between " "reading and writing a value (used in RandomTransaction only). "); DEFINE_uint64(transaction_lock_timeout, 100, "If using a transaction_db, specifies the lock wait timeout in" " milliseconds before failing a transaction waiting on a lock"); DEFINE_string( options_file, "", "The path to a RocksDB options file. If specified, then db_bench will " "run with the RocksDB options in the default column family of the " "specified options file. " "Note that with this setting, db_bench will ONLY accept the following " "RocksDB options related command-line arguments, all other arguments " "that are related to RocksDB options will be ignored:\n" "\t--use_existing_db\n" "\t--use_existing_keys\n" "\t--statistics\n" "\t--row_cache_size\n" "\t--row_cache_numshardbits\n" "\t--enable_io_prio\n" "\t--dump_malloc_stats\n" "\t--num_multi_db\n"); // FIFO Compaction Options DEFINE_uint64(fifo_compaction_max_table_files_size_mb, 0, "The limit of total table file sizes to trigger FIFO compaction"); DEFINE_bool(fifo_compaction_allow_compaction, true, "Allow compaction in FIFO compaction."); DEFINE_uint64(fifo_compaction_ttl, 0, "TTL for the SST Files in seconds."); DEFINE_uint64(fifo_age_for_warm, 0, "age_for_warm for FIFO compaction."); // Stacked BlobDB Options DEFINE_bool(use_blob_db, false, "[Stacked BlobDB] Open a BlobDB instance."); DEFINE_bool( blob_db_enable_gc, ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().enable_garbage_collection, "[Stacked BlobDB] Enable BlobDB garbage collection."); DEFINE_double( blob_db_gc_cutoff, ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().garbage_collection_cutoff, "[Stacked BlobDB] Cutoff ratio for BlobDB garbage collection."); DEFINE_bool(blob_db_is_fifo, ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().is_fifo, "[Stacked BlobDB] Enable FIFO eviction strategy in BlobDB."); DEFINE_uint64(blob_db_max_db_size, ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().max_db_size, "[Stacked BlobDB] Max size limit of the directory where blob " "files are stored."); DEFINE_uint64(blob_db_max_ttl_range, 0, "[Stacked BlobDB] TTL range to generate BlobDB data (in " "seconds). 0 means no TTL."); DEFINE_uint64( blob_db_ttl_range_secs, ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().ttl_range_secs, "[Stacked BlobDB] TTL bucket size to use when creating blob files."); DEFINE_uint64( blob_db_min_blob_size, ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().min_blob_size, "[Stacked BlobDB] Smallest blob to store in a file. Blobs " "smaller than this will be inlined with the key in the LSM tree."); DEFINE_uint64(blob_db_bytes_per_sync, ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().bytes_per_sync, "[Stacked BlobDB] Bytes to sync blob file at."); DEFINE_uint64(blob_db_file_size, ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().blob_file_size, "[Stacked BlobDB] Target size of each blob file."); DEFINE_string( blob_db_compression_type, "snappy", "[Stacked BlobDB] Algorithm to use to compress blobs in blob files."); static enum ROCKSDB_NAMESPACE::CompressionType FLAGS_blob_db_compression_type_e = ROCKSDB_NAMESPACE::kSnappyCompression; // Integrated BlobDB options DEFINE_bool( enable_blob_files, ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().enable_blob_files, "[Integrated BlobDB] Enable writing large values to separate blob files."); DEFINE_uint64(min_blob_size, ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().min_blob_size, "[Integrated BlobDB] The size of the smallest value to be stored " "separately in a blob file."); DEFINE_uint64(blob_file_size, ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().blob_file_size, "[Integrated BlobDB] The size limit for blob files."); DEFINE_string(blob_compression_type, "none", "[Integrated BlobDB] The compression algorithm to use for large " "values stored in blob files."); DEFINE_bool(enable_blob_garbage_collection, ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions() .enable_blob_garbage_collection, "[Integrated BlobDB] Enable blob garbage collection."); DEFINE_double(blob_garbage_collection_age_cutoff, ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions() .blob_garbage_collection_age_cutoff, "[Integrated BlobDB] The cutoff in terms of blob file age for " "garbage collection."); DEFINE_double(blob_garbage_collection_force_threshold, ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions() .blob_garbage_collection_force_threshold, "[Integrated BlobDB] The threshold for the ratio of garbage in " "the oldest blob files for forcing garbage collection."); DEFINE_uint64(blob_compaction_readahead_size, ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions() .blob_compaction_readahead_size, "[Integrated BlobDB] Compaction readahead for blob files."); DEFINE_int32( blob_file_starting_level, ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().blob_file_starting_level, "[Integrated BlobDB] The starting level for blob files."); DEFINE_bool(use_blob_cache, false, "[Integrated BlobDB] Enable blob cache."); DEFINE_bool( use_shared_block_and_blob_cache, true, "[Integrated BlobDB] Use a shared backing cache for both block " "cache and blob cache. It only takes effect if use_blob_cache is enabled."); DEFINE_uint64( blob_cache_size, 8 << 20, "[Integrated BlobDB] Number of bytes to use as a cache of blobs. It only " "takes effect if the block and blob caches are different " "(use_shared_block_and_blob_cache = false)."); DEFINE_int32(blob_cache_numshardbits, 6, "[Integrated BlobDB] Number of shards for the blob cache is 2 ** " "blob_cache_numshardbits. Negative means use default settings. " "It only takes effect if blob_cache_size is greater than 0, and " "the block and blob caches are different " "(use_shared_block_and_blob_cache = false)."); DEFINE_int32(prepopulate_blob_cache, 0, "[Integrated BlobDB] Pre-populate hot/warm blobs in blob cache. 0 " "to disable and 1 to insert during flush."); // Secondary DB instance Options DEFINE_bool(use_secondary_db, false, "Open a RocksDB secondary instance. A primary instance can be " "running in another db_bench process."); DEFINE_string(secondary_path, "", "Path to a directory used by the secondary instance to store " "private files, e.g. info log."); DEFINE_int32(secondary_update_interval, 5, "Secondary instance attempts to catch up with the primary every " "secondary_update_interval seconds."); DEFINE_bool(report_bg_io_stats, false, "Measure times spents on I/Os while in compactions. "); DEFINE_bool(use_stderr_info_logger, false, "Write info logs to stderr instead of to LOG file. "); DEFINE_string(trace_file, "", "Trace workload to a file. "); DEFINE_double(trace_replay_fast_forward, 1.0, "Fast forward trace replay, must > 0.0."); DEFINE_int32(block_cache_trace_sampling_frequency, 1, "Block cache trace sampling frequency, termed s. It uses spatial " "downsampling and samples accesses to one out of s blocks."); DEFINE_int64( block_cache_trace_max_trace_file_size_in_bytes, uint64_t{64} * 1024 * 1024 * 1024, "The maximum block cache trace file size in bytes. Block cache accesses " "will not be logged if the trace file size exceeds this threshold. Default " "is 64 GB."); DEFINE_string(block_cache_trace_file, "", "Block cache trace file path."); DEFINE_int32(trace_replay_threads, 1, "The number of threads to replay, must >=1."); DEFINE_bool(io_uring_enabled, true, "If true, enable the use of IO uring if the platform supports it"); extern "C" bool RocksDbIOUringEnable() { return FLAGS_io_uring_enabled; } DEFINE_bool(adaptive_readahead, false, "carry forward internal auto readahead size from one file to next " "file at each level during iteration"); DEFINE_bool(rate_limit_user_ops, false, "When true use Env::IO_USER priority level to charge internal rate " "limiter for reads associated with user operations."); DEFINE_bool(file_checksum, false, "When true use FileChecksumGenCrc32cFactory for " "file_checksum_gen_factory."); DEFINE_bool(rate_limit_auto_wal_flush, false, "When true use Env::IO_USER priority level to charge internal rate " "limiter for automatic WAL flush (`Options::manual_wal_flush` == " "false) after the user write operation."); DEFINE_bool(async_io, false, "When set true, RocksDB does asynchronous reads for internal auto " "readahead prefetching."); DEFINE_bool(optimize_multiget_for_io, true, "When set true, RocksDB does asynchronous reads for SST files in " "multiple levels for MultiGet."); DEFINE_bool(charge_compression_dictionary_building_buffer, false, "Setting for " "CacheEntryRoleOptions::charged of " "CacheEntryRole::kCompressionDictionaryBuildingBuffer"); DEFINE_bool(charge_filter_construction, false, "Setting for " "CacheEntryRoleOptions::charged of " "CacheEntryRole::kFilterConstruction"); DEFINE_bool(charge_table_reader, false, "Setting for " "CacheEntryRoleOptions::charged of " "CacheEntryRole::kBlockBasedTableReader"); DEFINE_bool(charge_file_metadata, false, "Setting for " "CacheEntryRoleOptions::charged of " "CacheEntryRole::kFileMetadata"); DEFINE_bool(charge_blob_cache, false, "Setting for " "CacheEntryRoleOptions::charged of " "CacheEntryRole::kBlobCache"); DEFINE_uint64(backup_rate_limit, 0ull, "If non-zero, db_bench will rate limit reads and writes for DB " "backup. This " "is the global rate in ops/second."); DEFINE_uint64(restore_rate_limit, 0ull, "If non-zero, db_bench will rate limit reads and writes for DB " "restore. This " "is the global rate in ops/second."); DEFINE_string(backup_dir, "", "If not empty string, use the given dir for backup."); DEFINE_string(restore_dir, "", "If not empty string, use the given dir for restore."); DEFINE_uint64( initial_auto_readahead_size, ROCKSDB_NAMESPACE::BlockBasedTableOptions().initial_auto_readahead_size, "RocksDB does auto-readahead for iterators on noticing more than two reads " "for a table file if user doesn't provide readahead_size. The readahead " "size starts at initial_auto_readahead_size"); DEFINE_uint64( max_auto_readahead_size, ROCKSDB_NAMESPACE::BlockBasedTableOptions().max_auto_readahead_size, "Rocksdb implicit readahead starts at " "BlockBasedTableOptions.initial_auto_readahead_size and doubles on every " "additional read upto max_auto_readahead_size"); DEFINE_uint64( num_file_reads_for_auto_readahead, ROCKSDB_NAMESPACE::BlockBasedTableOptions() .num_file_reads_for_auto_readahead, "Rocksdb implicit readahead is enabled if reads are sequential and " "num_file_reads_for_auto_readahead indicates after how many sequential " "reads into that file internal auto prefetching should be start."); static enum ROCKSDB_NAMESPACE::CompressionType StringToCompressionType( const char* ctype) { assert(ctype); if (!strcasecmp(ctype, "none")) return ROCKSDB_NAMESPACE::kNoCompression; else if (!strcasecmp(ctype, "snappy")) return ROCKSDB_NAMESPACE::kSnappyCompression; else if (!strcasecmp(ctype, "zlib")) return ROCKSDB_NAMESPACE::kZlibCompression; else if (!strcasecmp(ctype, "bzip2")) return ROCKSDB_NAMESPACE::kBZip2Compression; else if (!strcasecmp(ctype, "lz4")) return ROCKSDB_NAMESPACE::kLZ4Compression; else if (!strcasecmp(ctype, "lz4hc")) return ROCKSDB_NAMESPACE::kLZ4HCCompression; else if (!strcasecmp(ctype, "xpress")) return ROCKSDB_NAMESPACE::kXpressCompression; else if (!strcasecmp(ctype, "zstd")) return ROCKSDB_NAMESPACE::kZSTD; else { fprintf(stderr, "Cannot parse compression type '%s'\n", ctype); exit(1); } } static std::string ColumnFamilyName(size_t i) { if (i == 0) { return ROCKSDB_NAMESPACE::kDefaultColumnFamilyName; } else { char name[100]; snprintf(name, sizeof(name), "column_family_name_%06zu", i); return std::string(name); } } DEFINE_string(compression_type, "snappy", "Algorithm to use to compress the database"); static enum ROCKSDB_NAMESPACE::CompressionType FLAGS_compression_type_e = ROCKSDB_NAMESPACE::kSnappyCompression; DEFINE_int64(sample_for_compression, 0, "Sample every N block for compression"); DEFINE_int32(compression_level, ROCKSDB_NAMESPACE::CompressionOptions().level, "Compression level. The meaning of this value is library-" "dependent. If unset, we try to use the default for the library " "specified in `--compression_type`"); DEFINE_int32(compression_max_dict_bytes, ROCKSDB_NAMESPACE::CompressionOptions().max_dict_bytes, "Maximum size of dictionary used to prime the compression " "library."); DEFINE_int32(compression_zstd_max_train_bytes, ROCKSDB_NAMESPACE::CompressionOptions().zstd_max_train_bytes, "Maximum size of training data passed to zstd's dictionary " "trainer."); DEFINE_int32(min_level_to_compress, -1, "If non-negative, compression starts" " from this level. Levels with number < min_level_to_compress are" " not compressed. Otherwise, apply compression_type to " "all levels."); DEFINE_int32(compression_parallel_threads, 1, "Number of threads for parallel compression."); DEFINE_uint64(compression_max_dict_buffer_bytes, ROCKSDB_NAMESPACE::CompressionOptions().max_dict_buffer_bytes, "Maximum bytes to buffer to collect samples for dictionary."); DEFINE_bool(compression_use_zstd_dict_trainer, ROCKSDB_NAMESPACE::CompressionOptions().use_zstd_dict_trainer, "If true, use ZSTD_TrainDictionary() to create dictionary, else" "use ZSTD_FinalizeDictionary() to create dictionary"); static bool ValidateTableCacheNumshardbits(const char* flagname, int32_t value) { if (0 >= value || value >= 20) { fprintf(stderr, "Invalid value for --%s: %d, must be 0 < val < 20\n", flagname, value); return false; } return true; } DEFINE_int32(table_cache_numshardbits, 4, ""); DEFINE_string(env_uri, "", "URI for registry Env lookup. Mutually exclusive with --fs_uri"); DEFINE_string(fs_uri, "", "URI for registry Filesystem lookup. Mutually exclusive" " with --env_uri." " Creates a default environment with the specified filesystem."); DEFINE_string(simulate_hybrid_fs_file, "", "File for Store Metadata for Simulate hybrid FS. Empty means " "disable the feature. Now, if it is set, last_level_temperature " "is set to kWarm."); DEFINE_int32(simulate_hybrid_hdd_multipliers, 1, "In simulate_hybrid_fs_file or simulate_hdd mode, how many HDDs " "are simulated."); DEFINE_bool(simulate_hdd, false, "Simulate read/write latency on HDD."); DEFINE_int64( preclude_last_level_data_seconds, 0, "Preclude the latest data from the last level. (Used for tiered storage)"); DEFINE_int64(preserve_internal_time_seconds, 0, "Preserve the internal time information which stores with SST."); static std::shared_ptr env_guard; static ROCKSDB_NAMESPACE::Env* FLAGS_env = ROCKSDB_NAMESPACE::Env::Default(); DEFINE_int64(stats_interval, 0, "Stats are reported every N operations when this is greater than " "zero. When 0 the interval grows over time."); DEFINE_int64(stats_interval_seconds, 0, "Report stats every N seconds. This overrides stats_interval when" " both are > 0."); DEFINE_int32(stats_per_interval, 0, "Reports additional stats per interval when this is greater than " "0."); DEFINE_uint64(slow_usecs, 1000000, "A message is printed for operations that take at least this " "many microseconds."); DEFINE_int64(report_interval_seconds, 0, "If greater than zero, it will write simple stats in CSV format " "to --report_file every N seconds"); DEFINE_string(report_file, "report.csv", "Filename where some simple stats are reported to (if " "--report_interval_seconds is bigger than 0)"); DEFINE_int32(thread_status_per_interval, 0, "Takes and report a snapshot of the current status of each thread" " when this is greater than 0."); DEFINE_int32(perf_level, ROCKSDB_NAMESPACE::PerfLevel::kDisable, "Level of perf collection"); DEFINE_uint64(soft_pending_compaction_bytes_limit, 64ull * 1024 * 1024 * 1024, "Slowdown writes if pending compaction bytes exceed this number"); DEFINE_uint64(hard_pending_compaction_bytes_limit, 128ull * 1024 * 1024 * 1024, "Stop writes if pending compaction bytes exceed this number"); DEFINE_uint64(delayed_write_rate, 8388608u, "Limited bytes allowed to DB when soft_rate_limit or " "level0_slowdown_writes_trigger triggers"); DEFINE_bool(enable_pipelined_write, true, "Allow WAL and memtable writes to be pipelined"); DEFINE_bool( unordered_write, false, "Enable the unordered write feature, which provides higher throughput but " "relaxes the guarantees around atomic reads and immutable snapshots"); DEFINE_bool(allow_concurrent_memtable_write, true, "Allow multi-writers to update mem tables in parallel."); DEFINE_double(experimental_mempurge_threshold, 0.0, "Maximum useful payload ratio estimate that triggers a mempurge " "(memtable garbage collection)."); DEFINE_bool(inplace_update_support, ROCKSDB_NAMESPACE::Options().inplace_update_support, "Support in-place memtable update for smaller or same-size values"); DEFINE_uint64(inplace_update_num_locks, ROCKSDB_NAMESPACE::Options().inplace_update_num_locks, "Number of RW locks to protect in-place memtable updates"); DEFINE_bool(enable_write_thread_adaptive_yield, true, "Use a yielding spin loop for brief writer thread waits."); DEFINE_uint64( write_thread_max_yield_usec, 100, "Maximum microseconds for enable_write_thread_adaptive_yield operation."); DEFINE_uint64(write_thread_slow_yield_usec, 3, "The threshold at which a slow yield is considered a signal that " "other processes or threads want the core."); DEFINE_uint64(rate_limiter_bytes_per_sec, 0, "Set options.rate_limiter value."); DEFINE_int64(rate_limiter_refill_period_us, 100 * 1000, "Set refill period on rate limiter."); DEFINE_bool(rate_limiter_auto_tuned, false, "Enable dynamic adjustment of rate limit according to demand for " "background I/O"); DEFINE_bool(sine_write_rate, false, "Use a sine wave write_rate_limit"); DEFINE_uint64( sine_write_rate_interval_milliseconds, 10000, "Interval of which the sine wave write_rate_limit is recalculated"); DEFINE_double(sine_a, 1, "A in f(x) = A sin(bx + c) + d"); DEFINE_double(sine_b, 1, "B in f(x) = A sin(bx + c) + d"); DEFINE_double(sine_c, 0, "C in f(x) = A sin(bx + c) + d"); DEFINE_double(sine_d, 1, "D in f(x) = A sin(bx + c) + d"); DEFINE_bool(rate_limit_bg_reads, false, "Use options.rate_limiter on compaction reads"); DEFINE_uint64( benchmark_write_rate_limit, 0, "If non-zero, db_bench will rate-limit the writes going into RocksDB. This " "is the global rate in bytes/second."); // the parameters of mix_graph DEFINE_double(keyrange_dist_a, 0.0, "The parameter 'a' of prefix average access distribution " "f(x)=a*exp(b*x)+c*exp(d*x)"); DEFINE_double(keyrange_dist_b, 0.0, "The parameter 'b' of prefix average access distribution " "f(x)=a*exp(b*x)+c*exp(d*x)"); DEFINE_double(keyrange_dist_c, 0.0, "The parameter 'c' of prefix average access distribution" "f(x)=a*exp(b*x)+c*exp(d*x)"); DEFINE_double(keyrange_dist_d, 0.0, "The parameter 'd' of prefix average access distribution" "f(x)=a*exp(b*x)+c*exp(d*x)"); DEFINE_int64(keyrange_num, 1, "The number of key ranges that are in the same prefix " "group, each prefix range will have its key access distribution"); DEFINE_double(key_dist_a, 0.0, "The parameter 'a' of key access distribution model f(x)=a*x^b"); DEFINE_double(key_dist_b, 0.0, "The parameter 'b' of key access distribution model f(x)=a*x^b"); DEFINE_double(value_theta, 0.0, "The parameter 'theta' of Generized Pareto Distribution " "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)"); // Use reasonable defaults based on the mixgraph paper DEFINE_double(value_k, 0.2615, "The parameter 'k' of Generized Pareto Distribution " "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)"); // Use reasonable defaults based on the mixgraph paper DEFINE_double(value_sigma, 25.45, "The parameter 'theta' of Generized Pareto Distribution " "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)"); DEFINE_double(iter_theta, 0.0, "The parameter 'theta' of Generized Pareto Distribution " "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)"); // Use reasonable defaults based on the mixgraph paper DEFINE_double(iter_k, 2.517, "The parameter 'k' of Generized Pareto Distribution " "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)"); // Use reasonable defaults based on the mixgraph paper DEFINE_double(iter_sigma, 14.236, "The parameter 'sigma' of Generized Pareto Distribution " "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)"); DEFINE_double(mix_get_ratio, 1.0, "The ratio of Get queries of mix_graph workload"); DEFINE_double(mix_put_ratio, 0.0, "The ratio of Put queries of mix_graph workload"); DEFINE_double(mix_seek_ratio, 0.0, "The ratio of Seek queries of mix_graph workload"); DEFINE_int64(mix_max_scan_len, 10000, "The max scan length of Iterator"); DEFINE_int64(mix_max_value_size, 1024, "The max value size of this workload"); DEFINE_double( sine_mix_rate_noise, 0.0, "Add the noise ratio to the sine rate, it is between 0.0 and 1.0"); DEFINE_bool(sine_mix_rate, false, "Enable the sine QPS control on the mix workload"); DEFINE_uint64( sine_mix_rate_interval_milliseconds, 10000, "Interval of which the sine wave read_rate_limit is recalculated"); DEFINE_int64(mix_accesses, -1, "The total query accesses of mix_graph workload"); DEFINE_uint64( benchmark_read_rate_limit, 0, "If non-zero, db_bench will rate-limit the reads from RocksDB. This " "is the global rate in ops/second."); DEFINE_uint64(max_compaction_bytes, ROCKSDB_NAMESPACE::Options().max_compaction_bytes, "Max bytes allowed in one compaction"); DEFINE_bool(readonly, false, "Run read only benchmarks."); DEFINE_bool(print_malloc_stats, false, "Print malloc stats to stdout after benchmarks finish."); DEFINE_bool(disable_auto_compactions, false, "Do not auto trigger compactions"); DEFINE_uint64(wal_ttl_seconds, 0, "Set the TTL for the WAL Files in seconds."); DEFINE_uint64(wal_size_limit_MB, 0, "Set the size limit for the WAL Files in MB."); DEFINE_uint64(max_total_wal_size, 0, "Set total max WAL size"); DEFINE_bool(mmap_read, ROCKSDB_NAMESPACE::Options().allow_mmap_reads, "Allow reads to occur via mmap-ing files"); DEFINE_bool(mmap_write, ROCKSDB_NAMESPACE::Options().allow_mmap_writes, "Allow writes to occur via mmap-ing files"); DEFINE_bool(use_direct_reads, ROCKSDB_NAMESPACE::Options().use_direct_reads, "Use O_DIRECT for reading data"); DEFINE_bool(use_direct_io_for_flush_and_compaction, ROCKSDB_NAMESPACE::Options().use_direct_io_for_flush_and_compaction, "Use O_DIRECT for background flush and compaction writes"); DEFINE_bool(advise_random_on_open, ROCKSDB_NAMESPACE::Options().advise_random_on_open, "Advise random access on table file open"); DEFINE_string(compaction_fadvice, "NORMAL", "Access pattern advice when a file is compacted"); static auto FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options().access_hint_on_compaction_start; DEFINE_bool(use_tailing_iterator, false, "Use tailing iterator to access a series of keys instead of get"); DEFINE_bool(use_adaptive_mutex, ROCKSDB_NAMESPACE::Options().use_adaptive_mutex, "Use adaptive mutex"); DEFINE_uint64(bytes_per_sync, ROCKSDB_NAMESPACE::Options().bytes_per_sync, "Allows OS to incrementally sync SST files to disk while they are" " being written, in the background. Issue one request for every" " bytes_per_sync written. 0 turns it off."); DEFINE_uint64(wal_bytes_per_sync, ROCKSDB_NAMESPACE::Options().wal_bytes_per_sync, "Allows OS to incrementally sync WAL files to disk while they are" " being written, in the background. Issue one request for every" " wal_bytes_per_sync written. 0 turns it off."); DEFINE_bool(use_single_deletes, true, "Use single deletes (used in RandomReplaceKeys only)."); DEFINE_double(stddev, 2000.0, "Standard deviation of normal distribution used for picking keys" " (used in RandomReplaceKeys only)."); DEFINE_int32(key_id_range, 100000, "Range of possible value of key id (used in TimeSeries only)."); DEFINE_string(expire_style, "none", "Style to remove expired time entries. Can be one of the options " "below: none (do not expired data), compaction_filter (use a " "compaction filter to remove expired data), delete (seek IDs and " "remove expired data) (used in TimeSeries only)."); DEFINE_uint64( time_range, 100000, "Range of timestamp that store in the database (used in TimeSeries" " only)."); DEFINE_int32(num_deletion_threads, 1, "Number of threads to do deletion (used in TimeSeries and delete " "expire_style only)."); DEFINE_int32(max_successive_merges, 0, "Maximum number of successive merge operations on a key in the " "memtable"); static bool ValidatePrefixSize(const char* flagname, int32_t value) { if (value < 0 || value >= 2000000000) { fprintf(stderr, "Invalid value for --%s: %d. 0<= PrefixSize <=2000000000\n", flagname, value); return false; } return true; } DEFINE_int32(prefix_size, 0, "control the prefix size for HashSkipList and plain table"); DEFINE_int64(keys_per_prefix, 0, "control average number of keys generated per prefix, 0 means no " "special handling of the prefix, i.e. use the prefix comes with " "the generated random number."); DEFINE_bool(total_order_seek, false, "Enable total order seek regardless of index format."); DEFINE_bool(prefix_same_as_start, false, "Enforce iterator to return keys with prefix same as seek key."); DEFINE_bool( seek_missing_prefix, false, "Iterator seek to keys with non-exist prefixes. Require prefix_size > 8"); DEFINE_int32(memtable_insert_with_hint_prefix_size, 0, "If non-zero, enable " "memtable insert with hint with the given prefix size."); DEFINE_bool(enable_io_prio, false, "Lower the background flush/compaction threads' IO priority"); DEFINE_bool(enable_cpu_prio, false, "Lower the background flush/compaction threads' CPU priority"); DEFINE_bool(identity_as_first_hash, false, "the first hash function of cuckoo table becomes an identity " "function. This is only valid when key is 8 bytes"); DEFINE_bool(dump_malloc_stats, true, "Dump malloc stats in LOG "); DEFINE_uint64(stats_dump_period_sec, ROCKSDB_NAMESPACE::Options().stats_dump_period_sec, "Gap between printing stats to log in seconds"); DEFINE_uint64(stats_persist_period_sec, ROCKSDB_NAMESPACE::Options().stats_persist_period_sec, "Gap between persisting stats in seconds"); DEFINE_bool(persist_stats_to_disk, ROCKSDB_NAMESPACE::Options().persist_stats_to_disk, "whether to persist stats to disk"); DEFINE_uint64(stats_history_buffer_size, ROCKSDB_NAMESPACE::Options().stats_history_buffer_size, "Max number of stats snapshots to keep in memory"); DEFINE_bool(avoid_flush_during_recovery, ROCKSDB_NAMESPACE::Options().avoid_flush_during_recovery, "If true, avoids flushing the recovered WAL data where possible."); DEFINE_int64(multiread_stride, 0, "Stride length for the keys in a MultiGet batch"); DEFINE_bool(multiread_batched, false, "Use the new MultiGet API"); DEFINE_string(memtablerep, "skip_list", ""); DEFINE_int64(hash_bucket_count, 1024 * 1024, "hash bucket count"); DEFINE_bool(use_plain_table, false, "if use plain table instead of block-based table format"); DEFINE_bool(use_cuckoo_table, false, "if use cuckoo table format"); DEFINE_double(cuckoo_hash_ratio, 0.9, "Hash ratio for Cuckoo SST table."); DEFINE_bool(use_hash_search, false, "if use kHashSearch instead of kBinarySearch. " "This is valid if only we use BlockTable"); DEFINE_string(merge_operator, "", "The merge operator to use with the database." "If a new merge operator is specified, be sure to use fresh" " database The possible merge operators are defined in" " utilities/merge_operators.h"); DEFINE_int32(skip_list_lookahead, 0, "Used with skip_list memtablerep; try linear search first for " "this many steps from the previous position"); DEFINE_bool(report_file_operations, false, "if report number of file operations"); DEFINE_bool(report_open_timing, false, "if report open timing"); DEFINE_int32(readahead_size, 0, "Iterator readahead size"); DEFINE_bool(read_with_latest_user_timestamp, true, "If true, always use the current latest timestamp for read. If " "false, choose a random timestamp from the past."); DEFINE_string(secondary_cache_uri, "", "Full URI for creating a custom secondary cache object"); static class std::shared_ptr secondary_cache; static const bool FLAGS_prefix_size_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_prefix_size, &ValidatePrefixSize); static const bool FLAGS_key_size_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_key_size, &ValidateKeySize); static const bool FLAGS_cache_numshardbits_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_cache_numshardbits, &ValidateCacheNumshardbits); static const bool FLAGS_readwritepercent_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_readwritepercent, &ValidateInt32Percent); DEFINE_int32(disable_seek_compaction, false, "Not used, left here for backwards compatibility"); DEFINE_bool(allow_data_in_errors, ROCKSDB_NAMESPACE::Options().allow_data_in_errors, "If true, allow logging data, e.g. key, value in LOG files."); static const bool