// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #ifndef ROCKSDB_LITE #include #include #include #include #include "rocksdb/env_encryption.h" #include "util/aligned_buffer.h" #include "util/coding.h" #include "util/random.h" #endif namespace rocksdb { #ifndef ROCKSDB_LITE class EncryptedSequentialFile : public SequentialFile { private: std::unique_ptr file_; std::unique_ptr stream_; uint64_t offset_; size_t prefixLength_; public: // Default ctor. Given underlying sequential file is supposed to be at // offset == prefixLength. EncryptedSequentialFile(SequentialFile* f, BlockAccessCipherStream* s, size_t prefixLength) : file_(f), stream_(s), offset_(prefixLength), prefixLength_(prefixLength) { } // Read up to "n" bytes from the file. "scratch[0..n-1]" may be // written by this routine. Sets "*result" to the data that was // read (including if fewer than "n" bytes were successfully read). // May set "*result" to point at data in "scratch[0..n-1]", so // "scratch[0..n-1]" must be live when "*result" is used. // If an error was encountered, returns a non-OK status. // // REQUIRES: External synchronization Status Read(size_t n, Slice* result, char* scratch) override { assert(scratch); Status status = file_->Read(n, result, scratch); if (!status.ok()) { return status; } status = stream_->Decrypt(offset_, (char*)result->data(), result->size()); offset_ += result->size(); // We've already ready data from disk, so update offset_ even if decryption fails. return status; } // Skip "n" bytes from the file. This is guaranteed to be no // slower that reading the same data, but may be faster. // // If end of file is reached, skipping will stop at the end of the // file, and Skip will return OK. // // REQUIRES: External synchronization Status Skip(uint64_t n) override { auto status = file_->Skip(n); if (!status.ok()) { return status; } offset_ += n; return status; } // Indicates the upper layers if the current SequentialFile implementation // uses direct IO. bool use_direct_io() const override { return file_->use_direct_io(); } // Use the returned alignment value to allocate // aligned buffer for Direct I/O size_t GetRequiredBufferAlignment() const override { return file_->GetRequiredBufferAlignment(); } // Remove any kind of caching of data from the offset to offset+length // of this file. If the length is 0, then it refers to the end of file. // If the system is not caching the file contents, then this is a noop. Status InvalidateCache(size_t offset, size_t length) override { return file_->InvalidateCache(offset + prefixLength_, length); } // Positioned Read for direct I/O // If Direct I/O enabled, offset, n, and scratch should be properly aligned Status PositionedRead(uint64_t offset, size_t n, Slice* result, char* scratch) override { assert(scratch); offset += prefixLength_; // Skip prefix auto status = file_->PositionedRead(offset, n, result, scratch); if (!status.ok()) { return status; } offset_ = offset + result->size(); status = stream_->Decrypt(offset, (char*)result->data(), result->size()); return status; } }; // A file abstraction for randomly reading the contents of a file. class EncryptedRandomAccessFile : public RandomAccessFile { private: std::unique_ptr file_; std::unique_ptr stream_; size_t prefixLength_; public: EncryptedRandomAccessFile(RandomAccessFile* f, BlockAccessCipherStream* s, size_t prefixLength) : file_(f), stream_(s), prefixLength_(prefixLength) { } // Read up to "n" bytes from the file starting at "offset". // "scratch[0..n-1]" may be written by this routine. Sets "*result" // to the data that was read (including if fewer than "n" bytes were // successfully read). May set "*result" to point at data in // "scratch[0..n-1]", so "scratch[0..n-1]" must be live when // "*result" is used. If an error was encountered, returns a non-OK // status. // // Safe for concurrent use by multiple threads. // If Direct I/O enabled, offset, n, and scratch should be aligned properly. Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { assert(scratch); offset += prefixLength_; auto status = file_->Read(offset, n, result, scratch); if (!status.ok()) { return status; } status = stream_->Decrypt(offset, (char*)result->data(), result->size()); return status; } // Readahead the file starting from offset by n bytes for caching. Status Prefetch(uint64_t offset, size_t n) override { //return Status::OK(); return file_->Prefetch(offset + prefixLength_, n); } // Tries to get an unique ID for this file that will be the same each time // the file is opened (and will stay the same while the file is open). // Furthermore, it tries to make this ID at most "max_size" bytes. If such an // ID can be created this function returns the length of the ID and places it // in "id"; otherwise, this function returns 0, in which case "id" // may not have been modified. // // This function guarantees, for IDs from a given environment, two unique ids // cannot be made equal to each other by adding arbitrary bytes to one of // them. That is, no unique ID is the prefix of another. // // This function guarantees that the returned ID will not be interpretable as // a single varint. // // Note: these IDs are only valid for the duration of the process. size_t GetUniqueId(char* id, size_t max_size) const override { return file_->GetUniqueId(id, max_size); }; void Hint(AccessPattern pattern) override { file_->Hint(pattern); } // Indicates the upper layers if the current RandomAccessFile implementation // uses direct IO. bool use_direct_io() const override { return file_->use_direct_io(); } // Use the returned alignment value to allocate // aligned buffer for Direct I/O size_t GetRequiredBufferAlignment() const override { return file_->GetRequiredBufferAlignment(); } // Remove any kind of caching of data from the offset to offset+length // of this file. If the length is 0, then it refers to the end of file. // If the system is not caching the file contents, then this is a noop. Status InvalidateCache(size_t offset, size_t length) override { return file_->InvalidateCache(offset + prefixLength_, length); } }; // A file abstraction for sequential writing. The implementation // must provide buffering since callers may append small fragments // at a time to the file. class EncryptedWritableFile : public WritableFileWrapper { private: std::unique_ptr file_; std::unique_ptr stream_; size_t prefixLength_; public: // Default ctor. Prefix is assumed to be written already. EncryptedWritableFile(WritableFile* f, BlockAccessCipherStream* s, size_t prefixLength) : WritableFileWrapper(f), file_(f), stream_(s), prefixLength_(prefixLength) { } Status Append(const Slice& data) override { AlignedBuffer buf; Status status; Slice dataToAppend(data); if (data.size() > 0) { auto offset = file_->GetFileSize(); // size including prefix // Encrypt in cloned buffer buf.Alignment(GetRequiredBufferAlignment()); buf.AllocateNewBuffer(data.size()); memmove(buf.BufferStart(), data.data(), data.size()); status = stream_->Encrypt(offset, buf.BufferStart(), data.size()); if (!status.ok()) { return status; } dataToAppend = Slice(buf.BufferStart(), data.size()); } status = file_->Append(dataToAppend); if (!status.ok()) { return status; } return status; } Status PositionedAppend(const Slice& data, uint64_t offset) override { AlignedBuffer buf; Status status; Slice dataToAppend(data); offset += prefixLength_; if (data.size() > 0) { // Encrypt in cloned buffer buf.Alignment(GetRequiredBufferAlignment()); buf.AllocateNewBuffer(data.size()); memmove(buf.BufferStart(), data.data(), data.size()); status = stream_->Encrypt(offset, buf.BufferStart(), data.size()); if (!status.ok()) { return status; } dataToAppend = Slice(buf.BufferStart(), data.size()); } status = file_->PositionedAppend(dataToAppend, offset); if (!status.ok()) { return status; } return status; } // Indicates the upper layers if the current WritableFile implementation // uses direct IO. bool use_direct_io() const override { return file_->use_direct_io(); } // Use the returned alignment value to allocate // aligned buffer for Direct I/O size_t GetRequiredBufferAlignment() const override { return file_->GetRequiredBufferAlignment(); } /* * Get the size of valid data in the file. */ uint64_t GetFileSize() override { return file_->GetFileSize() - prefixLength_; } // Truncate is necessary to trim the file to the correct size // before closing. It is not always possible to keep track of the file // size due to whole pages writes. The behavior is undefined if called // with other writes to follow. Status Truncate(uint64_t size) override { return file_->Truncate(size + prefixLength_); } // Remove any kind of caching of data from the offset to offset+length // of this file. If the length is 0, then it refers to the end of file. // If the system is