FLAGS_deletepercent_dummy __attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_deletepercent, &ValidateInt32Percent); static const bool FLAGS_table_cache_numshardbits_dummy __attribute__((__unused__)) = RegisterFlagValidator( &FLAGS_table_cache_numshardbits, &ValidateTableCacheNumshardbits); DEFINE_uint32(write_batch_protection_bytes_per_key, 0, "Size of per-key-value checksum in each write batch. Currently " "only value 0 and 8 are supported."); DEFINE_uint32( memtable_protection_bytes_per_key, 0, "Enable memtable per key-value checksum protection. " "Each entry in memtable will be suffixed by a per key-value checksum. " "This options determines the size of such checksums. " "Supported values: 0, 1, 2, 4, 8."); DEFINE_uint32(block_protection_bytes_per_key, 0, "Enable block per key-value checksum protection. " "Supported values: 0, 1, 2, 4, 8."); DEFINE_bool(build_info, false, "Print the build info via GetRocksBuildInfoAsString"); DEFINE_bool(track_and_verify_wals_in_manifest, false, "If true, enable WAL tracking in the MANIFEST"); namespace ROCKSDB_NAMESPACE { namespace { static Status CreateMemTableRepFactory( const ConfigOptions& config_options, std::shared_ptr* factory) { Status s; if (!strcasecmp(FLAGS_memtablerep.c_str(), SkipListFactory::kNickName())) { factory->reset(new SkipListFactory(FLAGS_skip_list_lookahead)); } else if (!strcasecmp(FLAGS_memtablerep.c_str(), "prefix_hash")) { factory->reset(NewHashSkipListRepFactory(FLAGS_hash_bucket_count)); } else if (!strcasecmp(FLAGS_memtablerep.c_str(), VectorRepFactory::kNickName())) { factory->reset(new VectorRepFactory()); } else if (!strcasecmp(FLAGS_memtablerep.c_str(), "hash_linkedlist")) { factory->reset(NewHashLinkListRepFactory(FLAGS_hash_bucket_count)); } else { std::unique_ptr unique; s = MemTableRepFactory::CreateFromString(config_options, FLAGS_memtablerep, &unique); if (s.ok()) { factory->reset(unique.release()); } } return s; } } // namespace enum DistributionType : unsigned char { kFixed = 0, kUniform, kNormal }; static enum DistributionType FLAGS_value_size_distribution_type_e = kFixed; static enum DistributionType StringToDistributionType(const char* ctype) { assert(ctype); if (!strcasecmp(ctype, "fixed")) return kFixed; else if (!strcasecmp(ctype, "uniform")) return kUniform; else if (!strcasecmp(ctype, "normal")) return kNormal; fprintf(stdout, "Cannot parse distribution type '%s'\n", ctype); exit(1); } class BaseDistribution { public: BaseDistribution(unsigned int _min, unsigned int _max) : min_value_size_(_min), max_value_size_(_max) {} virtual ~BaseDistribution() {} unsigned int Generate() { auto val = Get(); if (NeedTruncate()) { val = std::max(min_value_size_, val); val = std::min(max_value_size_, val); } return val; } private: virtual unsigned int Get() = 0; virtual bool NeedTruncate() { return true; } unsigned int min_value_size_; unsigned int max_value_size_; }; class FixedDistribution : public BaseDistribution { public: FixedDistribution(unsigned int size) : BaseDistribution(size, size), size_(size) {} private: virtual unsigned int Get() override { return size_; } virtual bool NeedTruncate() override { return false; } unsigned int size_; }; class NormalDistribution : public BaseDistribution, public std::normal_distribution { public: NormalDistribution(unsigned int _min, unsigned int _max) : BaseDistribution(_min, _max), // 99.7% values within the range [min, max]. std::normal_distribution( (double)(_min + _max) / 2.0 /*mean*/, (double)(_max - _min) / 6.0 /*stddev*/), gen_(rd_()) {} private: virtual unsigned int Get() override { return static_cast((*this)(gen_)); } std::random_device rd_; std::mt19937 gen_; }; class UniformDistribution : public BaseDistribution, public std::uniform_int_distribution { public: UniformDistribution(unsigned int _min, unsigned int _max) : BaseDistribution(_min, _max), std::uniform_int_distribution(_min, _max), gen_(rd_()) {} private: virtual unsigned int Get() override { return (*this)(gen_); } virtual bool NeedTruncate() override { return false; } std::random_device rd_; std::mt19937 gen_; }; // Helper for quickly generating random data. class RandomGenerator { private: std::string data_; unsigned int pos_; std::unique_ptr dist_; public: RandomGenerator() { auto max_value_size = FLAGS_value_size_max; switch (FLAGS_value_size_distribution_type_e) { case kUniform: dist_.reset(new UniformDistribution(FLAGS_value_size_min, FLAGS_value_size_max)); break; case kNormal: dist_.reset( new NormalDistribution(FLAGS_value_size_min, FLAGS_value_size_max)); break; case kFixed: default: dist_.reset(new FixedDistribution(value_size)); max_value_size = value_size; } // We use a limited amount of data over and over again and ensure // that it is larger than the compression window (32KB), and also // large enough to serve all typical value sizes we want to write. Random rnd(301); std::string piece; while (data_.size() < (unsigned)std::max(1048576, max_value_size)) { // Add a short fragment that is as compressible as specified // by FLAGS_compression_ratio. test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece); data_.append(piece); } pos_ = 0; } Slice Generate(unsigned int len) { assert(len <= data_.size()); if (pos_ + len > data_.size()) { pos_ = 0; } pos_ += len; return Slice(data_.data() + pos_ - len, len); } Slice Generate() { auto len = dist_->Generate(); return Generate(len); } }; static void AppendWithSpace(std::string* str, Slice msg) { if (msg.empty()) return; if (!str->empty()) { str->push_back(' '); } str->append(msg.data(), msg.size()); } struct DBWithColumnFamilies { std::vector cfh; DB* db; OptimisticTransactionDB* opt_txn_db; std::atomic num_created; // Need to be updated after all the // new entries in cfh are set. size_t num_hot; // Number of column families to be queried at each moment. // After each CreateNewCf(), another num_hot number of new // Column families will be created and used to be queried. port::Mutex create_cf_mutex; // Only one thread can execute CreateNewCf() std::vector cfh_idx_to_prob; // ith index holds probability of operating // on cfh[i]. DBWithColumnFamilies() : db(nullptr) , opt_txn_db(nullptr) { cfh.clear(); num_created = 0; num_hot = 0; } DBWithColumnFamilies(const DBWithColumnFamilies& other) : cfh(other.cfh), db(other.db), opt_txn_db(other.opt_txn_db), num_created(other.num_created.load()), num_hot(other.num_hot), cfh_idx_to_prob(other.cfh_idx_to_prob) { } void DeleteDBs() { std::for_each(cfh.begin(), cfh.end(), [](ColumnFamilyHandle* cfhi) { delete cfhi; }); cfh.clear(); if (opt_txn_db) { delete opt_txn_db; opt_txn_db = nullptr; } else { delete db; db = nullptr; } } ColumnFamilyHandle* GetCfh(int64_t rand_num) { assert(num_hot > 0); size_t rand_offset = 0; if (!cfh_idx_to_prob.empty()) { assert(cfh_idx_to_prob.size() == num_hot); int sum = 0; while (sum + cfh_idx_to_prob[rand_offset] < rand_num % 100) { sum += cfh_idx_to_prob[rand_offset]; ++rand_offset; } assert(rand_offset < cfh_idx_to_prob.size()); } else { rand_offset = rand_num % num_hot; } return cfh[num_created.load(std::memory_order_acquire) - num_hot + rand_offset]; } // stage: assume CF from 0 to stage * num_hot has be created. Need to create // stage * num_hot + 1 to stage * (num_hot + 1). void CreateNewCf(ColumnFamilyOptions options, int64_t stage) { MutexLock l(&create_cf_mutex); if ((stage + 1) * num_hot <= num_created) { // Already created. return; } auto new_num_created = num_created + num_hot; assert(new_num_created <= cfh.size()); for (size_t i = num_created; i < new_num_created; i++) { Status s = db->CreateColumnFamily(options, ColumnFamilyName(i), &(cfh[i])); if (!s.ok()) { fprintf(stderr, "create column family error: %s\n", s.ToString().c_str()); abort(); } } num_created.store(new_num_created, std::memory_order_release); } }; // A class that reports stats to CSV file. class ReporterAgent { public: ReporterAgent(Env* env, const std::string& fname, uint64_t report_interval_secs) : env_(env), total_ops_done_(0), last_report_(0), report_interval_secs_(report_interval_secs), stop_(false) { auto s = env_->NewWritableFile(fname, &report_file_, EnvOptions()); if (s.ok()) { s = report_file_->Append(Header() + "\n"); } if (s.ok()) { s = report_file_->Flush(); } if (!s.ok()) { fprintf(stderr, "Can't open %s: %s\n", fname.c_str(), s.ToString().c_str()); abort(); } reporting_thread_ = port::Thread([&]() { SleepAndReport(); }); } ~ReporterAgent() { { std::unique_lock lk(mutex_); stop_ = true; stop_cv_.notify_all(); } reporting_thread_.join(); } // thread safe void ReportFinishedOps(int64_t num_ops) { total_ops_done_.fetch_add(num_ops); } private: std::string Header() const { return "secs_elapsed,interval_qps"; } void SleepAndReport() { auto* clock = env_->GetSystemClock().get(); auto time_started = clock->NowMicros(); while (true) { { std::unique_lock lk(mutex_); if (stop_ || stop_cv_.wait_for(lk, std::chrono::seconds(report_interval_secs_), [&]() { return stop_; })) { // stopping break; } // else -> timeout, which means time for a report! } auto total_ops_done_snapshot = total_ops_done_.load(); // round the seconds elapsed auto secs_elapsed = (clock->NowMicros() - time_started + kMicrosInSecond / 2) / kMicrosInSecond; std::string report = std::to_string(secs_elapsed) + "," + std::to_string(total_ops_done_snapshot - last_report_) + "\n"; auto s = report_file_->Append(report); if (s.ok()) { s = report_file_->Flush(); } if (!s.ok()) { fprintf(stderr, "Can't write to report file (%s), stopping the reporting\n", s.ToString().c_str()); break; } last_report_ = total_ops_done_snapshot; } } Env* env_; std::unique_ptr report_file_; std::atomic total_ops_done_; int64_t last_report_; const uint64_t report_interval_secs_; ROCKSDB_NAMESPACE::port::Thread reporting_thread_; std::mutex mutex_; // will notify on stop std::condition_variable stop_cv_; bool stop_; }; enum OperationType : unsigned char { kRead = 0, kWrite, kDelete, kSeek, kMerge, kUpdate, kCompress, kUncompress, kCrc, kHash, kOthers }; static std::unordered_map> OperationTypeString = {{kRead, "read"}, {kWrite, "write"}, {kDelete, "delete"}, {kSeek, "seek"}, {kMerge, "merge"}, {kUpdate, "update"}, {kCompress, "compress"}, {kCompress, "uncompress"}, {kCrc, "crc"}, {kHash, "hash"}, {kOthers, "op"}}; class CombinedStats; class Stats { private: SystemClock* clock_; int id_; uint64_t start_ = 0; uint64_t sine_interval_; uint64_t finish_; double seconds_; uint64_t done_; uint64_t last_report_done_; uint64_t next_report_; uint64_t bytes_; uint64_t last_op_finish_; uint64_t last_report_finish_; std::unordered_map, std::hash> hist_; std::string message_; bool exclude_from_merge_; ReporterAgent* reporter_agent_; // does not own friend class CombinedStats; public: Stats() : clock_(FLAGS_env->GetSystemClock().get()) { Start(-1); } void SetReporterAgent(ReporterAgent* reporter_agent) { reporter_agent_ = reporter_agent; } void Start(int id) { id_ = id; next_report_ = FLAGS_stats_interval ? FLAGS_stats_interval : 100; last_op_finish_ = start_; hist_.clear(); done_ = 0; last_report_done_ = 0; bytes_ = 0; seconds_ = 0; start_ = clock_->NowMicros(); sine_interval_ = clock_->NowMicros(); finish_ = start_; last_report_finish_ = start_; message_.clear(); // When set, stats from this thread won't be merged with others. exclude_from_merge_ = false; } void Merge(const Stats& other) { if (other.exclude_from_merge_) return; for (auto it = other.hist_.begin(); it != other.hist_.end(); ++it) { auto this_it = hist_.find(it->first); if (this_it != hist_.end()) { this_it->second->Merge(*(other.hist_.at(it->first))); } else { hist_.insert({it->first, it->second}); } } done_ += other.done_; bytes_ += other.bytes_; seconds_ += other.seconds_; if (other.start_ < start_) start_ = other.start_; if (other.finish_ > finish_) finish_ = other.finish_; // Just keep the messages from one thread. if (message_.empty()) message_ = other.message_; } void Stop() { finish_ = clock_->NowMicros(); seconds_ = (finish_ - start_) * 1e-6; } void AddMessage(Slice msg) { AppendWithSpace(&message_, msg); } void SetId(int id) { id_ = id; } void SetExcludeFromMerge() { exclude_from_merge_ = true; } void PrintThreadStatus() { std::vector thread_list; FLAGS_env->GetThreadList(&thread_list); fprintf(stderr, "\n%18s %10s %12s %20s %13s %45s %12s %s\n", "ThreadID", "ThreadType", "cfName", "Operation", "ElapsedTime", "Stage", "State", "OperationProperties"); int64_t current_time = 0; clock_->GetCurrentTime(¤t_time).PermitUncheckedError(); for (auto ts : thread_list) { fprintf(stderr, "%18" PRIu64 " %10s %12s %20s %13s %45s %12s", ts.thread_id, ThreadStatus::GetThreadTypeName(ts.thread_type).c_str(), ts.cf_name.c_str(), ThreadStatus::GetOperationName(ts.operation_type).c_str(), ThreadStatus::MicrosToString(ts.op_elapsed_micros).c_str(), ThreadStatus::GetOperationStageName(ts.operation_stage).c_str(), ThreadStatus::GetStateName(ts.state_type).c_str()); auto op_properties = ThreadStatus::InterpretOperationProperties( ts.operation_type, ts.op_properties); for (const auto& op_prop : op_properties) { fprintf(stderr, " %s %" PRIu64 " |", op_prop.first.c_str(), op_prop.second); } fprintf(stderr, "\n"); } } void ResetSineInterval() { sine_interval_ = clock_->NowMicros(); } uint64_t GetSineInterval() { return sine_interval_; } uint64_t GetStart() { return start_; } void ResetLastOpTime() { // Set to now to avoid latency from calls to SleepForMicroseconds. last_op_finish_ = clock_->NowMicros(); } void FinishedOps(DBWithColumnFamilies* db_with_cfh, DB* db, int64_t num_ops, enum OperationType op_type = kOthers) { if (reporter_agent_) { reporter_agent_->ReportFinishedOps(num_ops); } if (FLAGS_histogram) { uint64_t now = clock_->NowMicros(); uint64_t micros = now - last_op_finish_; if (hist_.find(op_type) == hist_.end()) { auto hist_temp = std::make_shared(); hist_.insert({op_type, std::move(hist_temp)}); } hist_[op_type]->Add(micros); if (micros >= FLAGS_slow_usecs && !FLAGS_stats_interval) { fprintf(stderr, "long op: %" PRIu64 " micros%30s\r", micros, ""); fflush(stderr); } last_op_finish_ = now; } done_ += num_ops; if (done_ >= next_report_ && FLAGS_progress_reports) { if (!FLAGS_stats_interval) { if (next_report_ < 1000) next_report_ += 100; else if (next_report_ < 5000) next_report_ += 500; else if (next_report_ < 10000) next_report_ += 1000; else if (next_report_ < 50000) next_report_ += 5000; else if (next_report_ < 100000) next_report_ += 10000; else if (next_report_ < 500000) next_report_ += 50000; else next_report_ += 100000; fprintf(stderr, "... finished %" PRIu64 " ops%30s\r", done_, ""); } else { uint64_t now = clock_->NowMicros(); int64_t usecs_since_last = now - last_report_finish_; // Determine whether to print status where interval is either // each N operations or each N seconds. if (FLAGS_stats_interval_seconds && usecs_since_last < (FLAGS_stats_interval_seconds * 1000000)) { // Don't check again for this many operations. next_report_ += FLAGS_stats_interval; } else { fprintf(stderr, "%s ... thread %d: (%" PRIu64 ",%" PRIu64 ") ops and " "(%.1f,%.1f) ops/second in (%.6f,%.6f) seconds\n", clock_->TimeToString(now / 1000000).c_str(), id_, done_ - last_report_done_, done_, (done_ - last_report_done_) / (usecs_since_last / 1000000.0), done_ / ((now - start_) / 1000000.0), (now - last_report_finish_) / 1000000.0, (now - start_) / 1000000.0); if (id_ == 0 && FLAGS_stats_per_interval) { std::string stats; if (db_with_cfh && db_with_cfh->num_created.load()) { for (size_t i = 0; i < db_with_cfh->num_created.load(); ++i) { if (db->GetProperty(db_with_cfh->cfh[i], "rocksdb.cfstats", &stats)) fprintf(stderr, "%s\n", stats.c_str()); if (FLAGS_show_table_properties) { for (int level = 0; level < FLAGS_num_levels; ++level) { if (db->GetProperty( db_with_cfh->cfh[i], "rocksdb.aggregated-table-properties-at-level" + std::to_string(level), &stats)) { if (stats.find("# entries=0") == std::string::npos) { fprintf(stderr, "Level[%d]: %s\n", level, stats.c_str()); } } } } } } else if (db) { if (db->GetProperty("rocksdb.stats", &stats)) { fprintf(stderr, "%s", stats.c_str()); } if (db->GetProperty("rocksdb.num-running-compactions", &stats)) { fprintf(stderr, "num-running-compactions: %s\n", stats.c_str()); } if (db->GetProperty("rocksdb.num-running-flushes", &stats)) { fprintf(stderr, "num-running-flushes: %s\n\n", stats.c_str()); } if (FLAGS_show_table_properties) { for (int level = 0; level < FLAGS_num_levels; ++level) { if (db->GetProperty( "rocksdb.aggregated-table-properties-at-level" + std::to_string(level), &stats)) { if (stats.find("# entries=0") == std::string::npos) { fprintf(stderr, "Level[%d]: %s\n", level, stats.c_str()); } } } } } } next_report_ += FLAGS_stats_interval; last_report_finish_ = now; last_report_done_ = done_; } } if (id_ == 0 && FLAGS_thread_status_per_interval) { PrintThreadStatus(); } fflush(stderr); } } void AddBytes(int64_t n) { bytes_ += n; } void Report(const Slice& name) { // Pretend at least one op was done in case we are running a benchmark // that does not call FinishedOps(). if (done_ < 1) done_ = 1; std::string extra; double elapsed = (finish_ - start_) * 1e-6; if (bytes_ > 0) { // Rate is computed on actual elapsed time, not the sum of per-thread // elapsed times. char rate[100]; snprintf(rate, sizeof(rate), "%6.1f MB/s", (bytes_ / 1048576.0) / elapsed); extra = rate; } AppendWithSpace(&extra, message_); double throughput = (double)done_ / elapsed; fprintf(stdout, "%-12s : %11.3f micros/op %ld ops/sec %.3f seconds %" PRIu64 " operations;%s%s\n", name.ToString().c_str(), seconds_ * 1e6 / done_, (long)throughput, elapsed, done_, (extra.empty() ? "" : " "), extra.c_str()); if (FLAGS_histogram) { for (auto it = hist_.begin(); it != hist_.end(); ++it) { fprintf(stdout, "Microseconds per %s:\n%s\n", OperationTypeString[it->first].c_str(), it->second->ToString().c_str()); } } if (FLAGS_report_file_operations) { auto* counted_fs = FLAGS_env->GetFileSystem()->CheckedCast(); assert(counted_fs); fprintf(stdout, "%s", counted_fs->PrintCounters().c_str()); counted_fs->ResetCounters(); } fflush(stdout); } }; class CombinedStats { public: void AddStats(const Stats& stat) { uint64_t total_ops = stat.done_; uint64_t total_bytes_ = stat.bytes_; double elapsed; if (total_ops < 1) { total_ops = 1; } elapsed = (stat.finish_ - stat.start_) * 1e-6; throughput_ops_.emplace_back(total_ops / elapsed); if (total_bytes_ > 0) { double mbs = (total_bytes_ / 1048576.0); throughput_mbs_.emplace_back(mbs / elapsed); } } void Report(const std::string& bench_name) { if (throughput_ops_.size() < 2) { // skip if there are not enough samples return; } const char* name = bench_name.c_str(); int num_runs = static_cast(throughput_ops_.size()); if (throughput_mbs_.size() == throughput_ops_.size()) { fprintf(stdout, "%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec; %6.1f (\xC2\xB1 " "%.1f) MB/sec\n", name, num_runs, static_cast(CalcAvg(throughput_ops_)), static_cast(CalcConfidence95(throughput_ops_)), CalcAvg(throughput_mbs_), CalcConfidence95(throughput_mbs_)); } else { fprintf(stdout, "%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec\n", name, num_runs, static_cast(CalcAvg(throughput_ops_)), static_cast(CalcConfidence95(throughput_ops_))); } } void ReportWithConfidenceIntervals(const std::string& bench_name) { if (throughput_ops_.size() < 2) { // skip if there are not enough samples return; } const char* name = bench_name.c_str(); int num_runs = static_cast(throughput_ops_.size()); int ops_avg = static_cast(CalcAvg(throughput_ops_)); int ops_confidence_95 = static_cast(CalcConfidence95(throughput_ops_)); if (throughput_mbs_.size() == throughput_ops_.size()) { double mbs_avg = CalcAvg(throughput_mbs_); double mbs_confidence_95 = CalcConfidence95(throughput_mbs_); fprintf(stdout, "%s [CI95 %d runs] : (%d, %d) ops/sec; (%.1f, %.1f) MB/sec\n", name, num_runs, ops_avg - ops_confidence_95, ops_avg + ops_confidence_95, mbs_avg - mbs_confidence_95, mbs_avg + mbs_confidence_95); } else { fprintf(stdout, "%s [CI95 %d runs] : (%d, %d) ops/sec\n", name, num_runs, ops_avg - ops_confidence_95, ops_avg + ops_confidence_95); } } void ReportFinal(const std::string& bench_name) { if (throughput_ops_.size() < 2) { // skip if there are not enough samples return; } const char* name = bench_name.c_str(); int num_runs = static_cast(throughput_ops_.size()); if (throughput_mbs_.size() == throughput_ops_.size()) { // \xC2\xB1 is +/- character in UTF-8 fprintf(stdout, "%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec; %6.1f (\xC2\xB1 " "%.1f) MB/sec\n" "%s [MEDIAN %d runs] : %d ops/sec; %6.1f MB/sec\n", name, num_runs, static_cast(CalcAvg(throughput_ops_)), static_cast(CalcConfidence95(throughput_ops_)), CalcAvg(throughput_mbs_), CalcConfidence95(throughput_mbs_), name, num_runs, static_cast(CalcMedian(throughput_ops_)), CalcMedian(throughput_mbs_)); } else { fprintf(stdout, "%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec\n" "%s [MEDIAN %d runs] : %d ops/sec\n", name, num_runs, static_cast(CalcAvg(throughput_ops_)), static_cast(CalcConfidence95(throughput_ops_)), name, num_runs, static_cast(CalcMedian(throughput_ops_))); } } private: double CalcAvg(std::vector& data) { double avg = 0; for (double x : data) { avg += x; } avg = avg / data.size(); return avg; } // Calculates 95% CI assuming a normal distribution of samples. // Samples are not from a normal distribution, but it still // provides useful approximation. double CalcConfidence95(std::vector& data) { assert(data.size() > 1); double avg = CalcAvg(data); double std_error = CalcStdDev(data, avg) / std::sqrt(data.size()); // Z score for the 97.5 percentile // see https://en.wikipedia.org/wiki/1.96 return 1.959964 * std_error; } double CalcMedian(std::vector& data) { assert(data.size() > 0); std::sort(data.begin(), data.end()); size_t mid = data.size() / 2; if (data.size() % 2 == 1) { // Odd number of entries return data[mid]; } else { // Even number of entries return (data[mid] + data[mid - 1]) / 2; } } double CalcStdDev(std::vector& data, double average) { assert(data.size() > 1); double squared_sum = 0.0; for (double x : data) { squared_sum += std::pow(x - average, 2); } // using samples count - 1 following Bessel's correction // see https://en.wikipedia.org/wiki/Bessel%27s_correction return std::sqrt(squared_sum / (data.size() - 1)); } std::vector throughput_ops_; std::vector throughput_mbs_; }; class TimestampEmulator { private: std::atomic timestamp_; public: TimestampEmulator() : timestamp_(0) {} uint64_t Get() const { return timestamp_.load(); } void Inc() { timestamp_++; } Slice Allocate(char* scratch) { // TODO: support larger timestamp sizes assert(FLAGS_user_timestamp_size == 8); assert(scratch); uint64_t ts = timestamp_.fetch_add(1); EncodeFixed64(scratch, ts); return Slice(scratch, FLAGS_user_timestamp_size); } Slice GetTimestampForRead(Random64& rand, char* scratch) { assert(FLAGS_user_timestamp_size == 8); assert(scratch); if (FLAGS_read_with_latest_user_timestamp) { return Allocate(scratch); } // Choose a random timestamp from the past. uint64_t ts = rand.Next() % Get(); EncodeFixed64(scratch, ts); return Slice(scratch, FLAGS_user_timestamp_size); } }; // State shared by all concurrent executions of the same benchmark. struct SharedState { port::Mutex mu; port::CondVar cv; int total; int perf_level; std::shared_ptr write_rate_limiter; std::shared_ptr read_rate_limiter; // Each thread goes through the following states: // (1) initializing // (2) waiting for others to be initialized // (3) running // (4) done long num_initialized; long num_done; bool start; SharedState() : cv(&mu), perf_level(FLAGS_perf_level) {} }; // Per-thread state for concurrent executions of the same benchmark. struct ThreadState { int tid; // 0..n-1 when running in n threads Random64 rand; // Has different seeds for different threads Stats stats; SharedState* shared; explicit ThreadState(int index, int my_seed) : tid(index), rand(*seed_base + my_seed) {} }; class Duration { public: Duration(uint64_t max_seconds, int64_t max_ops, int64_t ops_per_stage = 0) { max_seconds_ = max_seconds; max_ops_ = max_ops; ops_per_stage_ = (ops_per_stage > 0) ? ops_per_stage : max_ops; ops_ = 0; start_at_ = FLAGS_env->NowMicros(); } int64_t GetStage() { return std::min(ops_, max_ops_ - 1) / ops_per_stage_; } bool Done(int64_t increment) { if (increment <= 0) increment = 1; // avoid Done(0) and infinite loops ops_ += increment; if (max_seconds_) { // Recheck every appx 1000 ops (exact iff increment is factor of 1000) auto granularity = FLAGS_ops_between_duration_checks; if ((ops_ / granularity) != ((ops_ - increment) / granularity)) { uint64_t now = FLAGS_env->NowMicros(); return ((now - start_at_) / 1000000) >= max_seconds_; } else { return false; } } else { return ops_ > max_ops_; } } private: uint64_t max_seconds_; int64_t max_ops_; int64_t ops_per_stage_; int64_t ops_; uint64_t start_at_; }; class Benchmark { private: std::shared_ptr cache_; std::shared_ptr compressed_cache_; std::shared_ptr prefix_extractor_; DBWithColumnFamilies db_; std::vector multi_dbs_; int64_t num_; int key_size_; int user_timestamp_size_; int prefix_size_; int total_thread_count_; int64_t keys_per_prefix_; int64_t entries_per_batch_; int64_t writes_before_delete_range_; int64_t writes_per_range_tombstone_; int64_t range_tombstone_width_; int64_t max_num_range_tombstones_; ReadOptions read_options_; WriteOptions write_options_; Options open_options_; // keep options around to properly destroy db later TraceOptions trace_options_; TraceOptions block_cache_trace_options_; int64_t reads_; int64_t deletes_; double read_random_exp_range_; int64_t writes_; int64_t readwrites_; int64_t merge_keys_; bool report_file_operations_; bool use_blob_db_; // Stacked BlobDB bool read_operands_; // read via GetMergeOperands() std::vector keys_; class ErrorHandlerListener : public EventListener { public: ErrorHandlerListener() : mutex_(), cv_(&mutex_), no_auto_recovery_(false), recovery_complete_(false) {} ~ErrorHandlerListener() override {} const char* Name() const override { return kClassName(); } static const char* kClassName() { return "ErrorHandlerListener"; } void OnErrorRecoveryBegin(BackgroundErrorReason /*reason*/, Status /*bg_error*/, bool* auto_recovery) override { if (*auto_recovery && no_auto_recovery_) { *auto_recovery = false; } } void OnErrorRecoveryCompleted(Status /*old_bg_error*/) override { InstrumentedMutexLock l(&mutex_); recovery_complete_ = true; cv_.SignalAll(); } bool WaitForRecovery(uint64_t abs_time_us) { InstrumentedMutexLock l(&mutex_); if (!recovery_complete_) { cv_.TimedWait(abs_time_us); } if (recovery_complete_) { recovery_complete_ = false; return true; } return false; } void EnableAutoRecovery(bool enable = true) { no_auto_recovery_ = !enable; } private: InstrumentedMutex mutex_; InstrumentedCondVar cv_; bool no_auto_recovery_; bool recovery_complete_; }; std::shared_ptr listener_; std::unique_ptr mock_app_clock_; bool SanityCheck() { if (FLAGS_compression_ratio > 1) { fprintf(stderr, "compression_ratio should be between 0 and 1\n"); return false; } return true; } inline bool CompressSlice(const CompressionInfo& compression_info, const Slice& input, std::string* compressed) { constexpr uint32_t compress_format_version = 2; return CompressData(input, compression_info, compress_format_version, compressed); } void PrintHeader(const Options& options) { PrintEnvironment(); fprintf(stdout, "Keys: %d bytes each (+ %d bytes user-defined timestamp)\n", FLAGS_key_size, FLAGS_user_timestamp_size); auto avg_value_size = FLAGS_value_size; if (FLAGS_value_size_distribution_type_e == kFixed) { fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n", avg_value_size, static_cast(avg_value_size * FLAGS_compression_ratio + 0.5)); } else { avg_value_size = (FLAGS_value_size_min + FLAGS_value_size_max) / 2; fprintf(stdout, "Values: %d avg bytes each (%d bytes after compression)\n", avg_value_size, static_cast(avg_value_size * FLAGS_compression_ratio + 0.5)); fprintf(stdout, "Values Distribution: %s (min: %d, max: %d)\n", FLAGS_value_size_distribution_type.c_str(), FLAGS_value_size_min, FLAGS_value_size_max); } fprintf(stdout, "Entries: %" PRIu64 "\n", num_); fprintf(stdout, "Prefix: %d bytes\n", FLAGS_prefix_size); fprintf(stdout, "Keys per prefix: %" PRIu64 "\n", keys_per_prefix_); fprintf(stdout, "RawSize: %.1f MB (estimated)\n", ((static_cast(FLAGS_key_size + avg_value_size) * num_) / 1048576.0)); fprintf( stdout, "FileSize: %.1f MB (estimated)\n", (((FLAGS_key_size + avg_value_size * FLAGS_compression_ratio) * num_) / 1048576.0)); fprintf(stdout, "Write rate: %" PRIu64 " bytes/second\n", FLAGS_benchmark_write_rate_limit); fprintf(stdout, "Read rate: %" PRIu64 " ops/second\n", FLAGS_benchmark_read_rate_limit); if (FLAGS_enable_numa) { fprintf(stderr, "Running in NUMA enabled mode.\n"); #ifndef NUMA fprintf(stderr, "NUMA is not defined in the system.\n"); exit(1); #else if (numa_available() == -1) { fprintf(stderr, "NUMA is not supported by the system.\n"); exit(1); } #endif } auto compression = CompressionTypeToString(FLAGS_compression_type_e); fprintf(stdout, "Compression: %s\n", compression.c_str()); fprintf(stdout, "Compression sampling rate: %" PRId64 "\n", FLAGS_sample_for_compression); if (options.memtable_factory != nullptr) { fprintf(stdout, "Memtablerep: %s\n", options.memtable_factory->GetId().c_str()); } fprintf(stdout, "Perf Level: %d\n", FLAGS_perf_level); PrintWarnings(compression.c_str()); fprintf(stdout, "------------------------------------------------\n"); } void PrintWarnings(const char* compression) { #if defined(__GNUC__) && !defined(__OPTIMIZE__) fprintf( stdout, "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n"); #endif #ifndef NDEBUG fprintf(stdout, "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n"); #endif if (FLAGS_compression_type_e != ROCKSDB_NAMESPACE::kNoCompression) { // The test string should not be too small. const int len = FLAGS_block_size; std::string input_str(len, 'y'); std::string compressed; CompressionOptions opts; CompressionContext context(FLAGS_compression_type_e); CompressionInfo info(opts, context, CompressionDict::GetEmptyDict(), FLAGS_compression_type_e, FLAGS_sample_for_compression); bool result = CompressSlice(info, Slice(input_str), &compressed); if (!result) { fprintf(stdout, "WARNING: %s compression is not enabled\n", compression); } else if (compressed.size() >= input_str.size()) { fprintf(stdout, "WARNING: %s compression is not effective\n", compression); } } } // Current the following isn't equivalent to OS_LINUX. #if defined(__linux) static Slice TrimSpace(Slice s) { unsigned int start = 0; while (start < s.size() && isspace(s[start])) { start++; } unsigned int limit = static_cast(s.size()); while (limit > start && isspace(s[limit - 1])) { limit--; } return Slice(s.data() + start, limit - start); } #endif void PrintEnvironment() { fprintf(stderr, "RocksDB: version %s\n", GetRocksVersionAsString(true).c_str()); #if defined(__linux) || defined(__APPLE__) || defined(__FreeBSD__) time_t now = time(nullptr); char buf[52]; // Lint complains about ctime() usage, so replace it with ctime_r(). The // requirement is to provide a buffer which is at least 26 bytes. fprintf(stderr, "Date: %s", ctime_r(&now, buf)); // ctime_r() adds newline #if defined(__linux) FILE* cpuinfo = fopen("/proc/cpuinfo", "r"); if (cpuinfo != nullptr) { char line[1000]; int num_cpus = 0; std::string cpu_type; std::string cache_size; while (fgets(line, sizeof(line), cpuinfo) != nullptr) { const char* sep = strchr(line, ':'); if (sep == nullptr) { continue; } Slice key = TrimSpace(Slice(line, sep - 1 - line)); Slice val = TrimSpace(Slice(sep + 1)); if (key == "model name") { ++num_cpus; cpu_type = val.ToString(); } else if (key == "cache size") { cache_size = val.ToString(); } } fclose(cpuinfo); fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str()); fprintf(stderr, "CPUCache: %s\n", cache_size.c_str()); } #elif defined(__APPLE__) struct host_basic_info h; size_t hlen = HOST_BASIC_INFO_COUNT; if (host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&h, (uint32_t*)&hlen) == KERN_SUCCESS) { std::string cpu_type; std::string cache_size; size_t hcache_size; hlen = sizeof(hcache_size); if (sysctlbyname("hw.cachelinesize", &hcache_size, &hlen, NULL, 0) == 0) { cache_size = std::to_string(hcache_size); } switch (h.cpu_type) { case CPU_TYPE_X86_64: cpu_type = "x86_64"; break; case CPU_TYPE_ARM64: cpu_type = "arm64"; break; default: break; } fprintf(stderr, "CPU: %d * %s\n", h.max_cpus, cpu_type.c_str()); fprintf(stderr, "CPUCache: %s\n", cache_size.c_str()); } #elif defined(__FreeBSD__) int ncpus; size_t len = sizeof(ncpus); int mib[2] = {CTL_HW, HW_NCPU}; if (sysctl(mib, 2, &ncpus, &len, nullptr, 0) == 0) { char cpu_type[16]; len = sizeof(cpu_type) - 1; mib[1] = HW_MACHINE; if (sysctl(mib, 2, cpu_type, &len, nullptr, 0) == 0) cpu_type[len] = 0; fprintf(stderr, "CPU: %d * %s\n", ncpus, cpu_type); // no programmatic way to get the cache line size except on PPC } #endif #endif } static bool KeyExpired(const TimestampEmulator* timestamp_emulator, const Slice& key) { const char* pos = key.data(); pos += 8; uint64_t timestamp = 0; if (port::kLittleEndian) { int bytes_to_fill = 8; for (int i = 0; i < bytes_to_fill; ++i) { timestamp |= (static_cast(static_cast(pos[i])) << ((bytes_to_fill - i - 1) << 3)); } } else { memcpy(×tamp, pos, sizeof(timestamp)); } return timestamp_emulator->Get() - timestamp > FLAGS_time_range; } class ExpiredTimeFilter : public CompactionFilter { public: explicit ExpiredTimeFilter( const std::shared_ptr& timestamp_emulator) : timestamp_emulator_(timestamp_emulator) {} bool Filter(int /*level*/, const Slice& key, const Slice& /*existing_value*/, std::string* /*new_value*/, bool* /*value_changed*/) const override { return KeyExpired(timestamp_emulator_.get(), key); } const char* Name() const override { return "ExpiredTimeFilter"; } private: std::shared_ptr timestamp_emulator_; }; class KeepFilter : public CompactionFilter { public: bool Filter(int /*level*/, const Slice& /*key*/, const Slice& /*value*/, std::string* /*new_value*/, bool* /*value_changed*/) const override { return false; } const char* Name() const override { return "KeepFilter"; } }; static std::shared_ptr GetCacheAllocator() { std::shared_ptr allocator; if (FLAGS_use_cache_jemalloc_no_dump_allocator) { JemallocAllocatorOptions jemalloc_options; if (!NewJemallocNodumpAllocator(jemalloc_options, &allocator).ok()) { fprintf(stderr, "JemallocNodumpAllocator not supported.\n"); exit(1); } } else if (FLAGS_use_cache_memkind_kmem_allocator) { #ifdef MEMKIND allocator = std::make_shared(); #else fprintf(stderr, "Memkind library is not linked with the binary.\n"); exit(1); #endif } return allocator; } static int32_t GetCacheHashSeed() { // For a fixed Cache seed, need a non-negative int32 return static_cast(*seed_base) & 0x7fffffff; } static std::shared_ptr NewCache(int64_t capacity) { if (capacity <= 0) { return nullptr; } if (FLAGS_cache_type == "clock_cache") { fprintf(stderr, "Old clock cache implementation has been removed.\n"); exit(1); } else if (FLAGS_cache_type == "hyper_clock_cache") { HyperClockCacheOptions hcco{ static_cast(capacity), static_cast(FLAGS_block_size) /*estimated_entry_charge*/, FLAGS_cache_numshardbits}; hcco.hash_seed = GetCacheHashSeed(); return hcco.MakeSharedCache(); } else if (FLAGS_cache_type == "lru_cache") { LRUCacheOptions opts( static_cast(capacity), FLAGS_cache_numshardbits, false /*strict_capacity_limit*/, FLAGS_cache_high_pri_pool_ratio, GetCacheAllocator(), kDefaultToAdaptiveMutex, kDefaultCacheMetadataChargePolicy, FLAGS_cache_low_pri_pool_ratio); opts.hash_seed = GetCacheHashSeed(); if (!FLAGS_secondary_cache_uri.empty()) { Status s = SecondaryCache::CreateFromString( ConfigOptions(), FLAGS_secondary_cache_uri, &secondary_cache); if (secondary_cache == nullptr) { fprintf( stderr, "No secondary cache registered matching string: %s status=%s\n", FLAGS_secondary_cache_uri.c_str(), s.ToString().c_str()); exit(1); } opts.secondary_cache = secondary_cache; } if (FLAGS_use_compressed_secondary_cache) { CompressedSecondaryCacheOptions secondary_cache_opts; secondary_cache_opts.capacity = FLAGS_compressed_secondary_cache_size; secondary_cache_opts.num_shard_bits = FLAGS_compressed_secondary_cache_numshardbits; secondary_cache_opts.high_pri_pool_ratio = FLAGS_compressed_secondary_cache_high_pri_pool_ratio; secondary_cache_opts.low_pri_pool_ratio = FLAGS_compressed_secondary_cache_low_pri_pool_ratio; secondary_cache_opts.compression_type = FLAGS_compressed_secondary_cache_compression_type_e; secondary_cache_opts.compress_format_version = FLAGS_compressed_secondary_cache_compress_format_version; opts.secondary_cache = NewCompressedSecondaryCache(secondary_cache_opts); } return opts.MakeSharedCache(); } else { fprintf(stderr, "Cache type not supported."); exit(1); } } public: Benchmark() : cache_(NewCache(FLAGS_cache_size)), compressed_cache_(NewCache(FLAGS_compressed_cache_size)), prefix_extractor_(FLAGS_prefix_size != 0 ? NewFixedPrefixTransform(FLAGS_prefix_size) : nullptr), num_(FLAGS_num), key_size_(FLAGS_key_size), user_timestamp_size_(FLAGS_user_timestamp_size), prefix_size_(FLAGS_prefix_size), total_thread_count_(0), keys_per_prefix_(FLAGS_keys_per_prefix), entries_per_batch_(1), reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads), read_random_exp_range_(0.0), writes_(FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes), readwrites_( (FLAGS_writes < 0 && FLAGS_reads < 0) ? FLAGS_num : ((FLAGS_writes > FLAGS_reads) ? FLAGS_writes : FLAGS_reads)), merge_keys_(FLAGS_merge_keys < 0 ? FLAGS_num : FLAGS_merge_keys), report_file_operations_(FLAGS_report_file_operations), use_blob_db_(FLAGS_use_blob_db), // Stacked BlobDB read_operands_(false) { // use simcache instead of cache if (FLAGS_simcache_size >= 0) { if (FLAGS_cache_numshardbits >= 1) { cache_ = NewSimCache(cache_, FLAGS_simcache_size, FLAGS_cache_numshardbits); } else { cache_ = NewSimCache(cache_, FLAGS_simcache_size, 0); } } if (report_file_operations_) { FLAGS_env = new CompositeEnvWrapper( FLAGS_env, std::make_shared(FLAGS_env->GetFileSystem())); } if (FLAGS_prefix_size > FLAGS_key_size) { fprintf(stderr, "prefix size is larger than key size"); exit(1); } std::vector files; FLAGS_env->GetChildren(FLAGS_db, &files); for (size_t i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("heap-")) { FLAGS_env->DeleteFile(FLAGS_db + "/" + files[i]); } } if (!FLAGS_use_existing_db) { Options options; options.env = FLAGS_env; if (!FLAGS_wal_dir.empty()) { options.wal_dir = FLAGS_wal_dir; } if (use_blob_db_) { // Stacked BlobDB blob_db::DestroyBlobDB(FLAGS_db, options, blob_db::BlobDBOptions()); } DestroyDB(FLAGS_db, options); if (!FLAGS_wal_dir.empty()) { FLAGS_env->DeleteDir(FLAGS_wal_dir); } if (FLAGS_num_multi_db > 1) { FLAGS_env->CreateDir(FLAGS_db); if (!FLAGS_wal_dir.empty()) { FLAGS_env->CreateDir(FLAGS_wal_dir); } } } listener_.reset(new ErrorHandlerListener()); if (user_timestamp_size_ > 0) { mock_app_clock_.reset(new TimestampEmulator()); } } void DeleteDBs() { db_.DeleteDBs(); for (const DBWithColumnFamilies& dbwcf : multi_dbs_) { delete dbwcf.db; } } ~Benchmark() { DeleteDBs(); if (cache_.get() != nullptr) { // Clear cache reference first open_options_.write_buffer_manager.reset(); // this will leak, but we're shutting down so nobody cares cache_->DisownData(); } } Slice AllocateKey(std::unique_ptr* key_guard) { char* data = new char[key_size_]; const char* const_data = data; key_guard->reset(const_data); return Slice(key_guard->get(), key_size_); } // Generate key according to the given specification and random number. // The resulting key will have the following format: // - If keys_per_prefix_ is positive, extra trailing bytes are either cut // off or padded with '0'. // The prefix value is derived from key value. // ---------------------------- // | prefix 00000 | key 00000 | // ---------------------------- // // - If keys_per_prefix_ is 0, the key is simply a binary representation of // random number followed by trailing '0's // ---------------------------- // | key 00000 | // ---------------------------- void GenerateKeyFromInt(uint64_t v, int64_t num_keys, Slice* key) { if (!keys_.empty()) { assert(FLAGS_use_existing_keys); assert(keys_.size() == static_cast(num_keys)); assert(v < static_cast(num_keys)); *key = keys_[v]; return; } char* start = const_cast(key->data()); char* pos = start; if (keys_per_prefix_ > 0) { int64_t num_prefix = num_keys / keys_per_prefix_; int64_t prefix = v % num_prefix; int bytes_to_fill = std::min(prefix_size_, 8); if (port::kLittleEndian) { for (int i = 0; i < bytes_to_fill; ++i) { pos[i] = (prefix >> ((bytes_to_fill - i - 1) << 3)) & 0xFF; } } else { memcpy(pos, static_cast(&prefix), bytes_to_fill); } if (prefix_size_ > 8) { // fill the rest with 0s memset(pos + 8, '0', prefix_size_ - 8); } pos += prefix_size_; } int bytes_to_fill = std::min(key_size_ - static_cast(pos - start), 8); if (port::kLittleEndian) { for (int i = 0; i < bytes_to_fill; ++i) { pos[i] = (v >> ((bytes_to_fill - i - 1) << 3)) & 0xFF; } } else { memcpy(pos, static_cast(&v), bytes_to_fill); } pos += bytes_to_fill; if (key_size_ > pos - start) { memset(pos, '0', key_size_ - (pos - start)); } } void GenerateKeyFromIntForSeek(uint64_t v, int64_t num_keys, Slice* key) { GenerateKeyFromInt(v, num_keys, key); if (FLAGS_seek_missing_prefix) { assert(prefix_size_ > 8); char* key_ptr = const_cast(key->data()); // This rely on GenerateKeyFromInt filling paddings with '0's. // Putting a '1' will create a non-existing prefix. key_ptr[8] = '1'; } } std::string GetPathForMultiple(std::string base_name, size_t id) { if (!base_name.empty()) { #ifndef OS_WIN if (base_name.back() != '/') { base_name += '/'; } #else if (base_name.back() != '\\') { base_name += '\\'; } #endif } return base_name + std::to_string(id); } void VerifyDBFromDB(std::string& truth_db_name) { DBWithColumnFamilies truth_db; auto s = DB::OpenForReadOnly(open_options_, truth_db_name, &truth_db.db); if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } ReadOptions ro; ro.total_order_seek = true; std::unique_ptr truth_iter(truth_db.db->NewIterator(ro)); std::unique_ptr db_iter(db_.db->NewIterator(ro)); // Verify that all the key/values in truth_db are retrivable in db with // ::Get fprintf(stderr, "Verifying db >= truth_db with ::Get...\n"); for (truth_iter->SeekToFirst(); truth_iter->Valid(); truth_iter->Next()) { std::string value; s = db_.db->Get(ro, truth_iter->key(), &value); assert(s.ok()); // TODO(myabandeh): provide debugging hints assert(Slice(value) == truth_iter->value()); } // Verify that the db iterator does not give any extra key/value fprintf(stderr, "Verifying db == truth_db...\n"); for (db_iter->SeekToFirst(), truth_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next(), truth_iter->Next()) { assert(truth_iter->Valid()); assert(truth_iter->value() == db_iter->value()); } // No more key should be left unchecked in truth_db assert(!truth_iter->Valid()); fprintf(stderr, "...Verified\n"); } void ErrorExit() { DeleteDBs(); exit(1); } void Run() { if (!SanityCheck()) { ErrorExit(); } Open(&open_options_); PrintHeader(open_options_); std::stringstream benchmark_stream(FLAGS_benchmarks); std::string name; std::unique_ptr filter; while (std::getline(benchmark_stream, name, ',')) { // Sanitize parameters num_ = FLAGS_num; reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads); writes_ = (FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes); deletes_ = (FLAGS_deletes < 0 ? FLAGS_num : FLAGS_deletes); value_size = FLAGS_value_size; key_size_ = FLAGS_key_size; entries_per_batch_ = FLAGS_batch_size; writes_before_delete_range_ = FLAGS_writes_before_delete_range; writes_per_range_tombstone_ = FLAGS_writes_per_range_tombstone; range_tombstone_width_ = FLAGS_range_tombstone_width; max_num_range_tombstones_ = FLAGS_max_num_range_tombstones; write_options_ = WriteOptions(); read_random_exp_range_ = FLAGS_read_random_exp_range; if (FLAGS_sync) { write_options_.sync = true; } write_options_.disableWAL = FLAGS_disable_wal; write_options_.rate_limiter_priority = FLAGS_rate_limit_auto_wal_flush ? Env::IO_USER : Env::IO_TOTAL; read_options_ = ReadOptions(FLAGS_verify_checksum, true); read_options_.total_order_seek = FLAGS_total_order_seek; read_options_.prefix_same_as_start = FLAGS_prefix_same_as_start; read_options_.rate_limiter_priority = FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL; read_options_.tailing = FLAGS_use_tailing_iterator; read_options_.readahead_size = FLAGS_readahead_size; read_options_.adaptive_readahead = FLAGS_adaptive_readahead; read_options_.async_io = FLAGS_async_io; read_options_.optimize_multiget_for_io = FLAGS_optimize_multiget_for_io; void (Benchmark::*method)(ThreadState*) = nullptr; void (Benchmark::*post_process_method)() = nullptr; bool fresh_db = false; int num_threads = FLAGS_threads; int num_repeat = 1; int num_warmup = 0; if (!name.empty() && *name.rbegin() == ']') { auto it = name.find('['); if (it == std::string::npos) { fprintf(stderr, "unknown benchmark arguments '%s'\n", name.c_str()); ErrorExit(); } std::string args = name.substr(it + 1); args.resize(args.size() - 1); name.resize(it); std::string bench_arg; std::stringstream args_stream(args); while (std::getline(args_stream, bench_arg, '-')) { if (bench_arg.empty()) { continue; } if (bench_arg[0] == 'X') { // Repeat the benchmark n times std::string num_str = bench_arg.substr(1); num_repeat = std::stoi(num_str); } else if (bench_arg[0] == 'W') { // Warm up the benchmark for n times std::string num_str = bench_arg.substr(1); num_warmup = std::stoi(num_str); } } } // Both fillseqdeterministic and filluniquerandomdeterministic // fill the levels except the max level with UNIQUE_RANDOM // and fill the max level with fillseq and filluniquerandom, respectively if (name == "fillseqdeterministic" || name == "filluniquerandomdeterministic") { if (!FLAGS_disable_auto_compactions) { fprintf(stderr, "Please disable_auto_compactions in FillDeterministic " "benchmark\n"); ErrorExit(); } if (num_threads > 1) { fprintf(stderr, "filldeterministic multithreaded not supported" ", use 1 thread\n"); num_threads = 1; } fresh_db = true; if (name == "fillseqdeterministic") { method = &Benchmark::WriteSeqDeterministic; } else { method = &Benchmark::WriteUniqueRandomDeterministic; } } else if (name == "fillseq") { fresh_db = true; method = &Benchmark::WriteSeq; } else if (name == "fillbatch") { fresh_db = true; entries_per_batch_ = 1000; method = &Benchmark::WriteSeq; } else if (name == "fillrandom") { fresh_db = true; method = &Benchmark::WriteRandom; } else if (name == "filluniquerandom" || name == "fillanddeleteuniquerandom") { fresh_db = true; if (num_threads > 1) { fprintf(stderr, "filluniquerandom and fillanddeleteuniquerandom " "multithreaded not supported, use 1 thread"); num_threads = 1; } method = &Benchmark::WriteUniqueRandom; } else if (name == "overwrite") { method = &Benchmark::WriteRandom; } else if (name == "fillsync") { fresh_db = true; num_ /= 1000; write_options_.sync = true; method = &Benchmark::WriteRandom; } else if (name == "fill100K") { fresh_db = true; num_ /= 1000; value_size = 100 * 1000; method = &Benchmark::WriteRandom; } else if (name == "readseq") { method = &Benchmark::ReadSequential; } else if (name == "readtorowcache") { if (!FLAGS_use_existing_keys || !FLAGS_row_cache_size) { fprintf(stderr, "Please set use_existing_keys to true and specify a " "row cache size in readtorowcache benchmark\n"); ErrorExit(); } method = &Benchmark::ReadToRowCache; } else if (name == "readtocache") { method = &Benchmark::ReadSequential; num_threads = 1; reads_ = num_; } else if (name == "readreverse") { method = &Benchmark::ReadReverse; } else if (name == "readrandom") { if (FLAGS_multiread_stride) { fprintf(stderr, "entries_per_batch = %" PRIi64 "\n", entries_per_batch_); } method = &Benchmark::ReadRandom; } else if (name == "readrandomfast") { method = &Benchmark::ReadRandomFast; } else if (name == "multireadrandom") { fprintf(stderr, "entries_per_batch = %" PRIi64 "\n", entries_per_batch_); method = &Benchmark::MultiReadRandom; } else if (name == "multireadwhilewriting") { fprintf(stderr, "entries_per_batch = %" PRIi64 "\n", entries_per_batch_); num_threads++; method = &Benchmark::MultiReadWhileWriting; } else if (name == "approximatesizerandom") { fprintf(stderr, "entries_per_batch = %" PRIi64 "\n", entries_per_batch_); method = &Benchmark::ApproximateSizeRandom; } else if (name == "mixgraph") { method = &Benchmark::MixGraph; } else if (name == "readmissing") { ++key_size_; method = &Benchmark::ReadRandom; } else if (name == "newiterator") { method = &Benchmark::IteratorCreation; } else if (name == "newiteratorwhilewriting") { num_threads++; // Add extra thread for writing method = &Benchmark::IteratorCreationWhileWriting; } else if (name == "seekrandom") { method = &Benchmark::SeekRandom; } else if (name == "seekrandomwhilewriting") { num_threads++; // Add extra thread for writing method = &Benchmark::SeekRandomWhileWriting; } else if (name == "seekrandomwhilemerging") { num_threads++; // Add extra thread for merging method = &Benchmark::SeekRandomWhileMerging; } else if (name == "readrandomsmall") { reads_ /= 1000; method = &Benchmark::ReadRandom; } else if (name == "deleteseq") { method = &Benchmark::DeleteSeq; } else if (name == "deleterandom") { method = &Benchmark::DeleteRandom; } else if (name == "readwhilewriting") { num_threads++; // Add extra thread for writing method = &Benchmark::ReadWhileWriting; } else if (name == "readwhilemerging") { num_threads++; // Add extra thread for writing method = &Benchmark::ReadWhileMerging; } else if (name == "readwhilescanning") { num_threads++; // Add extra thread for scaning method = &Benchmark::ReadWhileScanning; } else if (name == "readrandomwriterandom") { method = &Benchmark::ReadRandomWriteRandom; } else if (name == "readrandommergerandom") { if (FLAGS_merge_operator.empty()) { fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n", name.c_str()); ErrorExit(); } method = &Benchmark::ReadRandomMergeRandom; } else if (name == "updaterandom") { method = &Benchmark::UpdateRandom; } else if (name == "xorupdaterandom") { method = &Benchmark::XORUpdateRandom; } else if (name == "appendrandom") { method = &Benchmark::AppendRandom; } else if (name == "mergerandom") { if (FLAGS_merge_operator.empty()) { fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n", name.c_str()); exit(1); } method = &Benchmark::MergeRandom; } else if (name == "randomwithverify") { method = &Benchmark::RandomWithVerify; } else if (name == "fillseekseq") { method = &Benchmark::WriteSeqSeekSeq; } else if (name == "compact") { method = &Benchmark::Compact; } else if (name == "compactall") { CompactAll(); } else if (name == "compact0") { CompactLevel(0); } else if (name == "compact1") { CompactLevel(1); } else if (name == "waitforcompaction") { WaitForCompaction(); } else if (name == "flush") { Flush(); } else if (name == "crc32c") { method = &Benchmark::Crc32c; } else if (name == "xxhash") { method = &Benchmark::xxHash; } else if (name == "xxhash64") { method = &Benchmark::xxHash64; } else if (name == "xxh3") { method = &Benchmark::xxh3; } else if (name == "acquireload") { method = &Benchmark::AcquireLoad; } else if (name == "compress") { method = &Benchmark::Compress; } else if (name == "uncompress") { method = &Benchmark::Uncompress; } else if (name == "randomtransaction") { method = &Benchmark::RandomTransaction; post_process_method = &Benchmark::RandomTransactionVerify; } else if (name == "randomreplacekeys") { fresh_db = true; method = &Benchmark::RandomReplaceKeys; } else if (name == "timeseries") { timestamp_emulator_.reset(new TimestampEmulator()); if (FLAGS_expire_style == "compaction_filter") { filter.reset(new ExpiredTimeFilter(timestamp_emulator_)); fprintf(stdout, "Compaction filter is used to remove expired data"); open_options_.compaction_filter = filter.get(); } fresh_db = true; method = &Benchmark::TimeSeries; } else if (name == "block_cache_entry_stats") { // DB::Properties::kBlockCacheEntryStats PrintStats("rocksdb.block-cache-entry-stats"); } else if (name == "stats") { PrintStats("rocksdb.stats"); } else if (name == "resetstats") { ResetStats(); } else if (name == "verify") { VerifyDBFromDB(FLAGS_truth_db); } else if (name == "levelstats") { PrintStats("rocksdb.levelstats"); } else if (name == "memstats") { std::vector keys{"rocksdb.num-immutable-mem-table", "rocksdb.cur-size-active-mem-table", "rocksdb.cur-size-all-mem-tables", "rocksdb.size-all-mem-tables", "rocksdb.num-entries-active-mem-table", "rocksdb.num-entries-imm-mem-tables"}; PrintStats(keys); } else if (name == "sstables") { PrintStats("rocksdb.sstables"); } else if (name == "stats_history") { PrintStatsHistory(); } else if (name == "replay") { if (num_threads > 1) { fprintf(stderr, "Multi-threaded replay is not yet supported\n"); ErrorExit(); } if (FLAGS_trace_file == "") { fprintf(stderr, "Please set --trace_file to be replayed from\n"); ErrorExit(); } method = &Benchmark::Replay; } else if (name == "getmergeoperands") { method = &Benchmark::GetMergeOperands; } else if (name == "verifychecksum") { method = &Benchmark::VerifyChecksum; } else if (name == "verifyfilechecksums") { method = &Benchmark::VerifyFileChecksums; } else if (name == "readrandomoperands") { read_operands_ = true; method = &Benchmark::ReadRandom; } else if (name == "backup") { method = &Benchmark::Backup; } else if (name == "restore") { method = &Benchmark::Restore; } else if (!name.empty()) { // No error message for empty name fprintf(stderr, "unknown benchmark '%s'\n", name.c_str()); ErrorExit(); } if (fresh_db) { if (FLAGS_use_existing_db) { fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n", name.c_str()); method = nullptr; } else { if (db_.db != nullptr) { db_.DeleteDBs(); DestroyDB(FLAGS_db, open_options_); } Options options = open_options_; for (size_t i = 0; i < multi_dbs_.size(); i++) { delete multi_dbs_[i].db; if (!open_options_.wal_dir.empty()) { options.wal_dir = GetPathForMultiple(open_options_.wal_dir, i); } DestroyDB(GetPathForMultiple(FLAGS_db, i), options); } multi_dbs_.clear(); } Open(&open_options_); // use open_options for the last accessed } if (method != nullptr) { fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str()); if (name == "backup") { std::cout << "Backup path: [" << FLAGS_backup_dir << "]" << std::endl; } else if (name == "restore") { std::cout << "Backup path: [" << FLAGS_backup_dir << "]" << std::endl; std::cout << "Restore path: [" << FLAGS_restore_dir << "]" << std::endl; } // A trace_file option can be provided both for trace and replay // operations. But db_bench does not support tracing and replaying at // the same time, for now. So, start tracing only when it is not a // replay. if (FLAGS_trace_file != "" && name != "replay") { std::unique_ptr trace_writer; Status s = NewFileTraceWriter(FLAGS_env, EnvOptions(), FLAGS_trace_file, &trace_writer); if (!s.ok()) { fprintf(stderr, "Encountered an error starting a trace, %s\n", s.ToString().c_str()); ErrorExit(); } s = db_.db->StartTrace(trace_options_, std::move(trace_writer)); if (!s.ok()) { fprintf(stderr, "Encountered an error starting a trace, %s\n", s.ToString().c_str()); ErrorExit(); } fprintf(stdout, "Tracing the workload to: [%s]\n", FLAGS_trace_file.c_str()); } // Start block cache tracing. if (!FLAGS_block_cache_trace_file.empty()) { // Sanity checks. if (FLAGS_block_cache_trace_sampling_frequency <= 0) { fprintf(stderr, "Block cache trace sampling frequency must be higher than " "0.\n"); ErrorExit(); } if (FLAGS_block_cache_trace_max_trace_file_size_in_bytes <= 0) { fprintf(stderr, "The maximum file size for block cache tracing must be " "higher than 0.\n"); ErrorExit(); } block_cache_trace_options_.max_trace_file_size = FLAGS_block_cache_trace_max_trace_file_size_in_bytes; block_cache_trace_options_.sampling_frequency = FLAGS_block_cache_trace_sampling_frequency; std::unique_ptr block_cache_trace_writer; Status s = NewFileTraceWriter(FLAGS_env, EnvOptions(), FLAGS_block_cache_trace_file, &block_cache_trace_writer); if (!s.ok()) { fprintf(stderr, "Encountered an error when creating trace writer, %s\n", s.ToString().c_str()); ErrorExit(); } s = db_.db->StartBlockCacheTrace(block_cache_trace_options_, std::move(block_cache_trace_writer)); if (!s.ok()) { fprintf( stderr, "Encountered an error when starting block cache tracing, %s\n", s.ToString().c_str()); ErrorExit(); } fprintf(stdout, "Tracing block cache accesses to: [%s]\n", FLAGS_block_cache_trace_file.c_str()); } if (num_warmup > 0) { printf("Warming up benchmark by running %d times\n", num_warmup); } for (int i = 0; i < num_warmup; i++) { RunBenchmark(num_threads, name, method); } if (num_repeat > 1) { printf("Running benchmark for %d times\n", num_repeat); } CombinedStats combined_stats; for (int i = 0; i < num_repeat; i++) { Stats stats = RunBenchmark(num_threads, name, method); combined_stats.AddStats(stats); if (FLAGS_confidence_interval_only) { combined_stats.ReportWithConfidenceIntervals(name); } else { combined_stats.Report(name); } } if (num_repeat > 1) { combined_stats.ReportFinal(name); } } if (post_process_method != nullptr) { (this->*post_process_method)(); } } if (secondary_update_thread_) { secondary_update_stopped_.store(1, std::memory_order_relaxed); secondary_update_thread_->join(); secondary_update_thread_.reset(); } if (name != "replay" && FLAGS_trace_file != "") { Status s = db_.db->EndTrace(); if (!s.ok()) { fprintf(stderr, "Encountered an error ending the trace, %s\n", s.ToString().c_str()); } } if (!FLAGS_block_cache_trace_file.empty()) { Status s = db_.db->EndBlockCacheTrace(); if (!s.ok()) { fprintf(stderr, "Encountered an error ending the block cache tracing, %s\n", s.ToString().c_str()); } } if (FLAGS_statistics) { fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str()); } if (FLAGS_simcache_size >= 0) { fprintf( stdout, "SIMULATOR CACHE STATISTICS:\n%s\n", static_cast_with_check(cache_.get())->ToString().c_str()); } if (FLAGS_use_secondary_db) { fprintf(stdout, "Secondary instance updated %" PRIu64 " times.\n", secondary_db_updates_); } } private: std::shared_ptr timestamp_emulator_; std::unique_ptr secondary_update_thread_; std::atomic secondary_update_stopped_{0}; uint64_t secondary_db_updates_ = 0; struct ThreadArg { Benchmark* bm; SharedState* shared; ThreadState* thread; void (Benchmark::*method)(ThreadState*); }; static void ThreadBody(void* v) { ThreadArg* arg = reinterpret_cast(v); SharedState* shared = arg->shared; ThreadState* thread = arg->thread; { MutexLock l(&shared->mu); shared->num_initialized++; if (shared->num_initialized >= shared->total) { shared->cv.SignalAll(); } while (!shared->start) { shared->cv.Wait(); } } SetPerfLevel(static_cast(shared->perf_level)); perf_context.EnablePerLevelPerfContext(); thread->stats.Start(thread->tid); (arg->bm->*(arg->method))(thread); if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) { thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") + get_perf_context()->ToString()); } thread->stats.Stop(); { MutexLock l(&shared->mu); shared->num_done++; if (shared->num_done >= shared->total) { shared->cv.SignalAll(); } } } Stats RunBenchmark(int n, Slice name, void (Benchmark::*method)(ThreadState*)) { SharedState shared; shared.total = n; shared.num_initialized = 0; shared.num_done = 0; shared.start = false; if (FLAGS_benchmark_write_rate_limit > 0) { shared.write_rate_limiter.reset( NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit)); } if (FLAGS_benchmark_read_rate_limit > 0) { shared.read_rate_limiter.reset(NewGenericRateLimiter( FLAGS_benchmark_read_rate_limit, 100000 /* refill_period_us */, 10 /* fairness */, RateLimiter::Mode::kReadsOnly)); } std::unique_ptr reporter_agent; if (FLAGS_report_interval_seconds > 0) { reporter_agent.reset(new ReporterAgent(FLAGS_env, FLAGS_report_file, FLAGS_report_interval_seconds)); } ThreadArg* arg = new ThreadArg[n]; for (int i = 0; i < n; i++) { #ifdef NUMA if (FLAGS_enable_numa) { // Performs a local allocation of memory to threads in numa node. int n_nodes = numa_num_task_nodes(); // Number of nodes in NUMA. numa_exit_on_error = 1; int numa_node = i % n_nodes; bitmask* nodes = numa_allocate_nodemask(); numa_bitmask_clearall(nodes); numa_bitmask_setbit(nodes, numa_node); // numa_bind() call binds the process to the node and these // properties are passed on to the thread that is created in // StartThread method called later in the loop. numa_bind(nodes); numa_set_strict(1); numa_free_nodemask(nodes); } #endif arg[i].bm = this; arg[i].method = method; arg[i].shared = &shared; total_thread_count_++; arg[i].thread = new ThreadState(i, total_thread_count_); arg[i].thread->stats.SetReporterAgent(reporter_agent.get()); arg[i].thread->shared = &shared; FLAGS_env->StartThread(ThreadBody, &arg[i]); } shared.mu.Lock(); while (shared.num_initialized < n) { shared.cv.Wait(); } shared.start = true; shared.cv.SignalAll(); while (shared.num_done < n) { shared.cv.Wait(); } shared.mu.Unlock(); // Stats for some threads can be excluded. Stats merge_stats; for (int i = 0; i < n; i++) { merge_stats.Merge(arg[i].thread->stats); } merge_stats.Report(name); for (int i = 0; i < n; i++) { delete arg[i].thread; } delete[] arg; return merge_stats; } template static inline void ChecksumBenchmark(FnType fn, ThreadState* thread, Args... args) { const int size = FLAGS_block_size; // use --block_size option for db_bench std::string labels = "(" + std::to_string(FLAGS_block_size) + " per op)"; const char* label = labels.c_str(); std::string data(size, 'x'); uint64_t bytes = 0; uint32_t val = 0; while (bytes < 5000U * uint64_t{1048576}) { // ~5GB val += static_cast(fn(data.data(), size, args...)); thread->stats.FinishedOps(nullptr, nullptr, 1, kOpType); bytes += size; } // Print so result is not dead fprintf(stderr, "... val=0x%x\r", static_cast(val)); thread->stats.AddBytes(bytes); thread->stats.AddMessage(label); } void Crc32c(ThreadState* thread) { ChecksumBenchmark(crc32c::Value, thread); } void xxHash(ThreadState* thread) { ChecksumBenchmark(XXH32, thread, /*seed*/ 0); } void xxHash64(ThreadState* thread) { ChecksumBenchmark(XXH64, thread, /*seed*/ 0); } void xxh3(ThreadState* thread) { ChecksumBenchmark(XXH3_64bits, thread); } void AcquireLoad(ThreadState* thread) { int dummy; std::atomic ap(&dummy); int count = 0; void* ptr = nullptr; thread->stats.AddMessage("(each op is 1000 loads)"); while (count < 100000) { for (int i = 0; i < 1000; i++) { ptr = ap.load(std::memory_order_acquire); } count++; thread->stats.FinishedOps(nullptr, nullptr, 1, kOthers); } if (ptr == nullptr) exit(1); // Disable unused variable warning. } void Compress(ThreadState* thread) { RandomGenerator gen; Slice input = gen.Generate(FLAGS_block_size); int64_t bytes = 0; int64_t produced = 0; bool ok = true; std::string compressed; CompressionOptions opts; CompressionContext context(FLAGS_compression_type_e); CompressionInfo info(opts, context, CompressionDict::GetEmptyDict(), FLAGS_compression_type_e, FLAGS_sample_for_compression); // Compress 1G while (ok && bytes < int64_t(1) << 30) { compressed.clear(); ok = CompressSlice(info, input, &compressed); produced += compressed.size(); bytes += input.size(); thread->stats.FinishedOps(nullptr, nullptr, 1, kCompress); } if (!ok) { thread->stats.AddMessage("(compression failure)"); } else { char buf[340]; snprintf(buf, sizeof(buf), "(output: %.1f%%)", (produced * 100.0) / bytes); thread->stats.AddMessage(buf); thread->stats.AddBytes(bytes); } } void Uncompress(ThreadState* thread) { RandomGenerator gen; Slice input = gen.Generate(FLAGS_block_size); std::string compressed; CompressionContext compression_ctx(FLAGS_compression_type_e); CompressionOptions compression_opts; CompressionInfo compression_info( compression_opts, compression_ctx, CompressionDict::GetEmptyDict(), FLAGS_compression_type_e, FLAGS_sample_for_compression); UncompressionContext uncompression_ctx(FLAGS_compression_type_e); UncompressionInfo uncompression_info(uncompression_ctx, UncompressionDict::GetEmptyDict(), FLAGS_compression_type_e); bool ok = CompressSlice(compression_info, input, &compressed); int64_t bytes = 0; size_t uncompressed_size = 0; while (ok && bytes < 1024 * 1048576) { constexpr uint32_t compress_format_version = 2; CacheAllocationPtr uncompressed = UncompressData( uncompression_info, compressed.data(), compressed.size(), &uncompressed_size, compress_format_version); ok = uncompressed.get() != nullptr; bytes += input.size(); thread->stats.FinishedOps(nullptr, nullptr, 1, kUncompress); } if (!ok) { thread->stats.AddMessage("(compression failure)"); } else { thread->stats.AddBytes(bytes); } } // Returns true if the options is initialized from the specified // options file. bool InitializeOptionsFromFile(Options* opts) { printf("Initializing RocksDB Options from the specified file\n"); DBOptions db_opts; std::vector cf_descs; if (FLAGS_options_file != "") { ConfigOptions config_opts; config_opts.ignore_unknown_options = false; config_opts.input_strings_escaped = true; config_opts.env = FLAGS_env; auto s = LoadOptionsFromFile(config_opts, FLAGS_options_file, &db_opts, &cf_descs); db_opts.env = FLAGS_env; if (s.ok()) { *opts = Options(db_opts, cf_descs[0].options); return true; } fprintf(stderr, "Unable to load options file %s --- %s\n", FLAGS_options_file.c_str(), s.ToString().c_str()); exit(1); } return false; } void InitializeOptionsFromFlags(Options* opts) { printf("Initializing RocksDB Options from command-line flags\n"); Options& options = *opts; ConfigOptions config_options(options); config_options.ignore_unsupported_options = false; assert(db_.db == nullptr); options.env = FLAGS_env; options.wal_dir = FLAGS_wal_dir; options.dump_malloc_stats = FLAGS_dump_malloc_stats; options.stats_dump_period_sec = static_cast(FLAGS_stats_dump_period_sec); options.stats_persist_period_sec = static_cast(FLAGS_stats_persist_period_sec); options.persist_stats_to_disk = FLAGS_persist_stats_to_disk; options.stats_history_buffer_size = static_cast(FLAGS_stats_history_buffer_size); options.avoid_flush_during_recovery = FLAGS_avoid_flush_during_recovery; options.compression_opts.level = FLAGS_compression_level; options.compression_opts.max_dict_bytes = FLAGS_compression_max_dict_bytes; options.compression_opts.zstd_max_train_bytes = FLAGS_compression_zstd_max_train_bytes; options.compression_opts.parallel_threads = FLAGS_compression_parallel_threads; options.compression_opts.max_dict_buffer_bytes = FLAGS_compression_max_dict_buffer_bytes; options.compression_opts.use_zstd_dict_trainer = FLAGS_compression_use_zstd_dict_trainer; options.max_open_files = FLAGS_open_files; if (FLAGS_cost_write_buffer_to_cache || FLAGS_db_write_buffer_size != 0) { options.write_buffer_manager.reset( new WriteBufferManager(FLAGS_db_write_buffer_size, cache_)); } options.arena_block_size = FLAGS_arena_block_size; options.write_buffer_size = FLAGS_write_buffer_size; options.max_write_buffer_number = FLAGS_max_write_buffer_number; options.min_write_buffer_number_to_merge = FLAGS_min_write_buffer_number_to_merge; options.max_write_buffer_number_to_maintain = FLAGS_max_write_buffer_number_to_maintain; options.max_write_buffer_size_to_maintain = FLAGS_max_write_buffer_size_to_maintain; options.max_background_jobs = FLAGS_max_background_jobs; options.max_background_compactions = FLAGS_max_background_compactions; options.max_subcompactions = static_cast(FLAGS_subcompactions); options.max_background_flushes = FLAGS_max_background_flushes; options.compaction_style = FLAGS_compaction_style_e; options.compaction_pri = FLAGS_compaction_pri_e; options.allow_mmap_reads = FLAGS_mmap_read; options.allow_mmap_writes = FLAGS_mmap_write; options.use_direct_reads = FLAGS_use_direct_reads; options.use_direct_io_for_flush_and_compaction = FLAGS_use_direct_io_for_flush_and_compaction; options.manual_wal_flush = FLAGS_manual_wal_flush; options.wal_compression = FLAGS_wal_compression_e; options.ttl = FLAGS_fifo_compaction_ttl; options.compaction_options_fifo = CompactionOptionsFIFO( FLAGS_fifo_compaction_max_table_files_size_mb * 1024 * 1024, FLAGS_fifo_compaction_allow_compaction); options.compaction_options_fifo.age_for_warm = FLAGS_fifo_age_for_warm; options.prefix_extractor = prefix_extractor_; if (FLAGS_use_uint64_comparator) { options.comparator = test::Uint64Comparator(); if (FLAGS_key_size != 8) { fprintf(stderr, "Using Uint64 comparator but key size is not 8.\n"); exit(1); } } if (FLAGS_use_stderr_info_logger) { options.info_log.reset(new StderrLogger()); } options.memtable_huge_page_size = FLAGS_memtable_use_huge_page ? 2048 : 0; options.memtable_prefix_bloom_size_ratio = FLAGS_memtable_bloom_size_ratio; options.memtable_whole_key_filtering = FLAGS_memtable_whole_key_filtering; if (FLAGS_memtable_insert_with_hint_prefix_size > 0) { options.memtable_insert_with_hint_prefix_extractor.reset( NewCappedPrefixTransform( FLAGS_memtable_insert_with_hint_prefix_size)); } options.bloom_locality = FLAGS_bloom_locality; options.max_file_opening_threads = FLAGS_file_opening_threads; options.compaction_readahead_size = FLAGS_compaction_readahead_size; options.log_readahead_size = FLAGS_log_readahead_size; options.random_access_max_buffer_size = FLAGS_random_access_max_buffer_size; options.writable_file_max_buffer_size = FLAGS_writable_file_max_buffer_size; options.use_fsync = FLAGS_use_fsync; options.num_levels = FLAGS_num_levels; options.target_file_size_base = FLAGS_target_file_size_base; options.target_file_size_multiplier = FLAGS_target_file_size_multiplier; options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base; options.level_compaction_dynamic_level_bytes = FLAGS_level_compaction_dynamic_level_bytes; options.max_bytes_for_level_multiplier = FLAGS_max_bytes_for_level_multiplier; Status s = CreateMemTableRepFactory(config_options, &options.memtable_factory); if (!s.ok()) { fprintf(stderr, "Could not create memtable factory: %s\n", s.ToString().c_str()); exit(1); } else if ((FLAGS_prefix_size == 0) && (options.memtable_factory->IsInstanceOf("prefix_hash") || options.memtable_factory->IsInstanceOf("hash_linkedlist"))) { fprintf(stderr, "prefix_size should be non-zero if PrefixHash or " "HashLinkedList memtablerep is used\n"); exit(1); } if (FLAGS_use_plain_table) { if (!options.memtable_factory->IsInstanceOf("prefix_hash") && !options.memtable_factory->IsInstanceOf("hash_linkedlist")) { fprintf(stderr, "Warning: plain table is used with %s\n", options.memtable_factory->Name()); } int bloom_bits_per_key = FLAGS_bloom_bits; if (bloom_bits_per_key < 0) { bloom_bits_per_key = PlainTableOptions().bloom_bits_per_key; } PlainTableOptions plain_table_options; plain_table_options.user_key_len = FLAGS_key_size; plain_table_options.bloom_bits_per_key = bloom_bits_per_key; plain_table_options.hash_table_ratio = 0.75; options.table_factory = std::shared_ptr( NewPlainTableFactory(plain_table_options)); } else if (FLAGS_use_cuckoo_table) { if (FLAGS_cuckoo_hash_ratio > 1 || FLAGS_cuckoo_hash_ratio < 0) { fprintf(stderr, "Invalid cuckoo_hash_ratio\n"); exit(1); } if (!FLAGS_mmap_read) { fprintf(stderr, "cuckoo table format requires mmap read to operate\n"); exit(1); } ROCKSDB_NAMESPACE::CuckooTableOptions table_options; table_options.hash_table_ratio = FLAGS_cuckoo_hash_ratio; table_options.identity_as_first_hash = FLAGS_identity_as_first_hash; options.table_factory = std::shared_ptr(NewCuckooTableFactory(table_options)); } else { BlockBasedTableOptions block_based_options; block_based_options.checksum = static_cast(FLAGS_checksum_type); if (FLAGS_use_hash_search) { if (FLAGS_prefix_size == 0) { fprintf(stderr, "prefix_size not assigned when enable use_hash_search \n"); exit(1); } block_based_options.index_type = BlockBasedTableOptions::kHashSearch; } else { block_based_options.index_type = BlockBasedTableOptions::kBinarySearch; } if (FLAGS_partition_index_and_filters || FLAGS_partition_index) { if (FLAGS_index_with_first_key) { fprintf(stderr, "--index_with_first_key is not compatible with" " partition index."); } if (FLAGS_use_hash_search) { fprintf(stderr, "use_hash_search is incompatible with " "partition index and is ignored"); } block_based_options.index_type = BlockBasedTableOptions::kTwoLevelIndexSearch; block_based_options.metadata_block_size = FLAGS_metadata_block_size; if (FLAGS_partition_index_and_filters) { block_based_options.partition_filters = true; } } else if (FLAGS_index_with_first_key) { block_based_options.index_type = BlockBasedTableOptions::kBinarySearchWithFirstKey; } BlockBasedTableOptions::IndexShorteningMode index_shortening = block_based_options.index_shortening; switch (FLAGS_index_shortening_mode) { case 0: index_shortening = BlockBasedTableOptions::IndexShorteningMode::kNoShortening; break; case 1: index_shortening = BlockBasedTableOptions::IndexShorteningMode::kShortenSeparators; break; case 2: index_shortening = BlockBasedTableOptions::IndexShorteningMode:: kShortenSeparatorsAndSuccessor; break; default: fprintf(stderr, "Unknown key shortening mode\n"); } block_based_options.optimize_filters_for_memory = FLAGS_optimize_filters_for_memory; block_based_options.index_shortening = index_shortening; if (cache_ == nullptr) { block_based_options.no_block_cache = true; } block_based_options.cache_index_and_filter_blocks = FLAGS_cache_index_and_filter_blocks; block_based_options.pin_l0_filter_and_index_blocks_in_cache = FLAGS_pin_l0_filter_and_index_blocks_in_cache; block_based_options.pin_top_level_index_and_filter = FLAGS_pin_top_level_index_and_filter; if (FLAGS_cache_high_pri_pool_ratio > 1e-6) { // > 0.0 + eps block_based_options.cache_index_and_filter_blocks_with_high_priority = true; } if (FLAGS_cache_high_pri_pool_ratio + FLAGS_cache_low_pri_pool_ratio > 1.0) { fprintf(stderr, "Sum of high_pri_pool_ratio and low_pri_pool_ratio " "cannot exceed 1.0.\n"); } block_based_options.block_cache = cache_; block_based_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kCompressionDictionaryBuildingBuffer, {/*.charged = */ FLAGS_charge_compression_dictionary_building_buffer ? CacheEntryRoleOptions::Decision::kEnabled : CacheEntryRoleOptions::Decision::kDisabled}}); block_based_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kFilterConstruction, {/*.charged = */ FLAGS_charge_filter_construction ? CacheEntryRoleOptions::Decision::kEnabled : CacheEntryRoleOptions::Decision::kDisabled}}); block_based_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kBlockBasedTableReader, {/*.charged = */ FLAGS_charge_table_reader ? CacheEntryRoleOptions::Decision::kEnabled : CacheEntryRoleOptions::Decision::kDisabled}}); block_based_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kFileMetadata, {/*.charged = */ FLAGS_charge_file_metadata ? CacheEntryRoleOptions::Decision::kEnabled : CacheEntryRoleOptions::Decision::kDisabled}}); block_based_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kBlobCache, {/*.charged = */ FLAGS_charge_blob_cache ? CacheEntryRoleOptions::Decision::kEnabled : CacheEntryRoleOptions::Decision::kDisabled}}); block_based_options.block_size = FLAGS_block_size; block_based_options.block_restart_interval = FLAGS_block_restart_interval; block_based_options.index_block_restart_interval = FLAGS_index_block_restart_interval; block_based_options.format_version = static_cast(FLAGS_format_version); block_based_options.read_amp_bytes_per_bit = FLAGS_read_amp_bytes_per_bit; block_based_options.enable_index_compression = FLAGS_enable_index_compression; block_based_options.block_align = FLAGS_block_align; block_based_options.whole_key_filtering = FLAGS_whole_key_filtering; block_based_options.max_auto_readahead_size = FLAGS_max_auto_readahead_size; block_based_options.initial_auto_readahead_size = FLAGS_initial_auto_readahead_size; block_based_options.num_file_reads_for_auto_readahead = FLAGS_num_file_reads_for_auto_readahead; BlockBasedTableOptions::PrepopulateBlockCache prepopulate_block_cache = block_based_options.prepopulate_block_cache; switch (FLAGS_prepopulate_block_cache) { case 0: prepopulate_block_cache = BlockBasedTableOptions::PrepopulateBlockCache::kDisable; break; case 1: prepopulate_block_cache = BlockBasedTableOptions::PrepopulateBlockCache::kFlushOnly; break; default: fprintf(stderr, "Unknown prepopulate block cache mode\n"); } block_based_options.prepopulate_block_cache = prepopulate_block_cache; if (FLAGS_use_data_block_hash_index) { block_based_options.data_block_index_type = ROCKSDB_NAMESPACE::BlockBasedTableOptions::kDataBlockBinaryAndHash; } else { block_based_options.data_block_index_type = ROCKSDB_NAMESPACE::BlockBasedTableOptions::kDataBlockBinarySearch; } block_based_options.data_block_hash_table_util_ratio = FLAGS_data_block_hash_table_util_ratio; if (FLAGS_read_cache_path != "") { Status rc_status; // Read cache need to be provided with a the Logger, we will put all // reac cache logs in the read cache path in a file named rc_LOG rc_status = FLAGS_env->CreateDirIfMissing(FLAGS_read_cache_path); std::shared_ptr read_cache_logger; if (rc_status.ok()) { rc_status = FLAGS_env->NewLogger(FLAGS_read_cache_path + "/rc_LOG", &read_cache_logger); } if (rc_status.ok()) { PersistentCacheConfig rc_cfg(FLAGS_env, FLAGS_read_cache_path, FLAGS_read_cache_size, read_cache_logger); rc_cfg.enable_direct_reads = FLAGS_read_cache_direct_read; rc_cfg.enable_direct_writes = FLAGS_read_cache_direct_write; rc_cfg.writer_qdepth = 4; rc_cfg.writer_dispatch_size = 4 * 1024; auto pcache = std::make_shared(rc_cfg); block_based_options.persistent_cache = pcache; rc_status = pcache->Open(); } if (!rc_status.ok()) { fprintf(stderr, "Error initializing read cache, %s\n", rc_status.ToString().c_str()); exit(1); } } if (FLAGS_use_blob_cache) { if (FLAGS_use_shared_block_and_blob_cache) { options.blob_cache = cache_; } else { if (FLAGS_blob_cache_size > 0) { LRUCacheOptions co; co.capacity = FLAGS_blob_cache_size; co.num_shard_bits = FLAGS_blob_cache_numshardbits; co.memory_allocator = GetCacheAllocator(); options.blob_cache = NewLRUCache(co); } else { fprintf( stderr, "Unable to create a standalone blob cache if blob_cache_size " "<= 0.\n"); exit(1); } } switch (FLAGS_prepopulate_blob_cache) { case 0: options.prepopulate_blob_cache = PrepopulateBlobCache::kDisable; break; case 1: options.prepopulate_blob_cache = PrepopulateBlobCache::kFlushOnly; break; default: fprintf(stderr, "Unknown prepopulate blob cache mode\n"); exit(1); } fprintf(stdout, "Integrated BlobDB: blob cache enabled" ", block and blob caches shared: %d", FLAGS_use_shared_block_and_blob_cache); if (!FLAGS_use_shared_block_and_blob_cache) { fprintf(stdout, ", blob cache size %" PRIu64 ", blob cache num shard bits: %d", FLAGS_blob_cache_size, FLAGS_blob_cache_numshardbits); } fprintf(stdout, ", blob cache prepopulated: %d\n", FLAGS_prepopulate_blob_cache); } else { fprintf(stdout, "Integrated BlobDB: blob cache disabled\n"); } options.table_factory.reset( NewBlockBasedTableFactory(block_based_options)); } if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() > 0) { if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() != static_cast(FLAGS_num_levels)) { fprintf(stderr, "Insufficient number of fanouts specified %d\n", static_cast( FLAGS_max_bytes_for_level_multiplier_additional_v.size())); exit(1); } options.max_bytes_for_level_multiplier_additional = FLAGS_max_bytes_for_level_multiplier_additional_v; } options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger; options.level0_file_num_compaction_trigger = FLAGS_level0_file_num_compaction_trigger; options.level0_slowdown_writes_trigger = FLAGS_level0_slowdown_writes_trigger; options.compression = FLAGS_compression_type_e; if (FLAGS_simulate_hybrid_fs_file != "") { options.bottommost_temperature = Temperature::kWarm; } options.preclude_last_level_data_seconds = FLAGS_preclude_last_level_data_seconds; options.preserve_internal_time_seconds = FLAGS_preserve_internal_time_seconds; options.sample_for_compression = FLAGS_sample_for_compression; options.WAL_ttl_seconds = FLAGS_wal_ttl_seconds; options.WAL_size_limit_MB = FLAGS_wal_size_limit_MB; options.max_total_wal_size = FLAGS_max_total_wal_size; if (FLAGS_min_level_to_compress >= 0) { assert(FLAGS_min_level_to_compress <= FLAGS_num_levels); options.compression_per_level.resize(FLAGS_num_levels); for (int i = 0; i < FLAGS_min_level_to_compress; i++) { options.compression_per_level[i] = kNoCompression; } for (int i = FLAGS_min_level_to_compress; i < FLAGS_num_levels; i++) { options.compression_per_level[i] = FLAGS_compression_type_e; } } options.soft_pending_compaction_bytes_limit = FLAGS_soft_pending_compaction_bytes_limit; options.hard_pending_compaction_bytes_limit = FLAGS_hard_pending_compaction_bytes_limit; options.delayed_write_rate = FLAGS_delayed_write_rate; options.allow_concurrent_memtable_write = FLAGS_allow_concurrent_memtable_write; options.experimental_mempurge_threshold = FLAGS_experimental_mempurge_threshold; options.inplace_update_support = FLAGS_inplace_update_support; options.inplace_update_num_locks = FLAGS_inplace_update_num_locks; options.enable_write_thread_adaptive_yield = FLAGS_enable_write_thread_adaptive_yield; options.enable_pipelined_write = FLAGS_enable_pipelined_write; options.unordered_write = FLAGS_unordered_write; options.write_thread_max_yield_usec = FLAGS_write_thread_max_yield_usec; options.write_thread_slow_yield_usec = FLAGS_write_thread_slow_yield_usec; options.table_cache_numshardbits = FLAGS_table_cache_numshardbits; options.max_compaction_bytes = FLAGS_max_compaction_bytes; options.disable_auto_compactions = FLAGS_disable_auto_compactions; options.optimize_filters_for_hits = FLAGS_optimize_filters_for_hits; options.paranoid_checks = FLAGS_paranoid_checks; options.force_consistency_checks = FLAGS_force_consistency_checks; options.check_flush_compaction_key_order = FLAGS_check_flush_compaction_key_order; options.periodic_compaction_seconds = FLAGS_periodic_compaction_seconds; options.ttl = FLAGS_ttl_seconds; // fill storage options options.advise_random_on_open = FLAGS_advise_random_on_open; options.access_hint_on_compaction_start = FLAGS_compaction_fadvice_e; options.use_adaptive_mutex = FLAGS_use_adaptive_mutex; options.bytes_per_sync = FLAGS_bytes_per_sync; options.wal_bytes_per_sync = FLAGS_wal_bytes_per_sync; // merge operator options if (!FLAGS_merge_operator.empty()) { s = MergeOperator::CreateFromString(config_options, FLAGS_merge_operator, &options.merge_operator); if (!s.ok()) { fprintf(stderr, "invalid merge operator[%s]: %s\n", FLAGS_merge_operator.c_str(), s.ToString().c_str()); exit(1); } } options.max_successive_merges = FLAGS_max_successive_merges; options.report_bg_io_stats = FLAGS_report_bg_io_stats; // set universal style compaction configurations, if applicable if (FLAGS_universal_size_ratio != 0) { options.compaction_options_universal.size_ratio = FLAGS_universal_size_ratio; } if (FLAGS_universal_min_merge_width != 0) { options.compaction_options_universal.min_merge_width = FLAGS_universal_min_merge_width; } if (FLAGS_universal_max_merge_width != 0) { options.compaction_options_universal.max_merge_width = FLAGS_universal_max_merge_width; } if (FLAGS_universal_max_size_amplification_percent != 0) { options.compaction_options_universal.max_size_amplification_percent = FLAGS_universal_max_size_amplification_percent; } if (FLAGS_universal_compression_size_percent != -1) { options.compaction_options_universal.compression_size_percent = FLAGS_universal_compression_size_percent; } options.compaction_options_universal.allow_trivial_move = FLAGS_universal_allow_trivial_move; options.compaction_options_universal.incremental = FLAGS_universal_incremental; if (FLAGS_thread_status_per_interval > 0) { options.enable_thread_tracking = true; } if (FLAGS_user_timestamp_size > 0) { if (FLAGS_user_timestamp_size != 8) { fprintf(stderr, "Only 64 bits timestamps are supported.\n"); exit(1); } options.comparator = test::BytewiseComparatorWithU64TsWrapper(); } options.allow_data_in_errors = FLAGS_allow_data_in_errors; options.track_and_verify_wals_in_manifest = FLAGS_track_and_verify_wals_in_manifest; // Integrated BlobDB options.enable_blob_files = FLAGS_enable_blob_files; options.min_blob_size = FLAGS_min_blob_size; options.blob_file_size = FLAGS_blob_file_size; options.blob_compression_type = StringToCompressionType(FLAGS_blob_compression_type.c_str()); options.enable_blob_garbage_collection = FLAGS_enable_blob_garbage_collection; options.blob_garbage_collection_age_cutoff = FLAGS_blob_garbage_collection_age_cutoff; options.blob_garbage_collection_force_threshold = FLAGS_blob_garbage_collection_force_threshold; options.blob_compaction_readahead_size = FLAGS_blob_compaction_readahead_size; options.blob_file_starting_level = FLAGS_blob_file_starting_level; if (FLAGS_readonly && FLAGS_transaction_db) { fprintf(stderr, "Cannot use readonly flag with transaction_db\n"); exit(1); } if (FLAGS_use_secondary_db && (FLAGS_transaction_db || FLAGS_optimistic_transaction_db)) { fprintf(stderr, "Cannot use use_secondary_db flag with transaction_db\n"); exit(1); } options.memtable_protection_bytes_per_key = FLAGS_memtable_protection_bytes_per_key; options.block_protection_bytes_per_key = FLAGS_block_protection_bytes_per_key; } void InitializeOptionsGeneral(Options* opts) { // Be careful about what is set here to avoid accidentally overwriting // settings already configured by OPTIONS file. Only configure settings that // are needed for the benchmark to run, settings for shared objects that // were not configured already, settings that require dynamically invoking // APIs, and settings for the benchmark itself. Options& options = *opts; // Always set these since they are harmless when not needed and prevent // a guaranteed failure when they are needed. options.create_missing_column_families = true; options.create_if_missing = true; if (options.statistics == nullptr) { options.statistics = dbstats; } auto table_options = options.table_factory->GetOptions(); if (table_options != nullptr) { if (FLAGS_cache_size > 0) { // This violates this function's rules on when to set options. But we // have to do it because the case of unconfigured block cache in OPTIONS // file is indistinguishable (it is sanitized to 32MB by this point, not // nullptr), and our regression tests assume this will be the shared // block cache, even with OPTIONS file provided. table_options->block_cache = cache_; } if (table_options->filter_policy == nullptr) { if (FLAGS_bloom_bits < 0) { table_options->filter_policy = BlockBasedTableOptions().filter_policy; } else if (FLAGS_bloom_bits == 0) { table_options->filter_policy.reset(); } else { table_options->filter_policy.reset( FLAGS_use_ribbon_filter ? NewRibbonFilterPolicy(FLAGS_bloom_bits) : NewBloomFilterPolicy(FLAGS_bloom_bits)); } } } if (options.row_cache == nullptr) { if (FLAGS_row_cache_size) { if (FLAGS_cache_numshardbits >= 1) { options.row_cache = NewLRUCache(FLAGS_row_cache_size, FLAGS_cache_numshardbits); } else { options.row_cache = NewLRUCache(FLAGS_row_cache_size); } } } if (options.env == Env::Default()) { options.env = FLAGS_env; } if (FLAGS_enable_io_prio) { options.env->LowerThreadPoolIOPriority(Env::LOW); options.env->LowerThreadPoolIOPriority(Env::HIGH); } if (FLAGS_enable_cpu_prio) { options.env->LowerThreadPoolCPUPriority(Env::LOW); options.env->LowerThreadPoolCPUPriority(Env::HIGH); } if (FLAGS_sine_write_rate) { FLAGS_benchmark_write_rate_limit = static_cast(SineRate(0)); } if (options.rate_limiter == nullptr) { if (FLAGS_rate_limiter_bytes_per_sec > 0) { options.rate_limiter.reset(NewGenericRateLimiter( FLAGS_rate_limiter_bytes_per_sec, FLAGS_rate_limiter_refill_period_us, 10 /* fairness */, // TODO: replace this with a more general FLAG for deciding // RateLimiter::Mode as now we also rate-limit foreground reads e.g, // Get()/MultiGet() FLAGS_rate_limit_bg_reads ? RateLimiter::Mode::kReadsOnly : RateLimiter::Mode::kWritesOnly, FLAGS_rate_limiter_auto_tuned)); } } options.listeners.emplace_back(listener_); if (options.file_checksum_gen_factory == nullptr) { if (FLAGS_file_checksum) { options.file_checksum_gen_factory.reset( new FileChecksumGenCrc32cFactory()); } } if (FLAGS_num_multi_db <= 1) { OpenDb(options, FLAGS_db, &db_); } else { multi_dbs_.clear(); multi_dbs_.resize(FLAGS_num_multi_db); auto wal_dir = options.wal_dir; for (int i = 0; i < FLAGS_num_multi_db; i++) { if (!wal_dir.empty()) { options.wal_dir = GetPathForMultiple(wal_dir, i); } OpenDb(options, GetPathForMultiple(FLAGS_db, i), &multi_dbs_[i]); } options.wal_dir = wal_dir; } // KeepFilter is a noop filter, this can be used to test compaction filter if (options.compaction_filter == nullptr) { if (FLAGS_use_keep_filter) { options.compaction_filter = new KeepFilter(); fprintf(stdout, "A noop compaction filter is used\n"); } } if (FLAGS_use_existing_keys) { // Only work on single database assert(db_.db != nullptr); ReadOptions read_opts; // before read_options_ initialized read_opts.total_order_seek = true; Iterator* iter = db_.db->NewIterator(read_opts); for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { keys_.emplace_back(iter->key().ToString()); } delete iter; FLAGS_num = keys_.size(); } } void Open(Options* opts) { if (!InitializeOptionsFromFile(opts)) { InitializeOptionsFromFlags(opts); } InitializeOptionsGeneral(opts); } void OpenDb(Options options, const std::string& db_name, DBWithColumnFamilies* db) { uint64_t open_start = FLAGS_report_open_timing ? FLAGS_env->NowNanos() : 0; Status s; // Open with column families if necessary. if (FLAGS_num_column_families > 1) { size_t num_hot = FLAGS_num_column_families; if (FLAGS_num_hot_column_families > 0 && FLAGS_num_hot_column_families < FLAGS_num_column_families) { num_hot = FLAGS_num_hot_column_families; } else { FLAGS_num_hot_column_families = FLAGS_num_column_families; } std::vector column_families; for (size_t i = 0; i < num_hot; i++) { column_families.push_back(ColumnFamilyDescriptor( ColumnFamilyName(i), ColumnFamilyOptions(options))); } std::vector cfh_idx_to_prob; if (!FLAGS_column_family_distribution.empty()) { std::stringstream cf_prob_stream(FLAGS_column_family_distribution); std::string cf_prob; int sum = 0; while (std::getline(cf_prob_stream, cf_prob, ',')) { cfh_idx_to_prob.push_back(std::stoi(cf_prob)); sum += cfh_idx_to_prob.back(); } if (sum != 100) { fprintf(stderr, "column_family_distribution items must sum to 100\n"); exit(1); } if (cfh_idx_to_prob.size() != num_hot) { fprintf(stderr, "got %" ROCKSDB_PRIszt " column_family_distribution items; expected " "%" ROCKSDB_PRIszt "\n", cfh_idx_to_prob.size(), num_hot); exit(1); } } if (FLAGS_readonly) { s = DB::OpenForReadOnly(options, db_name, column_families, &db->cfh, &db->db); } else if (FLAGS_optimistic_transaction_db) { s = OptimisticTransactionDB::Open(options, db_name, column_families, &db->cfh, &db->opt_txn_db); if (s.ok()) { db->db = db->opt_txn_db->GetBaseDB(); } } else if (FLAGS_transaction_db) { TransactionDB* ptr; TransactionDBOptions txn_db_options; if (options.unordered_write) { options.two_write_queues = true; txn_db_options.skip_concurrency_control = true; txn_db_options.write_policy = WRITE_PREPARED; } s = TransactionDB::Open(options, txn_db_options, db_name, column_families, &db->cfh, &ptr); if (s.ok()) { db->db = ptr; } } else { s = DB::Open(options, db_name, column_families, &db->cfh, &db->db); } db->cfh.resize(FLAGS_num_column_families); db->num_created = num_hot; db->num_hot = num_hot; db->cfh_idx_to_prob = std::move(cfh_idx_to_prob); } else if (FLAGS_readonly) { s = DB::OpenForReadOnly(options, db_name, &db->db); } else if (FLAGS_optimistic_transaction_db) { s = OptimisticTransactionDB::Open(options, db_name, &db->opt_txn_db); if (s.ok()) { db->db = db->opt_txn_db->GetBaseDB(); } } else if (FLAGS_transaction_db) { TransactionDB* ptr = nullptr; TransactionDBOptions txn_db_options; if (options.unordered_write) { options.two_write_queues = true; txn_db_options.skip_concurrency_control = true; txn_db_options.write_policy = WRITE_PREPARED; } s = CreateLoggerFromOptions(db_name, options, &options.info_log); if (s.ok()) { s = TransactionDB::Open(options, txn_db_options, db_name, &ptr); } if (s.ok()) { db->db = ptr; } } else if (FLAGS_use_blob_db) { // Stacked BlobDB blob_db::BlobDBOptions blob_db_options; blob_db_options.enable_garbage_collection = FLAGS_blob_db_enable_gc; blob_db_options.garbage_collection_cutoff = FLAGS_blob_db_gc_cutoff; blob_db_options.is_fifo = FLAGS_blob_db_is_fifo; blob_db_options.max_db_size = FLAGS_blob_db_max_db_size; blob_db_options.ttl_range_secs = FLAGS_blob_db_ttl_range_secs; blob_db_options.min_blob_size = FLAGS_blob_db_min_blob_size; blob_db_options.bytes_per_sync = FLAGS_blob_db_bytes_per_sync; blob_db_options.blob_file_size = FLAGS_blob_db_file_size; blob_db_options.compression = FLAGS_blob_db_compression_type_e; blob_db::BlobDB* ptr = nullptr; s = blob_db::BlobDB::Open(options, blob_db_options, db_name, &ptr); if (s.ok()) { db->db = ptr; } } else if (FLAGS_use_secondary_db) { if (FLAGS_secondary_path.empty()) { std::string default_secondary_path; FLAGS_env->GetTestDirectory(&default_secondary_path); default_secondary_path += "/dbbench_secondary"; FLAGS_secondary_path = default_secondary_path; } s = DB::OpenAsSecondary(options, db_name, FLAGS_secondary_path, &db->db); if (s.ok() && FLAGS_secondary_update_interval > 0) { secondary_update_thread_.reset(new port::Thread( [this](int interval, DBWithColumnFamilies* _db) { while (0 == secondary_update_stopped_.load( std::memory_order_relaxed)) { Status secondary_update_status = _db->db->TryCatchUpWithPrimary(); if (!secondary_update_status.ok()) { fprintf(stderr, "Failed to catch up with primary: %s\n", secondary_update_status.ToString().c_str()); break; } ++secondary_db_updates_; FLAGS_env->SleepForMicroseconds(interval * 1000000); } }, FLAGS_secondary_update_interval, db)); } } else { s = DB::Open(options, db_name, &db->db); } if (FLAGS_report_open_timing) { std::cout << "OpenDb: " << (FLAGS_env->NowNanos() - open_start) / 1000000.0 << " milliseconds\n"; } if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } } enum WriteMode { RANDOM, SEQUENTIAL, UNIQUE_RANDOM }; void WriteSeqDeterministic(ThreadState* thread) { DoDeterministicCompact(thread, open_options_.compaction_style, SEQUENTIAL); } void WriteUniqueRandomDeterministic(ThreadState* thread) { DoDeterministicCompact(thread, open_options_.compaction_style, UNIQUE_RANDOM); } void WriteSeq(ThreadState* thread) { DoWrite(thread, SEQUENTIAL); } void WriteRandom(ThreadState* thread) { DoWrite(thread, RANDOM); } void WriteUniqueRandom(ThreadState* thread) { DoWrite(thread, UNIQUE_RANDOM); } class KeyGenerator { public: KeyGenerator(Random64* rand, WriteMode mode, uint64_t num, uint64_t /*num_per_set*/ = 64 * 1024) : rand_(rand), mode_(mode), num_(num), next_(0) { if (mode_ == UNIQUE_RANDOM) { // NOTE: if memory consumption of this approach becomes a concern, // we can either break it into pieces and only random shuffle a section // each time. Alternatively, use a bit map implementation // (https://reviews.facebook.net/differential/diff/54627/) values_.resize(num_); for (uint64_t i = 0; i < num_; ++i) { values_[i] = i; } RandomShuffle(values_.begin(), values_.end(), static_cast(*seed_base)); } } uint64_t Next() { switch (mode_) { case SEQUENTIAL: return next_++; case RANDOM: return rand_->Next() % num_; case UNIQUE_RANDOM: assert(next_ < num_); return values_[next_++]; } assert(false); return std::numeric_limits::max(); } // Only available for UNIQUE_RANDOM mode. uint64_t Fetch(uint64_t index) { assert(mode_ == UNIQUE_RANDOM); assert(index < values_.size()); return values_[index]; } private: Random64* rand_; WriteMode mode_; const uint64_t num_; uint64_t next_; std::vector values_; }; DB* SelectDB(ThreadState* thread) { return SelectDBWithCfh(thread)->db; } DBWithColumnFamilies* SelectDBWithCfh(ThreadState* thread) { return SelectDBWithCfh(thread->rand.Next()); } DBWithColumnFamilies* SelectDBWithCfh(uint64_t rand_int) { if (db_.db != nullptr) { return &db_; } else { return &multi_dbs_[rand_int % multi_dbs_.size()]; } } double SineRate(double x) { return FLAGS_sine_a * sin((FLAGS_sine_b * x) + FLAGS_sine_c) + FLAGS_sine_d; } void DoWrite(ThreadState* thread, WriteMode write_mode) { const int test_duration = write_mode == RANDOM ? FLAGS_duration : 0; const int64_t num_ops = writes_ == 0 ? num_ : writes_; size_t num_key_gens = 1; if (db_.db == nullptr) { num_key_gens = multi_dbs_.size(); } std::vector> key_gens(num_key_gens); int64_t max_ops = num_ops * num_key_gens; int64_t ops_per_stage = max_ops; if (FLAGS_num_column_families > 1 && FLAGS_num_hot_column_families > 0) { ops_per_stage = (max_ops - 1) / (FLAGS_num_column_families / FLAGS_num_hot_column_families) + 1; } Duration duration(test_duration, max_ops, ops_per_stage); const uint64_t num_per_key_gen = num_ + max_num_range_tombstones_; for (size_t i = 0; i < num_key_gens; i++) { key_gens[i].reset(new KeyGenerator(&(thread->rand), write_mode, num_per_key_gen, ops_per_stage)); } if (num_ != FLAGS_num) { char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " ops)", num_); thread->stats.AddMessage(msg); } RandomGenerator gen; WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0, FLAGS_write_batch_protection_bytes_per_key, user_timestamp_size_); Status s; int64_t bytes = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::unique_ptr begin_key_guard; Slice begin_key = AllocateKey(&begin_key_guard); std::unique_ptr end_key_guard; Slice end_key = AllocateKey(&end_key_guard); double p = 0.0; uint64_t num_overwrites = 0, num_unique_keys = 0, num_selective_deletes = 0; // If user set overwrite_probability flag, // check if value is in [0.0,1.0]. if (FLAGS_overwrite_probability > 0.0) { p = FLAGS_overwrite_probability > 1.0 ? 1.0 : FLAGS_overwrite_probability; // If overwrite set by user, and UNIQUE_RANDOM mode on, // the overwrite_window_size must be > 0. if (write_mode == UNIQUE_RANDOM && FLAGS_overwrite_window_size == 0) { fprintf(stderr, "Overwrite_window_size must be strictly greater than 0.\n"); ErrorExit(); } } // Default_random_engine provides slightly // improved throughput over mt19937. std::default_random_engine overwrite_gen{ static_cast(*seed_base)}; std::bernoulli_distribution overwrite_decider(p); // Inserted key window is filled with the last N // keys previously inserted into the DB (with // N=FLAGS_overwrite_window_size). // We use a deque struct because: // - random access is O(1) // - insertion/removal at beginning/end is also O(1). std::deque inserted_key_window; Random64 reservoir_id_gen(*seed_base); // --- Variables used in disposable/persistent keys simulation: // The following variables are used when // disposable_entries_batch_size is >0. We simualte a workload // where the following sequence is repeated multiple times: // "A set of keys S1 is inserted ('disposable entries'), then after // some delay another set of keys S2 is inserted ('persistent entries') // and the first set of keys S1 is deleted. S2 artificially represents // the insertion of hypothetical results from some undefined computation // done on the first set of keys S1. The next sequence can start as soon // as the last disposable entry in the set S1 of this sequence is // inserted, if the delay is non negligible" bool skip_for_loop = false, is_disposable_entry = true; std::vector disposable_entries_index(num_key_gens, 0); std::vector persistent_ent_and_del_index(num_key_gens, 0); const uint64_t kNumDispAndPersEntries = FLAGS_disposable_entries_batch_size + FLAGS_persistent_entries_batch_size; if (kNumDispAndPersEntries > 0) { if ((write_mode != UNIQUE_RANDOM) || (writes_per_range_tombstone_ > 0) || (p > 0.0)) { fprintf( stderr, "Disposable/persistent deletes are not compatible with overwrites " "and DeleteRanges; and are only supported in filluniquerandom.\n"); ErrorExit(); } if (FLAGS_disposable_entries_value_size < 0 || FLAGS_persistent_entries_value_size < 0) { fprintf( stderr, "disposable_entries_value_size and persistent_entries_value_size" "have to be positive.\n"); ErrorExit(); } } Random rnd_disposable_entry(static_cast(*seed_base)); std::string random_value; // Queue that stores scheduled timestamp of disposable entries deletes, // along with starting index of disposable entry keys to delete. std::vector>> disposable_entries_q( num_key_gens); // --- End of variables used in disposable/persistent keys simulation. std::vector> expanded_key_guards; std::vector expanded_keys; if (FLAGS_expand_range_tombstones) { expanded_key_guards.resize(range_tombstone_width_); for (auto& expanded_key_guard : expanded_key_guards) { expanded_keys.emplace_back(AllocateKey(&expanded_key_guard)); } } std::unique_ptr ts_guard; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } int64_t stage = 0; int64_t num_written = 0; int64_t next_seq_db_at = num_ops; size_t id = 0; int64_t num_range_deletions = 0; while ((num_per_key_gen != 0) && !duration.Done(entries_per_batch_)) { if (duration.GetStage() != stage) { stage = duration.GetStage(); if (db_.db != nullptr) { db_.CreateNewCf(open_options_, stage); } else { for (auto& db : multi_dbs_) { db.CreateNewCf(open_options_, stage); } } } if (write_mode != SEQUENTIAL) { id = thread->rand.Next() % num_key_gens; } else { // When doing a sequential load with multiple databases, load them in // order rather than all at the same time to avoid: // 1) long delays between flushing memtables // 2) flushing memtables for all of them at the same point in time // 3) not putting the same number of keys in each database if (num_written >= next_seq_db_at) { next_seq_db_at += num_ops; id++; if (id >= num_key_gens) { fprintf(stderr, "Logic error. Filled all databases\n"); ErrorExit(); } } } DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(id); batch.Clear(); int64_t batch_bytes = 0; for (int64_t j = 0; j < entries_per_batch_; j++) { int64_t rand_num = 0; if ((write_mode == UNIQUE_RANDOM) && (p > 0.0)) { if ((inserted_key_window.size() > 0) && overwrite_decider(overwrite_gen)) { num_overwrites++; rand_num = inserted_key_window[reservoir_id_gen.Next() % inserted_key_window.size()]; } else { num_unique_keys++; rand_num = key_gens[id]->Next(); if (inserted_key_window.size() < FLAGS_overwrite_window_size) { inserted_key_window.push_back(rand_num); } else { inserted_key_window.pop_front(); inserted_key_window.push_back(rand_num); } } } else if (kNumDispAndPersEntries > 0) { // Check if queue is non-empty and if we need to insert // 'persistent' KV entries (KV entries that are never deleted) // and delete disposable entries previously inserted. if (!disposable_entries_q[id].empty() && (disposable_entries_q[id].front().first < FLAGS_env->NowMicros())) { // If we need to perform a "merge op" pattern, // we first write all the persistent KV entries not targeted // by deletes, and then we write the disposable entries deletes. if (persistent_ent_and_del_index[id] < FLAGS_persistent_entries_batch_size) { // Generate key to insert. rand_num = key_gens[id]->Fetch(disposable_entries_q[id].front().second + FLAGS_disposable_entries_batch_size + persistent_ent_and_del_index[id]); persistent_ent_and_del_index[id]++; is_disposable_entry = false; skip_for_loop = false; } else if (persistent_ent_and_del_index[id] < kNumDispAndPersEntries) { // Find key of the entry to delete. rand_num = key_gens[id]->Fetch(disposable_entries_q[id].front().second + (persistent_ent_and_del_index[id] - FLAGS_persistent_entries_batch_size)); persistent_ent_and_del_index[id]++; GenerateKeyFromInt(rand_num, FLAGS_num, &key); // For the delete operation, everything happens here and we // skip the rest of the for-loop, which is designed for // inserts. if (FLAGS_num_column_families <= 1) { batch.Delete(key); } else { // We use same rand_num as seed for key and column family so // that we can deterministically find the cfh corresponding to a // particular key while reading the key. batch.Delete(db_with_cfh->GetCfh(rand_num), key); } // A delete only includes Key+Timestamp (no value). batch_bytes += key_size_ + user_timestamp_size_; bytes += key_size_ + user_timestamp_size_; num_selective_deletes++; // Skip rest of the for-loop (j=0, jNowMicros()) && persistent_ent_and_del_index[id] == kNumDispAndPersEntries) { disposable_entries_q[id].pop(); persistent_ent_and_del_index[id] = 0; } // If we are deleting disposable entries, skip the rest of the // for-loop since there is no key-value inserts at this moment in // time. if (skip_for_loop) { continue; } } // If no job is in the queue, then we keep inserting disposable KV // entries that will be deleted later by a series of deletes. else { rand_num = key_gens[id]->Fetch(disposable_entries_index[id]); disposable_entries_index[id]++; is_disposable_entry = true; if ((disposable_entries_index[id] % FLAGS_disposable_entries_batch_size) == 0) { // Skip the persistent KV entries inserts for now disposable_entries_index[id] += FLAGS_persistent_entries_batch_size; } } } else { rand_num = key_gens[id]->Next(); } GenerateKeyFromInt(rand_num, FLAGS_num, &key); Slice val; if (kNumDispAndPersEntries > 0) { random_value = rnd_disposable_entry.RandomString( is_disposable_entry ? FLAGS_disposable_entries_value_size : FLAGS_persistent_entries_value_size); val = Slice(random_value); num_unique_keys++; } else { val = gen.Generate(); } if (use_blob_db_) { // Stacked BlobDB blob_db::BlobDB* blobdb = static_cast(db_with_cfh->db); if (FLAGS_blob_db_max_ttl_range > 0) { int ttl = rand() % FLAGS_blob_db_max_ttl_range; s = blobdb->PutWithTTL(write_options_, key, val, ttl); } else { s = blobdb->Put(write_options_, key, val); } } else if (FLAGS_num_column_families <= 1) { batch.Put(key, val); } else { // We use same rand_num as seed for key and column family so that we // can deterministically find the cfh corresponding to a particular // key while reading the key. batch.Put(db_with_cfh->GetCfh(rand_num), key, val); } batch_bytes += val.size() + key_size_ + user_timestamp_size_; bytes += val.size() + key_size_ + user_timestamp_size_; ++num_written; // If all disposable entries have been inserted, then we need to // add in the job queue a call for 'persistent entry insertions + // disposable entry deletions'. if (kNumDispAndPersEntries > 0 && is_disposable_entry && ((disposable_entries_index[id] % kNumDispAndPersEntries) == 0)) { // Queue contains [timestamp, starting_idx], // timestamp = current_time + delay (minimum aboslute time when to // start inserting the selective deletes) starting_idx = index in the // keygen of the rand_num to generate the key of the first KV entry to // delete (= key of the first selective delete). disposable_entries_q[id].push(std::make_pair( FLAGS_env->NowMicros() + FLAGS_disposable_entries_delete_delay /* timestamp */, disposable_entries_index[id] - kNumDispAndPersEntries /*starting idx*/)); } if (writes_per_range_tombstone_ > 0 && num_written > writes_before_delete_range_ && (num_written - writes_before_delete_range_) / writes_per_range_tombstone_ <= max_num_range_tombstones_ && (num_written - writes_before_delete_range_) % writes_per_range_tombstone_ == 0) { num_range_deletions++; int64_t begin_num = key_gens[id]->Next(); if (FLAGS_expand_range_tombstones) { for (int64_t offset = 0; offset < range_tombstone_width_; ++offset) { GenerateKeyFromInt(begin_num + offset, FLAGS_num, &expanded_keys[offset]); if (use_blob_db_) { // Stacked BlobDB s = db_with_cfh->db->Delete(write_options_, expanded_keys[offset]); } else if (FLAGS_num_column_families <= 1) { batch.Delete(expanded_keys[offset]); } else { batch.Delete(db_with_cfh->GetCfh(rand_num), expanded_keys[offset]); } } } else { GenerateKeyFromInt(begin_num, FLAGS_num, &begin_key); GenerateKeyFromInt(begin_num + range_tombstone_width_, FLAGS_num, &end_key); if (use_blob_db_) { // Stacked BlobDB s = db_with_cfh->db->DeleteRange( write_options_, db_with_cfh->db->DefaultColumnFamily(), begin_key, end_key); } else if (FLAGS_num_column_families <= 1) { batch.DeleteRange(begin_key, end_key); } else { batch.DeleteRange(db_with_cfh->GetCfh(rand_num), begin_key, end_key); } } } } if (thread->shared->write_rate_limiter.get() != nullptr) { thread->shared->write_rate_limiter->Request( batch_bytes, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kWrite); // Set time at which last op finished to Now() to hide latency and // sleep from rate limiter. Also, do the check once per batch, not // once per write. thread->stats.ResetLastOpTime(); } if (user_timestamp_size_ > 0) { Slice user_ts = mock_app_clock_->Allocate(ts_guard.get()); s = batch.UpdateTimestamps( user_ts, [this](uint32_t) { return user_timestamp_size_; }); if (!s.ok()) { fprintf(stderr, "assign timestamp to write batch: %s\n", s.ToString().c_str()); ErrorExit(); } } if (!use_blob_db_) { // Not stacked BlobDB s = db_with_cfh->db->Write(write_options_, &batch); } thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, entries_per_batch_, kWrite); if (FLAGS_sine_write_rate) { uint64_t now = FLAGS_env->NowMicros(); uint64_t usecs_since_last; if (now > thread->stats.GetSineInterval()) { usecs_since_last = now - thread->stats.GetSineInterval(); } else { usecs_since_last = 0; } if (usecs_since_last > (FLAGS_sine_write_rate_interval_milliseconds * uint64_t{1000})) { double usecs_since_start = static_cast(now - thread->stats.GetStart()); thread->stats.ResetSineInterval(); uint64_t write_rate = static_cast(SineRate(usecs_since_start / 1000000.0)); thread->shared->write_rate_limiter.reset( NewGenericRateLimiter(write_rate)); } } if (!s.ok()) { s = listener_->WaitForRecovery(600000000) ? Status::OK() : s; } if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); ErrorExit(); } } if ((write_mode == UNIQUE_RANDOM) && (p > 0.0)) { fprintf(stdout, "Number of unique keys inserted: %" PRIu64 ".\nNumber of overwrites: %" PRIu64 "\n", num_unique_keys, num_overwrites); } else if (kNumDispAndPersEntries > 0) { fprintf(stdout, "Number of unique keys inserted (disposable+persistent): %" PRIu64 ".\nNumber of 'disposable entry delete': %" PRIu64 "\n", num_written, num_selective_deletes); } if (num_range_deletions > 0) { std::cout << "Number of range deletions: " << num_range_deletions << std::endl; } thread->stats.AddBytes(bytes); } Status DoDeterministicCompact(ThreadState* thread, CompactionStyle compaction_style, WriteMode write_mode) { ColumnFamilyMetaData meta; std::vector db_list; if (db_.db != nullptr) { db_list.push_back(db_.db); } else { for (auto& db : multi_dbs_) { db_list.push_back(db.db); } } std::vector options_list; for (auto db : db_list) { options_list.push_back(db->GetOptions()); if (compaction_style != kCompactionStyleFIFO) { db->SetOptions({{"disable_auto_compactions", "1"}, {"level0_slowdown_writes_trigger", "400000000"}, {"level0_stop_writes_trigger", "400000000"}}); } else { db->SetOptions({{"disable_auto_compactions", "1"}}); } } assert(!db_list.empty()); auto num_db = db_list.size(); size_t num_levels = static_cast(open_options_.num_levels); size_t output_level = open_options_.num_levels - 1; std::vector>> sorted_runs(num_db); std::vector num_files_at_level0(num_db, 0); if (compaction_style == kCompactionStyleLevel) { if (num_levels == 0) { return Status::InvalidArgument("num_levels should be larger than 1"); } bool should_stop = false; while (!should_stop) { if (sorted_runs[0].empty()) { DoWrite(thread, write_mode); } else { DoWrite(thread, UNIQUE_RANDOM); } for (size_t i = 0; i < num_db; i++) { auto db = db_list[i]; db->Flush(FlushOptions()); db->GetColumnFamilyMetaData(&meta); if (num_files_at_level0[i] == meta.levels[0].files.size() || writes_ == 0) { should_stop = true; continue; } sorted_runs[i].emplace_back( meta.levels[0].files.begin(), meta.levels[0].files.end() - num_files_at_level0[i]); num_files_at_level0[i] = meta.levels[0].files.size(); if (sorted_runs[i].back().size() == 1) { should_stop = true; continue; } if (sorted_runs[i].size() == output_level) { auto& L1 = sorted_runs[i].back(); L1.erase(L1.begin(), L1.begin() + L1.size() / 3); should_stop = true; continue; } } writes_ /= static_cast(open_options_.max_bytes_for_level_multiplier); } for (size_t i = 0; i < num_db; i++) { if (sorted_runs[i].size() < num_levels - 1) { fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n", num_levels); exit(1); } } for (size_t i = 0; i < num_db; i++) { auto db = db_list[i]; auto compactionOptions = CompactionOptions(); compactionOptions.compression = FLAGS_compression_type_e; auto options = db->GetOptions(); MutableCFOptions mutable_cf_options(options); for (size_t j = 0; j < sorted_runs[i].size(); j++) { compactionOptions.output_file_size_limit = MaxFileSizeForLevel( mutable_cf_options, static_cast(output_level), compaction_style); std::cout << sorted_runs[i][j].size() << std::endl; db->CompactFiles( compactionOptions, {sorted_runs[i][j].back().name, sorted_runs[i][j].front().name}, static_cast(output_level - j) /*level*/); } } } else if (compaction_style == kCompactionStyleUniversal) { auto ratio = open_options_.compaction_options_universal.size_ratio; bool should_stop = false; while (!should_stop) { if (sorted_runs[0].empty()) { DoWrite(thread, write_mode); } else { DoWrite(thread, UNIQUE_RANDOM); } for (size_t i = 0; i < num_db; i++) { auto db = db_list[i]; db->Flush(FlushOptions()); db->GetColumnFamilyMetaData(&meta); if (num_files_at_level0[i] == meta.levels[0].files.size() || writes_ == 0) { should_stop = true; continue; } sorted_runs[i].emplace_back( meta.levels[0].files.begin(), meta.levels[0].files.end() - num_files_at_level0[i]); num_files_at_level0[i] = meta.levels[0].files.size(); if (sorted_runs[i].back().size() == 1) { should_stop = true; continue; } num_files_at_level0[i] = meta.levels[0].files.size(); } writes_ = static_cast(writes_ * static_cast(100) / (ratio + 200)); } for (size_t i = 0; i < num_db; i++) { if (sorted_runs[i].size() < num_levels) { fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n", num_levels); exit(1); } } for (size_t i = 0; i < num_db; i++) { auto db = db_list[i]; auto compactionOptions = CompactionOptions(); compactionOptions.compression = FLAGS_compression_type_e; auto options = db->GetOptions(); MutableCFOptions mutable_cf_options(options); for (size_t j = 0; j < sorted_runs[i].size(); j++) { compactionOptions.output_file_size_limit = MaxFileSizeForLevel( mutable_cf_options, static_cast(output_level), compaction_style); db->CompactFiles( compactionOptions, {sorted_runs[i][j].back().name, sorted_runs[i][j].front().name}, (output_level > j ? static_cast(output_level - j) : 0) /*level*/); } } } else if (compaction_style == kCompactionStyleFIFO) { if (num_levels != 1) { return Status::InvalidArgument( "num_levels should be 1 for FIFO compaction"); } if (FLAGS_num_multi_db != 0) { return Status::InvalidArgument("Doesn't support multiDB"); } auto db = db_list[0]; std::vector file_names; while (true) { if (sorted_runs[0].empty()) { DoWrite(thread, write_mode); } else { DoWrite(thread, UNIQUE_RANDOM); } db->Flush(FlushOptions()); db->GetColumnFamilyMetaData(&meta); auto total_size = meta.levels[0].size; if (total_size >= db->GetOptions().compaction_options_fifo.max_table_files_size) { for (auto file_meta : meta.levels[0].files) { file_names.emplace_back(file_meta.name); } break; } } // TODO(shuzhang1989): Investigate why CompactFiles not working // auto compactionOptions = CompactionOptions(); // db->CompactFiles(compactionOptions, file_names, 0); auto compactionOptions = CompactRangeOptions(); compactionOptions.max_subcompactions = static_cast(FLAGS_subcompactions); db->CompactRange(compactionOptions, nullptr, nullptr); } else { fprintf(stdout, "%-12s : skipped (-compaction_stype=kCompactionStyleNone)\n", "filldeterministic"); return Status::InvalidArgument("None compaction is not supported"); } // Verify seqno and key range // Note: the seqno get changed at the max level by implementation // optimization, so skip the check of the max level. #ifndef NDEBUG for (size_t k = 0; k < num_db; k++) { auto db = db_list[k]; db->GetColumnFamilyMetaData(&meta); // verify the number of sorted runs if (compaction_style == kCompactionStyleLevel) { assert(num_levels - 1 == sorted_runs[k].size()); } else if (compaction_style == kCompactionStyleUniversal) { assert(meta.levels[0].files.size() + num_levels - 1 == sorted_runs[k].size()); } else if (compaction_style == kCompactionStyleFIFO) { // TODO(gzh): FIFO compaction db->GetColumnFamilyMetaData(&meta); auto total_size = meta.levels[0].size; assert(total_size <= db->GetOptions().compaction_options_fifo.max_table_files_size); break; } // verify smallest/largest seqno and key range of each sorted run auto max_level = num_levels - 1; int level; for (size_t i = 0; i < sorted_runs[k].size(); i++) { level = static_cast(max_level - i); SequenceNumber sorted_run_smallest_seqno = kMaxSequenceNumber; SequenceNumber sorted_run_largest_seqno = 0; std::string sorted_run_smallest_key, sorted_run_largest_key; bool first_key = true; for (auto fileMeta : sorted_runs[k][i]) { sorted_run_smallest_seqno = std::min(sorted_run_smallest_seqno, fileMeta.smallest_seqno); sorted_run_largest_seqno = std::max(sorted_run_largest_seqno, fileMeta.largest_seqno); if (first_key || db->DefaultColumnFamily()->GetComparator()->Compare( fileMeta.smallestkey, sorted_run_smallest_key) < 0) { sorted_run_smallest_key = fileMeta.smallestkey; } if (first_key || db->DefaultColumnFamily()->GetComparator()->Compare( fileMeta.largestkey, sorted_run_largest_key) > 0) { sorted_run_largest_key = fileMeta.largestkey; } first_key = false; } if (compaction_style == kCompactionStyleLevel || (compaction_style == kCompactionStyleUniversal && level > 0)) { SequenceNumber level_smallest_seqno = kMaxSequenceNumber; SequenceNumber level_largest_seqno = 0; for (auto fileMeta : meta.levels[level].files) { level_smallest_seqno = std::min(level_smallest_seqno, fileMeta.smallest_seqno); level_largest_seqno = std::max(level_largest_seqno, fileMeta.largest_seqno); } assert(sorted_run_smallest_key == meta.levels[level].files.front().smallestkey); assert(sorted_run_largest_key == meta.levels[level].files.back().largestkey); if (level != static_cast(max_level)) { // compaction at max_level would change sequence number assert(sorted_run_smallest_seqno == level_smallest_seqno); assert(sorted_run_largest_seqno == level_largest_seqno); } } else if (compaction_style == kCompactionStyleUniversal) { // level <= 0 means sorted runs on level 0 auto level0_file = meta.levels[0].files[sorted_runs[k].size() - 1 - i]; assert(sorted_run_smallest_key == level0_file.smallestkey); assert(sorted_run_largest_key == level0_file.largestkey); if (level != static_cast(max_level)) { assert(sorted_run_smallest_seqno == level0_file.smallest_seqno); assert(sorted_run_largest_seqno == level0_file.largest_seqno); } } } } #endif // print the size of each sorted_run for (size_t k = 0; k < num_db; k++) { auto db = db_list[k]; fprintf(stdout, "---------------------- DB %" ROCKSDB_PRIszt " LSM ---------------------\n", k); db->GetColumnFamilyMetaData(&meta); for (auto& levelMeta : meta.levels) { if (levelMeta.files.empty()) { continue; } if (levelMeta.level == 0) { for (auto& fileMeta : levelMeta.files) { fprintf(stdout, "Level[%d]: %s(size: %" PRIi64 " bytes)\n", levelMeta.level, fileMeta.name.c_str(), fileMeta.size); } } else { fprintf(stdout, "Level[%d]: %s - %s(total size: %" PRIi64 " bytes)\n", levelMeta.level, levelMeta.files.front().name.c_str(), levelMeta.files.back().name.c_str(), levelMeta.size); } } } for (size_t i = 0; i < num_db; i++) { db_list[i]->SetOptions( {{"disable_auto_compactions", std::to_string(options_list[i].disable_auto_compactions)}, {"level0_slowdown_writes_trigger", std::to_string(options_list[i].level0_slowdown_writes_trigger)}, {"level0_stop_writes_trigger", std::to_string(options_list[i].level0_stop_writes_trigger)}}); } return Status::OK(); } void ReadSequential(ThreadState* thread) { if (db_.db != nullptr) { ReadSequential(thread, db_.db); } else { for (const auto& db_with_cfh : multi_dbs_) { ReadSequential(thread, db_with_cfh.db); } } } void ReadSequential(ThreadState* thread, DB* db) { ReadOptions options = read_options_; std::unique_ptr ts_guard; Slice ts; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get()); options.timestamp = &ts; } options.adaptive_readahead = FLAGS_adaptive_readahead; options.async_io = FLAGS_async_io; Iterator* iter = db->NewIterator(options); int64_t i = 0; int64_t bytes = 0; for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedOps(nullptr, db, 1, kRead); ++i; if (thread->shared->read_rate_limiter.get() != nullptr && i % 1024 == 1023) { thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead); } } delete iter; thread->stats.AddBytes(bytes); } void ReadToRowCache(ThreadState* thread) { int64_t read = 0; int64_t found = 0; int64_t bytes = 0; int64_t key_rand = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); PinnableSlice pinnable_val; while (key_rand < FLAGS_num) { DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread); // We use same key_rand as seed for key and column family so that we can // deterministically find the cfh corresponding to a particular key, as it // is done in DoWrite method. GenerateKeyFromInt(key_rand, FLAGS_num, &key); key_rand++; read++; Status s; if (FLAGS_num_column_families > 1) { s = db_with_cfh->db->Get(read_options_, db_with_cfh->GetCfh(key_rand), key, &pinnable_val); } else { pinnable_val.Reset(); s = db_with_cfh->db->Get(read_options_, db_with_cfh->db->DefaultColumnFamily(), key, &pinnable_val); } if (s.ok()) { found++; bytes += key.size() + pinnable_val.size(); } else if (!s.IsNotFound()) { fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str()); abort(); } if (thread->shared->read_rate_limiter.get() != nullptr && read % 256 == 255) { thread->shared->read_rate_limiter->Request( 256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead); } thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead); } char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found, read); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } void ReadReverse(ThreadState* thread) { if (db_.db != nullptr) { ReadReverse(thread, db_.db); } else { for (const auto& db_with_cfh : multi_dbs_) { ReadReverse(thread, db_with_cfh.db); } } } void ReadReverse(ThreadState* thread, DB* db) { Iterator* iter = db->NewIterator(read_options_); int64_t i = 0; int64_t bytes = 0; for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedOps(nullptr, db, 1, kRead); ++i; if (thread->shared->read_rate_limiter.get() != nullptr && i % 1024 == 1023) { thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead); } } delete iter; thread->stats.AddBytes(bytes); } void ReadRandomFast(ThreadState* thread) { int64_t read = 0; int64_t found = 0; int64_t nonexist = 0; ReadOptions options = read_options_; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::string value; Slice ts; std::unique_ptr ts_guard; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } DB* db = SelectDBWithCfh(thread)->db; int64_t pot = 1; while (pot < FLAGS_num) { pot <<= 1; } Duration duration(FLAGS_duration, reads_); do { for (int i = 0; i < 100; ++i) { int64_t key_rand = thread->rand.Next() & (pot - 1); GenerateKeyFromInt(key_rand, FLAGS_num, &key); ++read; std::string ts_ret; std::string* ts_ptr = nullptr; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get()); options.timestamp = &ts; ts_ptr = &ts_ret; } auto status = db->Get(options, key, &value, ts_ptr); if (status.ok()) { ++found; } else if (!status.IsNotFound()) { fprintf(stderr, "Get returned an error: %s\n", status.ToString().c_str()); abort(); } if (key_rand >= FLAGS_num) { ++nonexist; } } if (thread->shared->read_rate_limiter.get() != nullptr) { thread->shared->read_rate_limiter->Request( 100, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead); } thread->stats.FinishedOps(nullptr, db, 100, kRead); } while (!duration.Done(100)); char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found, " "issued %" PRIu64 " non-exist keys)\n", found, read, nonexist); thread->stats.AddMessage(msg); } int64_t GetRandomKey(Random64* rand) { uint64_t rand_int = rand->Next(); int64_t key_rand; if (read_random_exp_range_ == 0) { key_rand = rand_int % FLAGS_num; } else { const uint64_t kBigInt = static_cast(1U) << 62; long double order = -static_cast(rand_int % kBigInt) / static_cast(kBigInt) * read_random_exp_range_; long double exp_ran = std::exp(order); uint64_t rand_num = static_cast(exp_ran * static_cast(FLAGS_num)); // Map to a different number to avoid locality. const uint64_t kBigPrime = 0x5bd1e995; // Overflow is like %(2^64). Will have little impact of results. key_rand = static_cast((rand_num * kBigPrime) % FLAGS_num); } return key_rand; } void ReadRandom(ThreadState* thread) { int64_t read = 0; int64_t found = 0; int64_t bytes = 0; int num_keys = 0; int64_t key_rand = 0; ReadOptions options = read_options_; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); PinnableSlice pinnable_val; std::vector pinnable_vals; if (read_operands_) { // Start off with a small-ish value that'll be increased later if // `GetMergeOperands()` tells us it is not large enough. pinnable_vals.resize(8); } std::unique_ptr ts_guard; Slice ts; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } Duration duration(FLAGS_duration, reads_); while (!duration.Done(1)) { DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread); // We use same key_rand as seed for key and column family so that we can // deterministically find the cfh corresponding to a particular key, as it // is done in DoWrite method. if (entries_per_batch_ > 1 && FLAGS_multiread_stride) { if (++num_keys == entries_per_batch_) { num_keys = 0; key_rand = GetRandomKey(&thread->rand); if ((key_rand + (entries_per_batch_ - 1) * FLAGS_multiread_stride) >= FLAGS_num) { key_rand = FLAGS_num - entries_per_batch_ * FLAGS_multiread_stride; } } else { key_rand += FLAGS_multiread_stride; } } else { key_rand = GetRandomKey(&thread->rand); } GenerateKeyFromInt(key_rand, FLAGS_num, &key); read++; std::string ts_ret; std::string* ts_ptr = nullptr; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get()); options.timestamp = &ts; ts_ptr = &ts_ret; } Status s; pinnable_val.Reset(); for (size_t i = 0; i < pinnable_vals.size(); ++i) { pinnable_vals[i].Reset(); } ColumnFamilyHandle* cfh; if (FLAGS_num_column_families > 1) { cfh = db_with_cfh->GetCfh(key_rand); } else { cfh = db_with_cfh->db->DefaultColumnFamily(); } if (read_operands_) { GetMergeOperandsOptions get_merge_operands_options; get_merge_operands_options.expected_max_number_of_operands = static_cast(pinnable_vals.size()); int number_of_operands; s = db_with_cfh->db->GetMergeOperands( options, cfh, key, pinnable_vals.data(), &get_merge_operands_options, &number_of_operands); if (s.IsIncomplete()) { // Should only happen a few times when we encounter a key that had // more merge operands than any key seen so far. Production use case // would typically retry in such event to get all the operands so do // that here. pinnable_vals.resize(number_of_operands); get_merge_operands_options.expected_max_number_of_operands = static_cast(pinnable_vals.size()); s = db_with_cfh->db->GetMergeOperands( options, cfh, key, pinnable_vals.data(), &get_merge_operands_options, &number_of_operands); } } else { s = db_with_cfh->db->Get(options, cfh, key, &pinnable_val, ts_ptr); } if (s.ok()) { found++; bytes += key.size() + pinnable_val.size() + user_timestamp_size_; for (size_t i = 0; i < pinnable_vals.size(); ++i) { bytes += pinnable_vals[i].size(); pinnable_vals[i].Reset(); } } else if (!s.IsNotFound()) { fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str()); abort(); } if (thread->shared->read_rate_limiter.get() != nullptr && read % 256 == 255) { thread->shared->read_rate_limiter->Request( 256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead); } thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead); } char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found, read); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } // Calls MultiGet over a list of keys from a random distribution. // Returns the total number of keys found. void MultiReadRandom(ThreadState* thread) { int64_t read = 0; int64_t bytes = 0; int64_t num_multireads = 0; int64_t found = 0; ReadOptions options = read_options_; std::vector keys; std::vector> key_guards; std::vector values(entries_per_batch_); PinnableSlice* pin_values = new PinnableSlice[entries_per_batch_]; std::unique_ptr pin_values_guard(pin_values); std::vector stat_list(entries_per_batch_); while (static_cast(keys.size()) < entries_per_batch_) { key_guards.push_back(std::unique_ptr()); keys.push_back(AllocateKey(&key_guards.back())); } std::unique_ptr ts_guard; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } Duration duration(FLAGS_duration, reads_); while (!duration.Done(entries_per_batch_)) { DB* db = SelectDB(thread); if (FLAGS_multiread_stride) { int64_t key = GetRandomKey(&thread->rand); if ((key + (entries_per_batch_ - 1) * FLAGS_multiread_stride) >= static_cast(FLAGS_num)) { key = FLAGS_num - entries_per_batch_ * FLAGS_multiread_stride; } for (int64_t i = 0; i < entries_per_batch_; ++i) { GenerateKeyFromInt(key, FLAGS_num, &keys[i]); key += FLAGS_multiread_stride; } } else { for (int64_t i = 0; i < entries_per_batch_; ++i) { GenerateKeyFromInt(GetRandomKey(&thread->rand), FLAGS_num, &keys[i]); } } Slice ts; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get()); options.timestamp = &ts; } if (!FLAGS_multiread_batched) { std::vector statuses = db->MultiGet(options, keys, &values); assert(static_cast(statuses.size()) == entries_per_batch_); read += entries_per_batch_; num_multireads++; for (int64_t i = 0; i < entries_per_batch_; ++i) { if (statuses[i].ok()) { bytes += keys[i].size() + values[i].size() + user_timestamp_size_; ++found; } else if (!statuses[i].IsNotFound()) { fprintf(stderr, "MultiGet returned an error: %s\n", statuses[i].ToString().c_str()); abort(); } } } else { db->MultiGet(options, db->DefaultColumnFamily(), keys.size(), keys.data(), pin_values, stat_list.data()); read += entries_per_batch_; num_multireads++; for (int64_t i = 0; i < entries_per_batch_; ++i) { if (stat_list[i].ok()) { bytes += keys[i].size() + pin_values[i].size() + user_timestamp_size_; ++found; } else if (!stat_list[i].IsNotFound()) { fprintf(stderr, "MultiGet returned an error: %s\n", stat_list[i].ToString().c_str()); abort(); } stat_list[i] = Status::OK(); pin_values[i].Reset(); } } if (thread->shared->read_rate_limiter.get() != nullptr && num_multireads % 256 == 255) { thread->shared->read_rate_limiter->Request( 256 * entries_per_batch_, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead); } thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kRead); } char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found, read); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } // Calls ApproximateSize over random key ranges. void ApproximateSizeRandom(ThreadState* thread) { int64_t size_sum = 0; int64_t num_sizes = 0; const size_t batch_size = entries_per_batch_; std::vector ranges; std::vector lkeys; std::vector> lkey_guards; std::vector rkeys; std::vector> rkey_guards; std::vector sizes; while (ranges.size() < batch_size) { // Ugly without C++17 return from emplace_back lkey_guards.emplace_back(); rkey_guards.emplace_back(); lkeys.emplace_back(AllocateKey(&lkey_guards.back())); rkeys.emplace_back(AllocateKey(&rkey_guards.back())); ranges.emplace_back(lkeys.back(), rkeys.back()); sizes.push_back(0); } Duration duration(FLAGS_duration, reads_); while (!duration.Done(1)) { DB* db = SelectDB(thread); for (size_t i = 0; i < batch_size; ++i) { int64_t lkey = GetRandomKey(&thread->rand); int64_t rkey = GetRandomKey(&thread->rand); if (lkey > rkey) { std::swap(lkey, rkey); } GenerateKeyFromInt(lkey, FLAGS_num, &lkeys[i]); GenerateKeyFromInt(rkey, FLAGS_num, &rkeys[i]); } db->GetApproximateSizes(&ranges[0], static_cast(entries_per_batch_), &sizes[0]); num_sizes += entries_per_batch_; for (int64_t size : sizes) { size_sum += size; } thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kOthers); } char msg[100]; snprintf(msg, sizeof(msg), "(Avg approx size=%g)", static_cast(size_sum) / static_cast(num_sizes)); thread->stats.AddMessage(msg); } // The inverse function of Pareto distribution int64_t ParetoCdfInversion(double u, double theta, double k, double sigma) { double ret; if (k == 0.0) { ret = theta - sigma * std::log(u); } else { ret = theta + sigma * (std::pow(u, -1 * k) - 1) / k; } return static_cast(ceil(ret)); } // The inverse function of power distribution (y=ax^b) int64_t PowerCdfInversion(double u, double a, double b) { double ret; ret = std::pow((u / a), (1 / b)); return static_cast(ceil(ret)); } // Add the noice to the QPS double AddNoise(double origin, double noise_ratio) { if (noise_ratio < 0.0 || noise_ratio > 1.0) { return origin; } int band_int = static_cast(FLAGS_sine_a); double delta = (rand() % band_int - band_int / 2) * noise_ratio; if (origin + delta < 0) { return origin; } else { return (origin + delta); } } // Decide the ratio of different query types // 0 Get, 1 Put, 2 Seek, 3 SeekForPrev, 4 Delete, 5 SingleDelete, 6 merge class QueryDecider { public: std::vector type_; std::vector ratio_; int range_; QueryDecider() {} ~QueryDecider() {} Status Initiate(std::vector ratio_input) { int range_max = 1000; double sum = 0.0; for (auto& ratio : ratio_input) { sum += ratio; } range_ = 0; for (auto& ratio : ratio_input) { range_ += static_cast(ceil(range_max * (ratio / sum))); type_.push_back(range_); ratio_.push_back(ratio / sum); } return Status::OK(); } int GetType(int64_t rand_num) { if (rand_num < 0) { rand_num = rand_num * (-1); } assert(range_ != 0); int pos = static_cast(rand_num % range_); for (int i = 0; i < static_cast(type_.size()); i++) { if (pos < type_[i]) { return i; } } return 0; } }; // KeyrangeUnit is the struct of a keyrange. It is used in a keyrange vector // to transfer a random value to one keyrange based on the hotness. struct KeyrangeUnit { int64_t keyrange_start; int64_t keyrange_access; int64_t keyrange_keys; }; // From our observations, the prefix hotness (key-range hotness) follows // the two-term-exponential distribution: f(x) = a*exp(b*x) + c*exp(d*x). // However, we cannot directly use the inverse function to decide a // key-range from a random distribution. To achieve it, we create a list of // KeyrangeUnit, each KeyrangeUnit occupies a range of integers whose size is // decided based on the hotness of the key-range. When a random value is // generated based on uniform distribution, we map it to the KeyrangeUnit Vec // and one KeyrangeUnit is selected. The probability of a KeyrangeUnit being // selected is the same as the hotness of this KeyrangeUnit. After that, the // key can be randomly allocated to the key-range of this KeyrangeUnit, or we // can based on the power distribution (y=ax^b) to generate the offset of // the key in the selected key-range. In this way, we generate the keyID // based on the hotness of the prefix and also the key hotness distribution. class GenerateTwoTermExpKeys { public: // Avoid uninitialized warning-as-error in some compilers int64_t keyrange_rand_max_ = 0; int64_t keyrange_size_ = 0; int64_t keyrange_num_ = 0; std::vector keyrange_set_; // Initiate the KeyrangeUnit vector and calculate the size of each // KeyrangeUnit. Status InitiateExpDistribution(int64_t total_keys, double prefix_a, double prefix_b, double prefix_c, double prefix_d) { int64_t amplify = 0; int64_t keyrange_start = 0; if (FLAGS_keyrange_num <= 0) { keyrange_num_ = 1; } else { keyrange_num_ = FLAGS_keyrange_num; } keyrange_size_ = total_keys / keyrange_num_; // Calculate the key-range shares size based on the input parameters for (int64_t pfx = keyrange_num_; pfx >= 1; pfx--) { // Step 1. Calculate the probability that this key range will be // accessed in a query. It is based on the two-term expoential // distribution double keyrange_p = prefix_a * std::exp(prefix_b * pfx) + prefix_c * std::exp(prefix_d * pfx); if (keyrange_p < std::pow(10.0, -16.0)) { keyrange_p = 0.0; } // Step 2. Calculate the amplify // In order to allocate a query to a key-range based on the random // number generated for this query, we need to extend the probability // of each key range from [0,1] to [0, amplify]. Amplify is calculated // by 1/(smallest key-range probability). In this way, we ensure that // all key-ranges are assigned with an Integer that >=0 if (amplify == 0 && keyrange_p > 0) { amplify = static_cast(std::floor(1 / keyrange_p)) + 1; } // Step 3. For each key-range, we calculate its position in the // [0, amplify] range, including the start, the size (keyrange_access) KeyrangeUnit p_unit; p_unit.keyrange_start = keyrange_start; if (0.0 >= keyrange_p) { p_unit.keyrange_access = 0; } else { p_unit.keyrange_access = static_cast(std::floor(amplify * keyrange_p)); } p_unit.keyrange_keys = keyrange_size_; keyrange_set_.push_back(p_unit); keyrange_start += p_unit.keyrange_access; } keyrange_rand_max_ = keyrange_start; // Step 4. Shuffle the key-ranges randomly // Since the access probability is calculated from small to large, // If we do not re-allocate them, hot key-ranges are always at the end // and cold key-ranges are at the begin of the key space. Therefore, the // key-ranges are shuffled and the rand seed is only decide by the // key-range hotness distribution. With the same distribution parameters // the shuffle results are the same. Random64 rand_loca(keyrange_rand_max_); for (int64_t i = 0; i < FLAGS_keyrange_num; i++) { int64_t pos = rand_loca.Next() % FLAGS_keyrange_num; assert(i >= 0 && i < static_cast(keyrange_set_.size()) && pos >= 0 && pos < static_cast(keyrange_set_.size())); std::swap(keyrange_set_[i], keyrange_set_[pos]); } // Step 5. Recalculate the prefix start postion after shuffling int64_t offset = 0; for (auto& p_unit : keyrange_set_) { p_unit.keyrange_start = offset; offset += p_unit.keyrange_access; } return Status::OK(); } // Generate the Key ID according to the input ini_rand and key distribution int64_t DistGetKeyID(int64_t ini_rand, double key_dist_a, double key_dist_b) { int64_t keyrange_rand = ini_rand % keyrange_rand_max_; // Calculate and select one key-range that contains the new key int64_t start = 0, end = static_cast(keyrange_set_.size()); while (start + 1 < end) { int64_t mid = start + (end - start) / 2; assert(mid >= 0 && mid < static_cast(keyrange_set_.size())); if (keyrange_rand < keyrange_set_[mid].keyrange_start) { end = mid; } else { start = mid; } } int64_t keyrange_id = start; // Select one key in the key-range and compose the keyID int64_t key_offset = 0, key_seed; if (key_dist_a == 0.0 || key_dist_b == 0.0) { key_offset = ini_rand % keyrange_size_; } else { double u = static_cast(ini_rand % keyrange_size_) / keyrange_size_; key_seed = static_cast( ceil(std::pow((u / key_dist_a), (1 / key_dist_b)))); Random64 rand_key(key_seed); key_offset = rand_key.Next() % keyrange_size_; } return keyrange_size_ * keyrange_id + key_offset; } }; // The social graph workload mixed with Get, Put, Iterator queries. // The value size and iterator length follow Pareto distribution. // The overall key access follow power distribution. If user models the // workload based on different key-ranges (or different prefixes), user // can use two-term-exponential distribution to fit the workload. User // needs to decide the ratio between Get, Put, Iterator queries before // starting the benchmark. void MixGraph(ThreadState* thread) { int64_t gets = 0; int64_t puts = 0; int64_t get_found = 0; int64_t seek = 0; int64_t seek_found = 0; int64_t bytes = 0; double total_scan_length = 0; double total_val_size = 0; const int64_t default_value_max = 1 * 1024 * 1024; int64_t value_max = default_value_max; int64_t scan_len_max = FLAGS_mix_max_scan_len; double write_rate = 1000000.0; double read_rate = 1000000.0; bool use_prefix_modeling = false; bool use_random_modeling = false; GenerateTwoTermExpKeys gen_exp; std::vector ratio{FLAGS_mix_get_ratio, FLAGS_mix_put_ratio, FLAGS_mix_seek_ratio}; char value_buffer[default_value_max]; QueryDecider query; RandomGenerator gen; Status s; if (value_max > FLAGS_mix_max_value_size) { value_max = FLAGS_mix_max_value_size; } std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); PinnableSlice pinnable_val; query.Initiate(ratio); // the limit of qps initiation if (FLAGS_sine_mix_rate) { thread->shared->read_rate_limiter.reset( NewGenericRateLimiter(static_cast(read_rate))); thread->shared->write_rate_limiter.reset( NewGenericRateLimiter(static_cast(write_rate))); } // Decide if user wants to use prefix based key generation if (FLAGS_keyrange_dist_a != 0.0 || FLAGS_keyrange_dist_b != 0.0 || FLAGS_keyrange_dist_c != 0.0 || FLAGS_keyrange_dist_d != 0.0) { use_prefix_modeling = true; gen_exp.InitiateExpDistribution( FLAGS_num, FLAGS_keyrange_dist_a, FLAGS_keyrange_dist_b, FLAGS_keyrange_dist_c, FLAGS_keyrange_dist_d); } if (FLAGS_key_dist_a == 0 || FLAGS_key_dist_b == 0) { use_random_modeling = true; } Duration duration(FLAGS_duration, reads_); while (!duration.Done(1)) { DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread); int64_t ini_rand, rand_v, key_rand, key_seed; ini_rand = GetRandomKey(&thread->rand); rand_v = ini_rand % FLAGS_num; double u = static_cast(rand_v) / FLAGS_num; // Generate the keyID based on the key hotness and prefix hotness if (use_random_modeling) { key_rand = ini_rand; } else if (use_prefix_modeling) { key_rand = gen_exp.DistGetKeyID(ini_rand, FLAGS_key_dist_a, FLAGS_key_dist_b); } else { key_seed = PowerCdfInversion(u, FLAGS_key_dist_a, FLAGS_key_dist_b); Random64 rand(key_seed); key_rand = static_cast(rand.Next()) % FLAGS_num; } GenerateKeyFromInt(key_rand, FLAGS_num, &key); int query_type = query.GetType(rand_v); // change the qps uint64_t now = FLAGS_env->NowMicros(); uint64_t usecs_since_last; if (now > thread->stats.GetSineInterval()) { usecs_since_last = now - thread->stats.GetSineInterval(); } else { usecs_since_last = 0; } if (FLAGS_sine_mix_rate && usecs_since_last > (FLAGS_sine_mix_rate_interval_milliseconds * uint64_t{1000})) { double usecs_since_start = static_cast(now - thread->stats.GetStart()); thread->stats.ResetSineInterval(); double mix_rate_with_noise = AddNoise( SineRate(usecs_since_start / 1000000.0), FLAGS_sine_mix_rate_noise); read_rate = mix_rate_with_noise * (query.ratio_[0] + query.ratio_[2]); write_rate = mix_rate_with_noise * query.ratio_[1]; if (read_rate > 0) { thread->shared->read_rate_limiter->SetBytesPerSecond( static_cast(read_rate)); } if (write_rate > 0) { thread->shared->write_rate_limiter->SetBytesPerSecond( static_cast(write_rate)); } } // Start the query if (query_type == 0) { // the Get query gets++; if (FLAGS_num_column_families > 1) { s = db_with_cfh->db->Get(read_options_, db_with_cfh->GetCfh(key_rand), key, &pinnable_val); } else { pinnable_val.Reset(); s = db_with_cfh->db->Get(read_options_, db_with_cfh->db->DefaultColumnFamily(), key, &pinnable_val); } if (s.ok()) { get_found++; bytes += key.size() + pinnable_val.size(); } else if (!s.IsNotFound()) { fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str()); abort(); } if (thread->shared->read_rate_limiter && (gets + seek) % 100 == 0) { thread->shared->read_rate_limiter->Request(100, Env::IO_HIGH, nullptr /*stats*/); } thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead); } else if (query_type == 1) { // the Put query puts++; int64_t val_size = ParetoCdfInversion(u, FLAGS_value_theta, FLAGS_value_k, FLAGS_value_sigma); if (val_size < 10) { val_size = 10; } else if (val_size > value_max) { val_size = val_size % value_max; } total_val_size += val_size; s = db_with_cfh->db->Put( write_options_, key, gen.Generate(static_cast(val_size))); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); ErrorExit(); } if (thread->shared->write_rate_limiter && puts % 100 == 0) { thread->shared->write_rate_limiter->Request(100, Env::IO_HIGH, nullptr /*stats*/); } thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kWrite); } else if (query_type == 2) { // Seek query if (db_with_cfh->db != nullptr) { Iterator* single_iter = nullptr; single_iter = db_with_cfh->db->NewIterator(read_options_); if (single_iter != nullptr) { single_iter->Seek(key); seek++; if (single_iter->Valid() && single_iter->key().compare(key) == 0) { seek_found++; } int64_t scan_length = ParetoCdfInversion(u, FLAGS_iter_theta, FLAGS_iter_k, FLAGS_iter_sigma) % scan_len_max; for (int64_t j = 0; j < scan_length && single_iter->Valid(); j++) { Slice value = single_iter->value(); memcpy(value_buffer, value.data(), std::min(value.size(), sizeof(value_buffer))); bytes += single_iter->key().size() + single_iter->value().size(); single_iter->Next(); assert(single_iter->status().ok()); total_scan_length++; } } delete single_iter; } thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kSeek); } } char msg[256]; snprintf(msg, sizeof(msg), "( Gets:%" PRIu64 " Puts:%" PRIu64 " Seek:%" PRIu64 ", reads %" PRIu64 " in %" PRIu64 " found, " "avg size: %.1f value, %.1f scan)\n", gets, puts, seek, get_found + seek_found, gets + seek, total_val_size / puts, total_scan_length / seek); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } void IteratorCreation(ThreadState* thread) { Duration duration(FLAGS_duration, reads_); ReadOptions options = read_options_; std::unique_ptr ts_guard; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } while (!duration.Done(1)) { DB* db = SelectDB(thread); Slice ts; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get()); options.timestamp = &ts; } Iterator* iter = db->NewIterator(options); delete iter; thread->stats.FinishedOps(nullptr, db, 1, kOthers); } } void IteratorCreationWhileWriting(ThreadState* thread) { if (thread->tid > 0) { IteratorCreation(thread); } else { BGWriter(thread, kWrite); } } void SeekRandom(ThreadState* thread) { int64_t read = 0; int64_t found = 0; int64_t bytes = 0; ReadOptions options = read_options_; std::unique_ptr ts_guard; Slice ts; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get()); options.timestamp = &ts; } std::vector tailing_iters; if (FLAGS_use_tailing_iterator) { if (db_.db != nullptr) { tailing_iters.push_back(db_.db->NewIterator(options)); } else { for (const auto& db_with_cfh : multi_dbs_) { tailing_iters.push_back(db_with_cfh.db->NewIterator(options)); } } } options.auto_prefix_mode = FLAGS_auto_prefix_mode; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::unique_ptr upper_bound_key_guard; Slice upper_bound = AllocateKey(&upper_bound_key_guard); std::unique_ptr lower_bound_key_guard; Slice lower_bound = AllocateKey(&lower_bound_key_guard); Duration duration(FLAGS_duration, reads_); char value_buffer[256]; while (!duration.Done(1)) { int64_t seek_pos = thread->rand.Next() % FLAGS_num; GenerateKeyFromIntForSeek(static_cast(seek_pos), FLAGS_num, &key); if (FLAGS_max_scan_distance != 0) { if (FLAGS_reverse_iterator) { GenerateKeyFromInt( static_cast(std::max( static_cast(0), seek_pos - FLAGS_max_scan_distance)), FLAGS_num, &lower_bound); options.iterate_lower_bound = &lower_bound; } else { auto min_num = std::min(FLAGS_num, seek_pos + FLAGS_max_scan_distance); GenerateKeyFromInt(static_cast(min_num), FLAGS_num, &upper_bound); options.iterate_upper_bound = &upper_bound; } } else if (FLAGS_auto_prefix_mode && prefix_extractor_ && !FLAGS_reverse_iterator) { // Set upper bound to next prefix auto mutable_upper_bound = const_cast(upper_bound.data()); std::memcpy(mutable_upper_bound, key.data(), prefix_size_); mutable_upper_bound[prefix_size_ - 1]++; upper_bound = Slice(upper_bound.data(), prefix_size_); options.iterate_upper_bound = &upper_bound; } // Pick a Iterator to use uint64_t db_idx_to_use = (db_.db == nullptr) ? (uint64_t{thread->rand.Next()} % multi_dbs_.size()) : 0; std::unique_ptr single_iter; Iterator* iter_to_use; if (FLAGS_use_tailing_iterator) { iter_to_use = tailing_iters[db_idx_to_use]; } else { if (db_.db != nullptr) { single_iter.reset(db_.db->NewIterator(options)); } else { single_iter.reset(multi_dbs_[db_idx_to_use].db->NewIterator(options)); } iter_to_use = single_iter.get(); } iter_to_use->Seek(key); read++; if (iter_to_use->Valid() && iter_to_use->key().compare(key) == 0) { found++; } for (int j = 0; j < FLAGS_seek_nexts && iter_to_use->Valid(); ++j) { // Copy out iterator's value to make sure we read them. Slice value = iter_to_use->value(); memcpy(value_buffer, value.data(), std::min(value.size(), sizeof(value_buffer))); bytes += iter_to_use->key().size() + iter_to_use->value().size(); if (!FLAGS_reverse_iterator) { iter_to_use->Next(); } else { iter_to_use->Prev(); } assert(iter_to_use->status().ok()); } if (thread->shared->read_rate_limiter.get() != nullptr && read % 256 == 255) { thread->shared->read_rate_limiter->Request( 256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead); } thread->stats.FinishedOps(&db_, db_.db, 1, kSeek); } for (auto iter : tailing_iters) { delete iter; } char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found, read); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } void SeekRandomWhileWriting(ThreadState* thread) { if (thread->tid > 0) { SeekRandom(thread); } else { BGWriter(thread, kWrite); } } void SeekRandomWhileMerging(ThreadState* thread) { if (thread->tid > 0) { SeekRandom(thread); } else { BGWriter(thread, kMerge); } } void DoDelete(ThreadState* thread, bool seq) { WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0, FLAGS_write_batch_protection_bytes_per_key, user_timestamp_size_); Duration duration(seq ? 0 : FLAGS_duration, deletes_); int64_t i = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::unique_ptr ts_guard; Slice ts; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } while (!duration.Done(entries_per_batch_)) { DB* db = SelectDB(thread); batch.Clear(); for (int64_t j = 0; j < entries_per_batch_; ++j) { const int64_t k = seq ? i + j : (thread->rand.Next() % FLAGS_num); GenerateKeyFromInt(k, FLAGS_num, &key); batch.Delete(key); } Status s; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->Allocate(ts_guard.get()); s = batch.UpdateTimestamps( ts, [this](uint32_t) { return user_timestamp_size_; }); if (!s.ok()) { fprintf(stderr, "assign timestamp: %s\n", s.ToString().c_str()); ErrorExit(); } } s = db->Write(write_options_, &batch); thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kDelete); if (!s.ok()) { fprintf(stderr, "del error: %s\n", s.ToString().c_str()); exit(1); } i += entries_per_batch_; } } void DeleteSeq(ThreadState* thread) { DoDelete(thread, true); } void DeleteRandom(ThreadState* thread) { DoDelete(thread, false); } void ReadWhileWriting(ThreadState* thread) { if (thread->tid > 0) { ReadRandom(thread); } else { BGWriter(thread, kWrite); } } void MultiReadWhileWriting(ThreadState* thread) { if (thread->tid > 0) { MultiReadRandom(thread); } else { BGWriter(thread, kWrite); } } void ReadWhileMerging(ThreadState* thread) { if (thread->tid > 0) { ReadRandom(thread); } else { BGWriter(thread, kMerge); } } void BGWriter(ThreadState* thread, enum OperationType write_merge) { // Special thread that keeps writing until other threads are done. RandomGenerator gen; int64_t bytes = 0; std::unique_ptr write_rate_limiter; if (FLAGS_benchmark_write_rate_limit > 0) { write_rate_limiter.reset( NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit)); } // Don't merge stats from this thread with the readers. thread->stats.SetExcludeFromMerge(); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::unique_ptr ts_guard; std::unique_ptr begin_key_guard; Slice begin_key = AllocateKey(&begin_key_guard); std::unique_ptr end_key_guard; Slice end_key = AllocateKey(&end_key_guard); uint64_t num_range_deletions = 0; std::vector> expanded_key_guards; std::vector expanded_keys; if (FLAGS_expand_range_tombstones) { expanded_key_guards.resize(range_tombstone_width_); for (auto& expanded_key_guard : expanded_key_guards) { expanded_keys.emplace_back(AllocateKey(&expanded_key_guard)); } } if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } uint32_t written = 0; bool hint_printed = false; while (true) { DB* db = SelectDB(thread); { MutexLock l(&thread->shared->mu); if (FLAGS_finish_after_writes && written == writes_) { fprintf(stderr, "Exiting the writer after %u writes...\n", written); break; } if (thread->shared->num_done + 1 >= thread->shared->num_initialized) { // Other threads have finished if (FLAGS_finish_after_writes) { // Wait for the writes to be finished if (!hint_printed) { fprintf(stderr, "Reads are finished. Have %d more writes to do\n", static_cast(writes_) - written); hint_printed = true; } } else { // Finish the write immediately break; } } } GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); Status s; Slice val = gen.Generate(); Slice ts; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->Allocate(ts_guard.get()); } if (write_merge == kWrite) { if (user_timestamp_size_ == 0) { s = db->Put(write_options_, key, val); } else { s = db->Put(write_options_, key, ts, val); } } else { s = db->Merge(write_options_, key, val); } // Restore write_options_ written++; if (!s.ok()) { fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str()); exit(1); } bytes += key.size() + val.size() + user_timestamp_size_; thread->stats.FinishedOps(&db_, db_.db, 1, kWrite); if (FLAGS_benchmark_write_rate_limit > 0) { write_rate_limiter->Request(key.size() + val.size(), Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kWrite); } if (writes_per_range_tombstone_ > 0 && written > writes_before_delete_range_ && (written - writes_before_delete_range_) / writes_per_range_tombstone_ <= max_num_range_tombstones_ && (written - writes_before_delete_range_) % writes_per_range_tombstone_ == 0) { num_range_deletions++; int64_t begin_num = thread->rand.Next() % FLAGS_num; if (FLAGS_expand_range_tombstones) { for (int64_t offset = 0; offset < range_tombstone_width_; ++offset) { GenerateKeyFromInt(begin_num + offset, FLAGS_num, &expanded_keys[offset]); if (!db->Delete(write_options_, expanded_keys[offset]).ok()) { fprintf(stderr, "delete error: %s\n", s.ToString().c_str()); exit(1); } } } else { GenerateKeyFromInt(begin_num, FLAGS_num, &begin_key); GenerateKeyFromInt(begin_num + range_tombstone_width_, FLAGS_num, &end_key); if (!db->DeleteRange(write_options_, db->DefaultColumnFamily(), begin_key, end_key) .ok()) { fprintf(stderr, "deleterange error: %s\n", s.ToString().c_str()); exit(1); } } thread->stats.FinishedOps(&db_, db_.db, 1, kWrite); // TODO: DeleteRange is not included in calculcation of bytes/rate // limiter request } } if (num_range_deletions > 0) { std::cout << "Number of range deletions: " << num_range_deletions << std::endl; } thread->stats.AddBytes(bytes); } void ReadWhileScanning(ThreadState* thread) { if (thread->tid > 0) { ReadRandom(thread); } else { BGScan(thread); } } void BGScan(ThreadState* thread) { if (FLAGS_num_multi_db > 0) { fprintf(stderr, "Not supporting multiple DBs.\n"); abort(); } assert(db_.db != nullptr); ReadOptions read_options = read_options_; std::unique_ptr ts_guard; Slice ts; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get()); read_options.timestamp = &ts; } Iterator* iter = db_.db->NewIterator(read_options); fprintf(stderr, "num reads to do %" PRIu64 "\n", reads_); Duration duration(FLAGS_duration, reads_); uint64_t num_seek_to_first = 0; uint64_t num_next = 0; while (!duration.Done(1)) { if (!iter->Valid()) { iter->SeekToFirst(); num_seek_to_first++; } else if (!iter->status().ok()) { fprintf(stderr, "Iterator error: %s\n", iter->status().ToString().c_str()); abort(); } else { iter->Next(); num_next++; } thread->stats.FinishedOps(&db_, db_.db, 1, kSeek); } (void)num_seek_to_first; (void)num_next; delete iter; } // Given a key K and value V, this puts (K+"0", V), (K+"1", V), (K+"2", V) // in DB atomically i.e in a single batch. Also refer GetMany. Status PutMany(DB* db, const WriteOptions& writeoptions, const Slice& key, const Slice& value) { std::string suffixes[3] = {"2", "1", "0"}; std::string keys[3]; WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0, FLAGS_write_batch_protection_bytes_per_key, user_timestamp_size_); Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; batch.Put(keys[i], value); } std::unique_ptr ts_guard; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); Slice ts = mock_app_clock_->Allocate(ts_guard.get()); s = batch.UpdateTimestamps( ts, [this](uint32_t) { return user_timestamp_size_; }); if (!s.ok()) { fprintf(stderr, "assign timestamp to batch: %s\n", s.ToString().c_str()); ErrorExit(); } } s = db->Write(writeoptions, &batch); return s; } // Given a key K, this deletes (K+"0", V), (K+"1", V), (K+"2", V) // in DB atomically i.e in a single batch. Also refer GetMany. Status DeleteMany(DB* db, const WriteOptions& writeoptions, const Slice& key) { std::string suffixes[3] = {"1", "2", "0"}; std::string keys[3]; WriteBatch batch(0, 0, FLAGS_write_batch_protection_bytes_per_key, user_timestamp_size_); Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; batch.Delete(keys[i]); } std::unique_ptr ts_guard; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); Slice ts = mock_app_clock_->Allocate(ts_guard.get()); s = batch.UpdateTimestamps( ts, [this](uint32_t) { return user_timestamp_size_; }); if (!s.ok()) { fprintf(stderr, "assign timestamp to batch: %s\n", s.ToString().c_str()); ErrorExit(); } } s = db->Write(writeoptions, &batch); return s; } // Given a key K and value V, this gets values for K+"0", K+"1" and K+"2" // in the same snapshot, and verifies that all the values are identical. // ASSUMES that PutMany was used to put (K, V) into the DB. Status GetMany(DB* db, const Slice& key, std::string* value) { std::string suffixes[3] = {"0", "1", "2"}; std::string keys[3]; Slice key_slices[3]; std::string values[3]; ReadOptions readoptionscopy = read_options_; std::unique_ptr ts_guard; Slice ts; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); ts = mock_app_clock_->Allocate(ts_guard.get()); readoptionscopy.timestamp = &ts; } readoptionscopy.snapshot = db->GetSnapshot(); Status s; for (int i = 0; i < 3; i++) { keys[i] = key.ToString() + suffixes[i]; key_slices[i] = keys[i]; s = db->Get(readoptionscopy, key_slices[i], value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); values[i] = ""; // we continue after error rather than exiting so that we can // find more errors if any } else if (s.IsNotFound()) { values[i] = ""; } else { values[i] = *value; } } db->ReleaseSnapshot(readoptionscopy.snapshot); if ((values[0] != values[1]) || (values[1] != values[2])) { fprintf(stderr, "inconsistent values for key %s: %s, %s, %s\n", key.ToString().c_str(), values[0].c_str(), values[1].c_str(), values[2].c_str()); // we continue after error rather than exiting so that we can // find more errors if any } return s; } // Differs from readrandomwriterandom in the following ways: // (a) Uses GetMany/PutMany to read/write key values. Refer to those funcs. // (b) Does deletes as well (per FLAGS_deletepercent) // (c) In order to achieve high % of 'found' during lookups, and to do // multiple writes (including puts and deletes) it uses upto // FLAGS_numdistinct distinct keys instead of FLAGS_num distinct keys. // (d) Does not have a MultiGet option. void RandomWithVerify(ThreadState* thread) { RandomGenerator gen; std::string value; int64_t found = 0; int get_weight = 0; int put_weight = 0; int delete_weight = 0; int64_t gets_done = 0; int64_t puts_done = 0; int64_t deletes_done = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); // the number of iterations is the larger of read_ or write_ for (int64_t i = 0; i < readwrites_; i++) { DB* db = SelectDB(thread); if (get_weight == 0 && put_weight == 0 && delete_weight == 0) { // one batch completed, reinitialize for next batch get_weight = FLAGS_readwritepercent; delete_weight = FLAGS_deletepercent; put_weight = 100 - get_weight - delete_weight; } GenerateKeyFromInt(thread->rand.Next() % FLAGS_numdistinct, FLAGS_numdistinct, &key); if (get_weight > 0) { // do all the gets first Status s = GetMany(db, key, &value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "getmany error: %s\n", s.ToString().c_str()); // we continue after error rather than exiting so that we can // find more errors if any } else if (!s.IsNotFound()) { found++; } get_weight--; gets_done++; thread->stats.FinishedOps(&db_, db_.db, 1, kRead); } else if (put_weight > 0) { // then do all the corresponding number of puts // for all the gets we have done earlier Status s = PutMany(db, write_options_, key, gen.Generate()); if (!s.ok()) { fprintf(stderr, "putmany error: %s\n", s.ToString().c_str()); exit(1); } put_weight--; puts_done++; thread->stats.FinishedOps(&db_, db_.db, 1, kWrite); } else if (delete_weight > 0) { Status s = DeleteMany(db, write_options_, key); if (!s.ok()) { fprintf(stderr, "deletemany error: %s\n", s.ToString().c_str()); exit(1); } delete_weight--; deletes_done++; thread->stats.FinishedOps(&db_, db_.db, 1, kDelete); } } char msg[128]; snprintf(msg, sizeof(msg), "( get:%" PRIu64 " put:%" PRIu64 " del:%" PRIu64 " total:%" PRIu64 " found:%" PRIu64 ")", gets_done, puts_done, deletes_done, readwrites_, found); thread->stats.AddMessage(msg); } // This is different from ReadWhileWriting because it does not use // an extra thread. void ReadRandomWriteRandom(ThreadState* thread) { ReadOptions options = read_options_; RandomGenerator gen; std::string value; int64_t found = 0; int get_weight = 0; int put_weight = 0; int64_t reads_done = 0; int64_t writes_done = 0; Duration duration(FLAGS_duration, readwrites_); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::unique_ptr ts_guard; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } // the number of iterations is the larger of read_ or write_ while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); if (get_weight == 0 && put_weight == 0) { // one batch completed, reinitialize for next batch get_weight = FLAGS_readwritepercent; put_weight = 100 - get_weight; } if (get_weight > 0) { // do all the gets first Slice ts; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get()); options.timestamp = &ts; } Status s = db->Get(options, key, &value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); // we continue after error rather than exiting so that we can // find more errors if any } else if (!s.IsNotFound()) { found++; } get_weight--; reads_done++; thread->stats.FinishedOps(nullptr, db, 1, kRead); } else if (put_weight > 0) { // then do all the corresponding number of puts // for all the gets we have done earlier Status s; if (user_timestamp_size_ > 0) { Slice ts = mock_app_clock_->Allocate(ts_guard.get()); s = db->Put(write_options_, key, ts, gen.Generate()); } else { s = db->Put(write_options_, key, gen.Generate()); } if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); ErrorExit(); } put_weight--; writes_done++; thread->stats.FinishedOps(nullptr, db, 1, kWrite); } } char msg[100]; snprintf(msg, sizeof(msg), "( reads:%" PRIu64 " writes:%" PRIu64 " total:%" PRIu64 " found:%" PRIu64 ")", reads_done, writes_done, readwrites_, found); thread->stats.AddMessage(msg); } // // Read-modify-write for random keys void UpdateRandom(ThreadState* thread) { ReadOptions options = read_options_; RandomGenerator gen; std::string value; int64_t found = 0; int64_t bytes = 0; Duration duration(FLAGS_duration, readwrites_); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::unique_ptr ts_guard; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } // the number of iterations is the larger of read_ or write_ while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); Slice ts; if (user_timestamp_size_ > 0) { // Read with newest timestamp because we are doing rmw. ts = mock_app_clock_->Allocate(ts_guard.get()); options.timestamp = &ts; } auto status = db->Get(options, key, &value); if (status.ok()) { ++found; bytes += key.size() + value.size() + user_timestamp_size_; } else if (!status.IsNotFound()) { fprintf(stderr, "Get returned an error: %s\n", status.ToString().c_str()); abort(); } if (thread->shared->write_rate_limiter) { thread->shared->write_rate_limiter->Request( key.size() + value.size(), Env::IO_HIGH, nullptr /*stats*/, RateLimiter::OpType::kWrite); } Slice val = gen.Generate(); Status s; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->Allocate(ts_guard.get()); s = db->Put(write_options_, key, ts, val); } else { s = db->Put(write_options_, key, val); } if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } bytes += key.size() + val.size() + user_timestamp_size_; thread->stats.FinishedOps(nullptr, db, 1, kUpdate); } char msg[100]; snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")", readwrites_, found); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } // Read-XOR-write for random keys. Xors the existing value with a randomly // generated value, and stores the result. Assuming A in the array of bytes // representing the existing value, we generate an array B of the same size, // then compute C = A^B as C[i]=A[i]^B[i], and store C void XORUpdateRandom(ThreadState* thread) { ReadOptions options = read_options_; RandomGenerator gen; std::string existing_value; int64_t found = 0; Duration duration(FLAGS_duration, readwrites_); BytesXOROperator xor_operator; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::unique_ptr ts_guard; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } // the number of iterations is the larger of read_ or write_ while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); Slice ts; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->Allocate(ts_guard.get()); options.timestamp = &ts; } auto status = db->Get(options, key, &existing_value); if (status.ok()) { ++found; } else if (!status.IsNotFound()) { fprintf(stderr, "Get returned an error: %s\n", status.ToString().c_str()); exit(1); } Slice value = gen.Generate(static_cast(existing_value.size())); std::string new_value; if (status.ok()) { Slice existing_value_slice = Slice(existing_value); xor_operator.XOR(&existing_value_slice, value, &new_value); } else { xor_operator.XOR(nullptr, value, &new_value); } Status s; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->Allocate(ts_guard.get()); s = db->Put(write_options_, key, ts, Slice(new_value)); } else { s = db->Put(write_options_, key, Slice(new_value)); } if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); ErrorExit(); } thread->stats.FinishedOps(nullptr, db, 1); } char msg[100]; snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")", readwrites_, found); thread->stats.AddMessage(msg); } // Read-modify-write for random keys. // Each operation causes the key grow by value_size (simulating an append). // Generally used for benchmarking against merges of similar type void AppendRandom(ThreadState* thread) { ReadOptions options = read_options_; RandomGenerator gen; std::string value; int64_t found = 0; int64_t bytes = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::unique_ptr ts_guard; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } // The number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key); Slice ts; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->Allocate(ts_guard.get()); options.timestamp = &ts; } auto status = db->Get(options, key, &value); if (status.ok()) { ++found; bytes += key.size() + value.size() + user_timestamp_size_; } else if (!status.IsNotFound()) { fprintf(stderr, "Get returned an error: %s\n", status.ToString().c_str()); abort(); } else { // If not existing, then just assume an empty string of data value.clear(); } // Update the value (by appending data) Slice operand = gen.Generate(); if (value.size() > 0) { // Use a delimiter to match the semantics for StringAppendOperator value.append(1, ','); } value.append(operand.data(), operand.size()); Status s; if (user_timestamp_size_ > 0) { ts = mock_app_clock_->Allocate(ts_guard.get()); s = db->Put(write_options_, key, ts, value); } else { // Write back to the database s = db->Put(write_options_, key, value); } if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); ErrorExit(); } bytes += key.size() + value.size() + user_timestamp_size_; thread->stats.FinishedOps(nullptr, db, 1, kUpdate); } char msg[100]; snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")", readwrites_, found); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } // Read-modify-write for random keys (using MergeOperator) // The merge operator to use should be defined by FLAGS_merge_operator // Adjust FLAGS_value_size so that the keys are reasonable for this operator // Assumes that the merge operator is non-null (i.e.: is well-defined) // // For example, use FLAGS_merge_operator="uint64add" and FLAGS_value_size=8 // to simulate random additions over 64-bit integers using merge. // // The number of merges on the same key can be controlled by adjusting // FLAGS_merge_keys. void MergeRandom(ThreadState* thread) { RandomGenerator gen; int64_t bytes = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); // The number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while (!duration.Done(1)) { DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread); int64_t key_rand = thread->rand.Next() % merge_keys_; GenerateKeyFromInt(key_rand, merge_keys_, &key); Status s; Slice val = gen.Generate(); if (FLAGS_num_column_families > 1) { s = db_with_cfh->db->Merge(write_options_, db_with_cfh->GetCfh(key_rand), key, val); } else { s = db_with_cfh->db->Merge( write_options_, db_with_cfh->db->DefaultColumnFamily(), key, val); } if (!s.ok()) { fprintf(stderr, "merge error: %s\n", s.ToString().c_str()); exit(1); } bytes += key.size() + val.size(); thread->stats.FinishedOps(nullptr, db_with_cfh->db, 1, kMerge); } // Print some statistics char msg[100]; snprintf(msg, sizeof(msg), "( updates:%" PRIu64 ")", readwrites_); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } // Read and merge random keys. The amount of reads and merges are controlled // by adjusting FLAGS_num and FLAGS_mergereadpercent. The number of distinct // keys (and thus also the number of reads and merges on the same key) can be // adjusted with FLAGS_merge_keys. // // As with MergeRandom, the merge operator to use should be defined by // FLAGS_merge_operator. void ReadRandomMergeRandom(ThreadState* thread) { RandomGenerator gen; std::string value; int64_t num_hits = 0; int64_t num_gets = 0; int64_t num_merges = 0; size_t max_length = 0; std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); // the number of iterations is the larger of read_ or write_ Duration duration(FLAGS_duration, readwrites_); while (!duration.Done(1)) { DB* db = SelectDB(thread); GenerateKeyFromInt(thread->rand.Next() % merge_keys_, merge_keys_, &key); bool do_merge = int(thread->rand.Next() % 100) < FLAGS_mergereadpercent; if (do_merge) { Status s = db->Merge(write_options_, key, gen.Generate()); if (!s.ok()) { fprintf(stderr, "merge error: %s\n", s.ToString().c_str()); exit(1); } num_merges++; thread->stats.FinishedOps(nullptr, db, 1, kMerge); } else { Status s = db->Get(read_options_, key, &value); if (value.length() > max_length) max_length = value.length(); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); // we continue after error rather than exiting so that we can // find more errors if any } else if (!s.IsNotFound()) { num_hits++; } num_gets++; thread->stats.FinishedOps(nullptr, db, 1, kRead); } } char msg[100]; snprintf(msg, sizeof(msg), "(reads:%" PRIu64 " merges:%" PRIu64 " total:%" PRIu64 " hits:%" PRIu64 " maxlength:%" ROCKSDB_PRIszt ")", num_gets, num_merges, readwrites_, num_hits, max_length); thread->stats.AddMessage(msg); } void WriteSeqSeekSeq(ThreadState* thread) { writes_ = FLAGS_num; DoWrite(thread, SEQUENTIAL); // exclude writes from the ops/sec calculation thread->stats.Start(thread->tid); DB* db = SelectDB(thread); ReadOptions read_opts = read_options_; std::unique_ptr ts_guard; Slice ts; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get()); read_opts.timestamp = &ts; } std::unique_ptr iter(db->NewIterator(read_opts)); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); for (int64_t i = 0; i < FLAGS_num; ++i) { GenerateKeyFromInt(i, FLAGS_num, &key); iter->Seek(key); assert(iter->Valid() && iter->key() == key); thread->stats.FinishedOps(nullptr, db, 1, kSeek); for (int j = 0; j < FLAGS_seek_nexts && i + 1 < FLAGS_num; ++j) { if (!FLAGS_reverse_iterator) { iter->Next(); } else { iter->Prev(); } GenerateKeyFromInt(++i, FLAGS_num, &key); assert(iter->Valid() && iter->key() == key); thread->stats.FinishedOps(nullptr, db, 1, kSeek); } iter->Seek(key); assert(iter->Valid() && iter->key() == key); thread->stats.FinishedOps(nullptr, db, 1, kSeek); } } bool binary_search(std::vector& data, int start, int end, int key) { if (data.empty()) return false; if (start > end) return false; int mid = start + (end - start) / 2; if (mid > static_cast(data.size()) - 1) return false; if (data[mid] == key) { return true; } else if (data[mid] > key) { return binary_search(data, start, mid - 1, key); } else { return binary_search(data, mid + 1, end, key); } } // Does a bunch of merge operations for a key(key1) where the merge operand // is a sorted list. Next performance comparison is done between doing a Get // for key1 followed by searching for another key(key2) in the large sorted // list vs calling GetMergeOperands for key1 and then searching for the key2 // in all the sorted sub-lists. Later case is expected to be a lot faster. void GetMergeOperands(ThreadState* thread) { DB* db = SelectDB(thread); const int kTotalValues = 100000; const int kListSize = 100; std::string key = "my_key"; std::string value; for (int i = 1; i < kTotalValues; i++) { if (i % kListSize == 0) { // Remove trailing ',' value.pop_back(); db->Merge(WriteOptions(), key, value); value.clear(); } else { value.append(std::to_string(i)).append(","); } } SortList s; std::vector data; // This value can be experimented with and it will demonstrate the // perf difference between doing a Get and searching for lookup_key in the // resultant large sorted list vs doing GetMergeOperands and searching // for lookup_key within this resultant sorted sub-lists. int lookup_key = 1; // Get API call std::cout << "--- Get API call --- \n"; PinnableSlice p_slice; uint64_t st = FLAGS_env->NowNanos(); db->Get(ReadOptions(), db->DefaultColumnFamily(), key, &p_slice); s.MakeVector(data, p_slice); bool found = binary_search(data, 0, static_cast(data.size() - 1), lookup_key); std::cout << "Found key? " << std::to_string(found) << "\n"; uint64_t sp = FLAGS_env->NowNanos(); std::cout << "Get: " << (sp - st) / 1000000000.0 << " seconds\n"; std::string* dat_ = p_slice.GetSelf(); std::cout << "Sample data from Get API call: " << dat_->substr(0, 10) << "\n"; data.clear(); // GetMergeOperands API call std::cout << "--- GetMergeOperands API --- \n"; std::vector a_slice((kTotalValues / kListSize) + 1); st = FLAGS_env->NowNanos(); int number_of_operands = 0; GetMergeOperandsOptions get_merge_operands_options; get_merge_operands_options.expected_max_number_of_operands = (kTotalValues / 100) + 1; db->GetMergeOperands(ReadOptions(), db->DefaultColumnFamily(), key, a_slice.data(), &get_merge_operands_options, &number_of_operands); for (PinnableSlice& psl : a_slice) { s.MakeVector(data, psl); found = binary_search(data, 0, static_cast(data.size() - 1), lookup_key); data.clear(); if (found) break; } std::cout << "Found key? " << std::to_string(found) << "\n"; sp = FLAGS_env->NowNanos(); std::cout << "Get Merge operands: " << (sp - st) / 1000000000.0 << " seconds \n"; int to_print = 0; std::cout << "Sample data from GetMergeOperands API call: "; for (PinnableSlice& psl : a_slice) { std::cout << "List: " << to_print << " : " << *psl.GetSelf() << "\n"; if (to_print++ > 2) break; } } void VerifyChecksum(ThreadState* thread) { DB* db = SelectDB(thread); ReadOptions ro; ro.adaptive_readahead = FLAGS_adaptive_readahead; ro.async_io = FLAGS_async_io; ro.rate_limiter_priority = FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL; ro.readahead_size = FLAGS_readahead_size; Status s = db->VerifyChecksum(ro); if (!s.ok()) { fprintf(stderr, "VerifyChecksum() failed: %s\n", s.ToString().c_str()); exit(1); } } void VerifyFileChecksums(ThreadState* thread) { DB* db = SelectDB(thread); ReadOptions ro; ro.adaptive_readahead = FLAGS_adaptive_readahead; ro.async_io = FLAGS_async_io; ro.rate_limiter_priority = FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL; ro.readahead_size = FLAGS_readahead_size; Status s = db->VerifyFileChecksums(ro); if (!s.ok()) { fprintf(stderr, "VerifyFileChecksums() failed: %s\n", s.ToString().c_str()); exit(1); } } // This benchmark stress tests Transactions. For a given --duration (or // total number of --writes, a Transaction will perform a read-modify-write // to increment the value of a key in each of N(--transaction-sets) sets of // keys (where each set has --num keys). If --threads is set, this will be // done in parallel. // // To test transactions, use --transaction_db=true. Not setting this // parameter // will run the same benchmark without transactions. // // RandomTransactionVerify() will then validate the correctness of the results // by checking if the sum of all keys in each set is the same. void RandomTransaction(ThreadState* thread) { Duration duration(FLAGS_duration, readwrites_); uint16_t num_prefix_ranges = static_cast(FLAGS_transaction_sets); uint64_t transactions_done = 0; if (num_prefix_ranges == 0 || num_prefix_ranges > 9999) { fprintf(stderr, "invalid value for transaction_sets\n"); abort(); } TransactionOptions txn_options; txn_options.lock_timeout = FLAGS_transaction_lock_timeout; txn_options.set_snapshot = FLAGS_transaction_set_snapshot; RandomTransactionInserter inserter(&thread->rand, write_options_, read_options_, FLAGS_num, num_prefix_ranges); if (FLAGS_num_multi_db > 1) { fprintf(stderr, "Cannot run RandomTransaction benchmark with " "FLAGS_multi_db > 1."); abort(); } while (!duration.Done(1)) { bool success; // RandomTransactionInserter will attempt to insert a key for each // # of FLAGS_transaction_sets if (FLAGS_optimistic_transaction_db) { success = inserter.OptimisticTransactionDBInsert(db_.opt_txn_db); } else if (FLAGS_transaction_db) { TransactionDB* txn_db = reinterpret_cast(db_.db); success = inserter.TransactionDBInsert(txn_db, txn_options); } else { success = inserter.DBInsert(db_.db); } if (!success) { fprintf(stderr, "Unexpected error: %s\n", inserter.GetLastStatus().ToString().c_str()); abort(); } thread->stats.FinishedOps(nullptr, db_.db, 1, kOthers); transactions_done++; } char msg[100]; if (FLAGS_optimistic_transaction_db || FLAGS_transaction_db) { snprintf(msg, sizeof(msg), "( transactions:%" PRIu64 " aborts:%" PRIu64 ")", transactions_done, inserter.GetFailureCount()); } else { snprintf(msg, sizeof(msg), "( batches:%" PRIu64 " )", transactions_done); } thread->stats.AddMessage(msg); thread->stats.AddBytes(static_cast(inserter.GetBytesInserted())); } // Verifies consistency of data after RandomTransaction() has been run. // Since each iteration of RandomTransaction() incremented a key in each set // by the same value, the sum of the keys in each set should be the same. void RandomTransactionVerify() { if (!FLAGS_transaction_db && !FLAGS_optimistic_transaction_db) { // transactions not used, nothing to verify. return; } Status s = RandomTransactionInserter::Verify( db_.db, static_cast(FLAGS_transaction_sets)); if (s.ok()) { fprintf(stdout, "RandomTransactionVerify Success.\n"); } else { fprintf(stdout, "RandomTransactionVerify FAILED!!\n"); } } // Writes and deletes random keys without overwriting keys. // // This benchmark is intended to partially replicate the behavior of MyRocks // secondary indices: All data is stored in keys and updates happen by // deleting the old version of the key and inserting the new version. void RandomReplaceKeys(ThreadState* thread) { std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); std::unique_ptr ts_guard; if (user_timestamp_size_ > 0) { ts_guard.reset(new char[user_timestamp_size_]); } std::vector counters(FLAGS_numdistinct, 0); size_t max_counter = 50; RandomGenerator gen; Status s; DB* db = SelectDB(thread); for (int64_t i = 0; i < FLAGS_numdistinct; i++) { GenerateKeyFromInt(i * max_counter, FLAGS_num, &key); if (user_timestamp_size_ > 0) { Slice ts = mock_app_clock_->Allocate(ts_guard.get()); s = db->Put(write_options_, key, ts, gen.Generate()); } else { s = db->Put(write_options_, key, gen.Generate()); } if (!s.ok()) { fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str()); exit(1); } } db->GetSnapshot(); std::default_random_engine generator; std::normal_distribution distribution(FLAGS_numdistinct / 2.0, FLAGS_stddev); Duration duration(FLAGS_duration, FLAGS_num); while (!duration.Done(1)) { int64_t rnd_id = static_cast(distribution(generator)); int64_t key_id = std::max(std::min(FLAGS_numdistinct - 1, rnd_id), static_cast(0)); GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num, &key); if (user_timestamp_size_ > 0) { Slice ts = mock_app_clock_->Allocate(ts_guard.get()); s = FLAGS_use_single_deletes ? db->SingleDelete(write_options_, key, ts) : db->Delete(write_options_, key, ts); } else { s = FLAGS_use_single_deletes ? db->SingleDelete(write_options_, key) : db->Delete(write_options_, key); } if (s.ok()) { counters[key_id] = (counters[key_id] + 1) % max_counter; GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num, &key); if (user_timestamp_size_ > 0) { Slice ts = mock_app_clock_->Allocate(ts_guard.get()); s = db->Put(write_options_, key, ts, Slice()); } else { s = db->Put(write_options_, key, Slice()); } } if (!s.ok()) { fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str()); exit(1); } thread->stats.FinishedOps(nullptr, db, 1, kOthers); } char msg[200]; snprintf(msg, sizeof(msg), "use single deletes: %d, " "standard deviation: %lf\n", FLAGS_use_single_deletes, FLAGS_stddev); thread->stats.AddMessage(msg); } void TimeSeriesReadOrDelete(ThreadState* thread, bool do_deletion) { int64_t read = 0; int64_t found = 0; int64_t bytes = 0; Iterator* iter = nullptr; // Only work on single database assert(db_.db != nullptr); iter = db_.db->NewIterator(read_options_); std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); char value_buffer[256]; while (true) { { MutexLock l(&thread->shared->mu); if (thread->shared->num_done >= 1) { // Write thread have finished break; } } if (!FLAGS_use_tailing_iterator) { delete iter; iter = db_.db->NewIterator(read_options_); } // Pick a Iterator to use int64_t key_id = thread->rand.Next() % FLAGS_key_id_range; GenerateKeyFromInt(key_id, FLAGS_num, &key); // Reset last 8 bytes to 0 char* start = const_cast(key.data()); start += key.size() - 8; memset(start, 0, 8); ++read; bool key_found = false; // Seek the prefix for (iter->Seek(key); iter->Valid() && iter->key().starts_with(key); iter->Next()) { key_found = true; // Copy out iterator's value to make sure we read them. if (do_deletion) { bytes += iter->key().size(); if (KeyExpired(timestamp_emulator_.get(), iter->key())) { thread->stats.FinishedOps(&db_, db_.db, 1, kDelete); db_.db->Delete(write_options_, iter->key()); } else { break; } } else { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedOps(&db_, db_.db, 1, kRead); Slice value = iter->value(); memcpy(value_buffer, value.data(), std::min(value.size(), sizeof(value_buffer))); assert(iter->status().ok()); } } found += key_found; if (thread->shared->read_rate_limiter.get() != nullptr) { thread->shared->read_rate_limiter->Request( 1, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead); } } delete iter; char msg[100]; snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found, read); thread->stats.AddBytes(bytes); thread->stats.AddMessage(msg); } void TimeSeriesWrite(ThreadState* thread) { // Special thread that keeps writing until other threads are done. RandomGenerator gen; int64_t bytes = 0; // Don't merge stats from this thread with the readers. thread->stats.SetExcludeFromMerge(); std::unique_ptr write_rate_limiter; if (FLAGS_benchmark_write_rate_limit > 0) { write_rate_limiter.reset( NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit)); } std::unique_ptr key_guard; Slice key = AllocateKey(&key_guard); Duration duration(FLAGS_duration, writes_); while (!duration.Done(1)) { DB* db = SelectDB(thread); uint64_t key_id = thread->rand.Next() % FLAGS_key_id_range; // Write key id GenerateKeyFromInt(key_id, FLAGS_num, &key); // Write timestamp char* start = const_cast(key.data()); char* pos = start + 8; int bytes_to_fill = std::min(key_size_ - static_cast(pos - start), 8); uint64_t timestamp_value = timestamp_emulator_->Get(); if (port::kLittleEndian) { for (int i = 0; i < bytes_to_fill; ++i) { pos[i] = (timestamp_value >> ((bytes_to_fill - i - 1) << 3)) & 0xFF; } } else { memcpy(pos, static_cast(×tamp_value), bytes_to_fill); } timestamp_emulator_->Inc(); Status s; Slice val = gen.Generate(); s = db->Put(write_options_, key, val); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); ErrorExit(); } bytes = key.size() + val.size(); thread->stats.FinishedOps(&db_, db_.db, 1, kWrite); thread->stats.AddBytes(bytes); if (FLAGS_benchmark_write_rate_limit > 0) { write_rate_limiter->Request(key.size() + val.size(), Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kWrite); } } } void TimeSeries(ThreadState* thread) { if (thread->tid > 0) { bool do_deletion = FLAGS_expire_style == "delete" && thread->tid <= FLAGS_num_deletion_threads; TimeSeriesReadOrDelete(thread, do_deletion); } else { TimeSeriesWrite(thread); thread->stats.Stop(); thread->stats.Report("timeseries write"); } } void Compact(ThreadState* thread) { DB* db = SelectDB(thread); CompactRangeOptions cro; cro.bottommost_level_compaction = BottommostLevelCompaction::kForceOptimized; cro.max_subcompactions = static_cast(FLAGS_subcompactions); db->CompactRange(cro, nullptr, nullptr); } void CompactAll() { CompactRangeOptions cro; cro.max_subcompactions = static_cast(FLAGS_subcompactions); if (db_.db != nullptr) { db_.db->CompactRange(cro, nullptr, nullptr); } for (const auto& db_with_cfh : multi_dbs_) { db_with_cfh.db->CompactRange(cro, nullptr, nullptr); } } void WaitForCompactionHelper(DBWithColumnFamilies& db) { // This is an imperfect way of waiting for compaction. The loop and sleep // is done because a thread that finishes a compaction job should get a // chance to pickup a new compaction job. std::vector keys = {DB::Properties::kMemTableFlushPending, DB::Properties::kNumRunningFlushes, DB::Properties::kCompactionPending, DB::Properties::kNumRunningCompactions}; fprintf(stdout, "waitforcompaction(%s): started\n", db.db->GetName().c_str()); while (true) { bool retry = false; for (const auto& k : keys) { uint64_t v; if (!db.db->GetIntProperty(k, &v)) { fprintf(stderr, "waitforcompaction(%s): GetIntProperty(%s) failed\n", db.db->GetName().c_str(), k.c_str()); exit(1); } else if (v > 0) { fprintf(stdout, "waitforcompaction(%s): active(%s). Sleep 10 seconds\n", db.db->GetName().c_str(), k.c_str()); FLAGS_env->SleepForMicroseconds(10 * 1000000); retry = true; break; } } if (!retry) { fprintf(stdout, "waitforcompaction(%s): finished\n", db.db->GetName().c_str()); return; } } } void WaitForCompaction() { // Give background threads a chance to wake FLAGS_env->SleepForMicroseconds(5 * 1000000); // I am skeptical that this check race free. I hope that checking twice // reduces the chance. if (db_.db != nullptr) { WaitForCompactionHelper(db_); WaitForCompactionHelper(db_); } else { for (auto& db_with_cfh : multi_dbs_) { WaitForCompactionHelper(db_with_cfh); WaitForCompactionHelper(db_with_cfh); } } } bool CompactLevelHelper(DBWithColumnFamilies& db_with_cfh, int from_level) { std::vector files; db_with_cfh.db->GetLiveFilesMetaData(&files); assert(from_level == 0 || from_level == 1); int real_from_level = from_level; if (real_from_level > 0) { // With dynamic leveled compaction the first level with data beyond L0 // might not be L1. real_from_level = std::numeric_limits::max(); for (auto& f : files) { if (f.level > 0 && f.level < real_from_level) real_from_level = f.level; } if (real_from_level == std::numeric_limits::max()) { fprintf(stdout, "compact%d found 0 files to compact\n", from_level); return true; } } // The goal is to compact from from_level to the level that follows it, // and with dynamic leveled compaction the next level might not be // real_from_level+1 int next_level = std::numeric_limits::max(); std::vector files_to_compact; for (auto& f : files) { if (f.level == real_from_level) files_to_compact.push_back(f.name); else if (f.level > real_from_level && f.level < next_level) next_level = f.level; } if (files_to_compact.empty()) { fprintf(stdout, "compact%d found 0 files to compact\n", from_level); return true; } else if (next_level == std::numeric_limits::max()) { // There is no data beyond real_from_level. So we are done. fprintf(stdout, "compact%d found no data beyond L%d\n", from_level, real_from_level); return true; } fprintf(stdout, "compact%d found %d files to compact from L%d to L%d\n", from_level, static_cast(files_to_compact.size()), real_from_level, next_level); ROCKSDB_NAMESPACE::CompactionOptions options; // Lets RocksDB use the configured compression for this level options.compression = ROCKSDB_NAMESPACE::kDisableCompressionOption; ROCKSDB_NAMESPACE::ColumnFamilyDescriptor cfDesc; db_with_cfh.db->DefaultColumnFamily()->GetDescriptor(&cfDesc); options.output_file_size_limit = cfDesc.options.target_file_size_base; Status status = db_with_cfh.db->CompactFiles(options, files_to_compact, next_level); if (!status.ok()) { // This can fail for valid reasons including the operation was aborted // or a filename is invalid because background compaction removed it. // Having read the current cases for which an error is raised I prefer // not to figure out whether an exception should be thrown here. fprintf(stderr, "compact%d CompactFiles failed: %s\n", from_level, status.ToString().c_str()); return false; } return true; } void CompactLevel(int from_level) { if (db_.db != nullptr) { while (!CompactLevelHelper(db_, from_level)) WaitForCompaction(); } for (auto& db_with_cfh : multi_dbs_) { while (!CompactLevelHelper(db_with_cfh, from_level)) WaitForCompaction(); } } void Flush() { FlushOptions flush_opt; flush_opt.wait = true; if (db_.db != nullptr) { Status s; if (FLAGS_num_column_families > 1) { s = db_.db->Flush(flush_opt, db_.cfh); } else { s = db_.db->Flush(flush_opt, db_.db->DefaultColumnFamily()); } if (!s.ok()) { fprintf(stderr, "Flush failed: %s\n", s.ToString().c_str()); exit(1); } } else { for (const auto& db_with_cfh : multi_dbs_) { Status s; if (FLAGS_num_column_families > 1) { s = db_with_cfh.db->Flush(flush_opt, db_with_cfh.cfh); } else { s = db_with_cfh.db->Flush(flush_opt, db_with_cfh.db->DefaultColumnFamily()); } if (!s.ok()) { fprintf(stderr, "Flush failed: %s\n", s.ToString().c_str()); exit(1); } } } fprintf(stdout, "flush memtable\n"); } void ResetStats() { if (db_.db != nullptr) { db_.db->ResetStats(); } for (const auto& db_with_cfh : multi_dbs_) { db_with_cfh.db->ResetStats(); } } void PrintStatsHistory() { if (db_.db != nullptr) { PrintStatsHistoryImpl(db_.db, false); } for (const auto& db_with_cfh : multi_dbs_) { PrintStatsHistoryImpl(db_with_cfh.db, true); } } void PrintStatsHistoryImpl(DB* db, bool print_header) { if (print_header) { fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str()); } std::unique_ptr shi; Status s = db->GetStatsHistory(0, std::numeric_limits::max(), &shi); if (!s.ok()) { fprintf(stdout, "%s\n", s.ToString().c_str()); return; } assert(shi); while (shi->Valid()) { uint64_t stats_time = shi->GetStatsTime(); fprintf(stdout, "------ %s ------\n", TimeToHumanString(static_cast(stats_time)).c_str()); for (auto& entry : shi->GetStatsMap()) { fprintf(stdout, " %" PRIu64 " %s %" PRIu64 "\n", stats_time, entry.first.c_str(), entry.second); } shi->Next(); } } void PrintStats(const char* key) { if (db_.db != nullptr) { PrintStats(db_.db, key, false); } for (const auto& db_with_cfh : multi_dbs_) { PrintStats(db_with_cfh.db, key, true); } } void PrintStats(DB* db, const char* key, bool print_header = false) { if (print_header) { fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str()); } std::string stats; if (!db->GetProperty(key, &stats)) { stats = "(failed)"; } fprintf(stdout, "\n%s\n", stats.c_str()); } void PrintStats(const std::vector& keys) { if (db_.db != nullptr) { PrintStats(db_.db, keys); } for (const auto& db_with_cfh : multi_dbs_) { PrintStats(db_with_cfh.db, keys, true); } } void PrintStats(DB* db, const std::vector& keys, bool print_header = false) { if (print_header) { fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str()); } for (const auto& key : keys) { std::string stats; if (!db->GetProperty(key, &stats)) { stats = "(failed)"; } fprintf(stdout, "%s: %s\n", key.c_str(), stats.c_str()); } } void Replay(ThreadState* thread) { if (db_.db != nullptr) { Replay(thread, &db_); } } void Replay(ThreadState* /*thread*/, DBWithColumnFamilies* db_with_cfh) { Status s; std::unique_ptr trace_reader; s = NewFileTraceReader(FLAGS_env, EnvOptions(), FLAGS_trace_file, &trace_reader); if (!s.ok()) { fprintf( stderr, "Encountered an error creating a TraceReader from the trace file. " "Error: %s\n", s.ToString().c_str()); exit(1); } std::unique_ptr replayer; s = db_with_cfh->db->NewDefaultReplayer(db_with_cfh->cfh, std::move(trace_reader), &replayer); if (!s.ok()) { fprintf(stderr, "Encountered an error creating a default Replayer. " "Error: %s\n", s.ToString().c_str()); exit(1); } s = replayer->Prepare(); if (!s.ok()) { fprintf(stderr, "Prepare for replay failed. Error: %s\n", s.ToString().c_str()); } s = replayer->Replay( ReplayOptions(static_cast(FLAGS_trace_replay_threads), FLAGS_trace_replay_fast_forward), nullptr); replayer.reset(); if (s.ok()) { fprintf(stdout, "Replay completed from trace_file: %s\n", FLAGS_trace_file.c_str()); } else { fprintf(stderr, "Replay failed. Error: %s\n", s.ToString().c_str()); } } void Backup(ThreadState* thread) { DB* db = SelectDB(thread); std::unique_ptr engine_options( new BackupEngineOptions(FLAGS_backup_dir)); Status s; BackupEngine* backup_engine; if (FLAGS_backup_rate_limit > 0) { engine_options->backup_rate_limiter.reset(NewGenericRateLimiter( FLAGS_backup_rate_limit, 100000 /* refill_period_us */, 10 /* fairness */, RateLimiter::Mode::kAllIo)); } // Build new backup of the entire DB engine_options->destroy_old_data = true; s = BackupEngine::Open(FLAGS_env, *engine_options, &backup_engine); assert(s.ok()); s = backup_engine->CreateNewBackup(db); assert(s.ok()); std::vector backup_info; backup_engine->GetBackupInfo(&backup_info); // Verify that a new backup is created assert(backup_info.size() == 1); } void Restore(ThreadState* /* thread */) { std::unique_ptr engine_options( new BackupEngineOptions(FLAGS_backup_dir)); if (FLAGS_restore_rate_limit > 0) { engine_options->restore_rate_limiter.reset(NewGenericRateLimiter( FLAGS_restore_rate_limit, 100000 /* refill_period_us */, 10 /* fairness */, RateLimiter::Mode::kAllIo)); } BackupEngineReadOnly* backup_engine; Status s = BackupEngineReadOnly::Open(FLAGS_env, *engine_options, &backup_engine); assert(s.ok()); s = backup_engine->RestoreDBFromLatestBackup(FLAGS_restore_dir, FLAGS_restore_dir); assert(s.ok()); delete backup_engine; } }; int db_bench_tool(int argc, char** argv) { ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ConfigOptions config_options; static bool initialized = false; if (!initialized) { SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) + " [OPTIONS]..."); SetVersionString(GetRocksVersionAsString(true)); initialized = true; } ParseCommandLineFlags(&argc, &argv, true); FLAGS_compaction_style_e = (ROCKSDB_NAMESPACE::CompactionStyle)FLAGS_compaction_style; if (FLAGS_statistics && !FLAGS_statistics_string.empty()) { fprintf(stderr, "Cannot provide both --statistics and --statistics_string.\n"); exit(1); } if (!FLAGS_statistics_string.empty()) { Status s = Statistics::CreateFromString(config_options, FLAGS_statistics_string, &dbstats); if (dbstats == nullptr) { fprintf(stderr, "No Statistics registered matching string: %s status=%s\n", FLAGS_statistics_string.c_str(), s.ToString().c_str()); exit(1); } } if (FLAGS_statistics) { dbstats = ROCKSDB_NAMESPACE::CreateDBStatistics(); } if (dbstats) { dbstats->set_stats_level(static_cast(FLAGS_stats_level)); } FLAGS_compaction_pri_e = (ROCKSDB_NAMESPACE::CompactionPri)FLAGS_compaction_pri; std::vector fanout = ROCKSDB_NAMESPACE::StringSplit( FLAGS_max_bytes_for_level_multiplier_additional, ','); for (size_t j = 0; j < fanout.size(); j++) { FLAGS_max_bytes_for_level_multiplier_additional_v.push_back( #ifndef CYGWIN std::stoi(fanout[j])); #else stoi(fanout[j])); #endif } FLAGS_compression_type_e = StringToCompressionType(FLAGS_compression_type.c_str()); FLAGS_wal_compression_e = StringToCompressionType(FLAGS_wal_compression.c_str()); FLAGS_compressed_secondary_cache_compression_type_e = StringToCompressionType( FLAGS_compressed_secondary_cache_compression_type.c_str()); // Stacked BlobDB FLAGS_blob_db_compression_type_e = StringToCompressionType(FLAGS_blob_db_compression_type.c_str()); int env_opts = !FLAGS_env_uri.empty() + !FLAGS_fs_uri.empty(); if (env_opts > 1) { fprintf(stderr, "Error: --env_uri and --fs_uri are mutually exclusive\n"); exit(1); } if (env_opts == 1) { Status s = Env::CreateFromUri(config_options, FLAGS_env_uri, FLAGS_fs_uri, &FLAGS_env, &env_guard); if (!s.ok()) { fprintf(stderr, "Failed creating env: %s\n", s.ToString().c_str()); exit(1); } } else if (FLAGS_simulate_hdd || FLAGS_simulate_hybrid_fs_file != "") { //**TODO: Make the simulate fs something that can be loaded // from the ObjectRegistry... static std::shared_ptr composite_env = NewCompositeEnv(std::make_shared( FileSystem::Default(), FLAGS_simulate_hybrid_fs_file, /*throughput_multiplier=*/ int{FLAGS_simulate_hybrid_hdd_multipliers}, /*is_full_fs_warm=*/FLAGS_simulate_hdd)); FLAGS_env = composite_env.get(); } // Let -readonly imply -use_existing_db FLAGS_use_existing_db |= FLAGS_readonly; if (FLAGS_build_info) { std::string build_info; std::cout << GetRocksBuildInfoAsString(build_info, true) << std::endl; // Similar to --version, nothing else will be done when this flag is set exit(0); } if (!FLAGS_seed) { uint64_t now = FLAGS_env->GetSystemClock()->NowMicros(); seed_base = static_cast(now); fprintf(stdout, "Set seed to %" PRIu64 " because --seed was 0\n", *seed_base); } else { seed_base = FLAGS_seed; } if (FLAGS_use_existing_keys && !FLAGS_use_existing_db) { fprintf(stderr, "`-use_existing_db` must be true for `-use_existing_keys` to be " "settable\n"); exit(1); } if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NONE")) FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::NONE; else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NORMAL")) FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::NORMAL; else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "SEQUENTIAL")) FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::SEQUENTIAL; else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "WILLNEED")) FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::WILLNEED; else { fprintf(stdout, "Unknown compaction fadvice:%s\n", FLAGS_compaction_fadvice.c_str()); exit(1); } FLAGS_value_size_distribution_type_e = StringToDistributionType(FLAGS_value_size_distribution_type.c_str()); // Note options sanitization may increase thread pool sizes according to // max_background_flushes/max_background_compactions/max_background_jobs FLAGS_env->SetBackgroundThreads(FLAGS_num_high_pri_threads, ROCKSDB_NAMESPACE::Env::Priority::HIGH); FLAGS_env->SetBackgroundThreads(FLAGS_num_bottom_pri_threads, ROCKSDB_NAMESPACE::Env::Priority::BOTTOM); FLAGS_env->SetBackgroundThreads(FLAGS_num_low_pri_threads, ROCKSDB_NAMESPACE::Env::Priority::LOW); // Choose a location for the test database if none given with --db= if (FLAGS_db.empty()) { std::string default_db_path; FLAGS_env->GetTestDirectory(&default_db_path); default_db_path += "/dbbench"; FLAGS_db = default_db_path; } if (FLAGS_backup_dir.empty()) { FLAGS_backup_dir = FLAGS_db + "/backup"; } if (FLAGS_restore_dir.empty()) { FLAGS_restore_dir = FLAGS_db + "/restore"; } if (FLAGS_stats_interval_seconds > 0) { // When both are set then FLAGS_stats_interval determines the frequency // at which the timer is checked for FLAGS_stats_interval_seconds FLAGS_stats_interval = 1000; } if (FLAGS_seek_missing_prefix && FLAGS_prefix_size <= 8) { fprintf(stderr, "prefix_size > 8 required by --seek_missing_prefix\n"); exit(1); } ROCKSDB_NAMESPACE::Benchmark benchmark; benchmark.Run(); if (FLAGS_print_malloc_stats) { std::string stats_string; ROCKSDB_NAMESPACE::DumpMallocStats(&stats_string); fprintf(stdout, "Malloc stats:\n%s\n", stats_string.c_str()); } return 0; } } // namespace ROCKSDB_NAMESPACE #endif