not caching the file contents, then this is a noop. // This call has no effect on dirty pages in the cache. Status InvalidateCache(size_t offset, size_t length) override { return file_->InvalidateCache(offset + prefixLength_, length); } // Sync a file range with disk. // offset is the starting byte of the file range to be synchronized. // nbytes specifies the length of the range to be synchronized. // This asks the OS to initiate flushing the cached data to disk, // without waiting for completion. // Default implementation does nothing. Status RangeSync(uint64_t offset, uint64_t nbytes) override { return file_->RangeSync(offset + prefixLength_, nbytes); } // PrepareWrite performs any necessary preparation for a write // before the write actually occurs. This allows for pre-allocation // of space on devices where it can result in less file // fragmentation and/or less waste from over-zealous filesystem // pre-allocation. void PrepareWrite(size_t offset, size_t len) override { file_->PrepareWrite(offset + prefixLength_, len); } // Pre-allocates space for a file. Status Allocate(uint64_t offset, uint64_t len) override { return file_->Allocate(offset + prefixLength_, len); } }; // A file abstraction for random reading and writing. class EncryptedRandomRWFile : public RandomRWFile { private: std::unique_ptr file_; std::unique_ptr stream_; size_t prefixLength_; public: EncryptedRandomRWFile(RandomRWFile* f, BlockAccessCipherStream* s, size_t prefixLength) : file_(f), stream_(s), prefixLength_(prefixLength) {} // Indicates if the class makes use of direct I/O // If false you must pass aligned buffer to Write() bool use_direct_io() const override { return file_->use_direct_io(); } // Use the returned alignment value to allocate // aligned buffer for Direct I/O size_t GetRequiredBufferAlignment() const override { return file_->GetRequiredBufferAlignment(); } // Write bytes in `data` at offset `offset`, Returns Status::OK() on success. // Pass aligned buffer when use_direct_io() returns true. Status Write(uint64_t offset, const Slice& data) override { AlignedBuffer buf; Status status; Slice dataToWrite(data); offset += prefixLength_; if (data.size() > 0) { // Encrypt in cloned buffer buf.Alignment(GetRequiredBufferAlignment()); buf.AllocateNewBuffer(data.size()); memmove(buf.BufferStart(), data.data(), data.size()); status = stream_->Encrypt(offset, buf.BufferStart(), data.size()); if (!status.ok()) { return status; } dataToWrite = Slice(buf.BufferStart(), data.size()); } status = file_->Write(offset, dataToWrite); return status; } // Read up to `n` bytes starting from offset `offset` and store them in // result, provided `scratch` size should be at least `n`. // Returns Status::OK() on success. Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { assert(scratch); offset += prefixLength_; auto status = file_->Read(offset, n, result, scratch); if (!status.ok()) { return status; } status = stream_->Decrypt(offset, (char*)result->data(), result->size()); return status; } Status Flush() override { return file_->Flush(); } Status Sync() override { return file_->Sync(); } Status Fsync() override { return file_->Fsync(); } Status Close() override { return file_->Close(); } }; // EncryptedEnv implements an Env wrapper that adds encryption to files stored on disk. class EncryptedEnv : public EnvWrapper { public: EncryptedEnv(Env* base_env, EncryptionProvider *provider) : EnvWrapper(base_env) { provider_ = provider; } // NewSequentialFile opens a file for sequential reading. Status NewSequentialFile(const std::string& fname, std::unique_ptr* result, const EnvOptions& options) override { result->reset(); if (options.use_mmap_reads) { return Status::InvalidArgument(); } // Open file using underlying Env implementation std::unique_ptr underlying; auto status = EnvWrapper::NewSequentialFile(fname, &underlying, options); if (!status.ok()) { return status; } // Read prefix (if needed) AlignedBuffer prefixBuf; Slice prefixSlice; size_t prefixLength = provider_->GetPrefixLength(); if (prefixLength > 0) { // Read prefix prefixBuf.Alignment(underlying->GetRequiredBufferAlignment()); prefixBuf.AllocateNewBuffer(prefixLength); status = underlying->Read(prefixLength, &prefixSlice, prefixBuf.BufferStart()); if (!status.ok()) { return status; } } // Create cipher stream std::unique_ptr stream; status = provider_->CreateCipherStream(fname, options, prefixSlice, &stream); if (!status.ok()) { return status; } (*result) = std::unique_ptr(new EncryptedSequentialFile(underlying.release(), stream.release(), prefixLength)); return Status::OK(); } // NewRandomAccessFile opens a file for random read access. Status NewRandomAccessFile(const std::string& fname, std::unique_ptr* result, const EnvOptions& options) override { result->reset(); if (options.use_mmap_reads) { return Status::InvalidArgument(); } // Open file using underlying Env implementation std::unique_ptr underlying; auto status = EnvWrapper::NewRandomAccessFile(fname, &underlying, options); if (!status.ok()) { return status; } // Read prefix (if needed) AlignedBuffer prefixBuf; Slice prefixSlice; size_t prefixLength = provider_->GetPrefixLength(); if (prefixLength > 0) { // Read prefix prefixBuf.Alignment(underlying->GetRequiredBufferAlignment()); prefixBuf.AllocateNewBuffer(prefixLength); status = underlying->Read(0, prefixLength, &prefixSlice, prefixBuf.BufferStart()); if (!status.ok()) { return status; } } // Create cipher stream std::unique_ptr stream; status = provider_->CreateCipherStream(fname, options, prefixSlice, &stream); if (!status.ok()) { return status; } (*result) = std::unique_ptr(new EncryptedRandomAccessFile(underlying.release(), stream.release(), prefixLength)); return Status::OK(); } // NewWritableFile opens a file for sequential writing. Status NewWritableFile(const std::string& fname, std::unique_ptr* result, const EnvOptions& options) override { result->reset(); if (options.use_mmap_writes) { return Status::InvalidArgument(); } // Open file using underlying Env implementation std::unique_ptr underlying; Status status = EnvWrapper::NewWritableFile(fname, &underlying, options); if (!status.ok()) { return status; } // Initialize & write prefix (if needed) AlignedBuffer prefixBuf; Slice prefixSlice; size_t prefixLength = provider_->GetPrefixLength(); if (prefixLength > 0) { // Initialize prefix prefixBuf.Alignment(underlying->GetRequiredBufferAlignment()); prefixBuf.AllocateNewBuffer(prefixLength); provider_->CreateNewPrefix(fname, prefixBuf.BufferStart(), prefixLength); prefixSlice = Slice(prefixBuf.BufferStart(), prefixLength); // Write prefix status = underlying->Append(prefixSlice); if (!status.ok()) { return status; } } // Create cipher stream std::unique_ptr stream; status = provider_->CreateCipherStream(fname, options, prefixSlice, &stream); if (!status.ok()) { return status; } (*result) = std::unique_ptr(new EncryptedWritableFile(underlying.release(), stream.release(), prefixLength)); return Status::OK(); } // Create an object that writes to a new file with the specified // name. Deletes any existing file with the same name and creates a // new file. On success, stores a pointer to the new file in // *result and returns OK. On failure stores nullptr in *result and // returns non-OK. // // The returned file will only be accessed by one thread at a time. Status ReopenWritableFile(const std::string& fname, std::unique_ptr* result, const EnvOptions& options) override { result->reset(); if (options.use_mmap_writes) { return Status::InvalidArgument(); } // Open file using underlying Env implementation std::unique_ptr underlying; Status status = EnvWrapper::ReopenWritableFile(fname, &underlying, options); if (!status.ok()) { return status; } // Initialize & write prefix (if needed) AlignedBuffer prefixBuf; Slice prefixSlice; size_t prefixLength = provider_->GetPrefixLength(); if (prefixLength > 0) { // Initialize prefix prefixBuf.Alignment(underlying->GetRequiredBufferAlignment()); prefixBuf.AllocateNewBuffer(prefixLength); provider_->CreateNewPrefix(fname, prefixBuf.BufferStart(), prefixLength); prefixSlice = Slice(prefixBuf.BufferStart(), prefixLength); // Write prefix status = underlying->Append(prefixSlice); if (!status.ok()) { return status; } } // Create cipher stream std::unique_ptr stream; status = provider_->CreateCipherStream(fname, options, prefixSlice, &stream); if (!status.ok()) { return status; } (*result) = std::unique_ptr(new EncryptedWritableFile(underlying.release(), stream.release(), prefixLength)); return Status::OK(); } // Reuse an existing file by renaming it and opening it as writable. Status ReuseWritableFile(const std::string& fname, const std::string& old_fname, std::unique_ptr* result, const EnvOptions& options) override { result->reset(); if (options.use_mmap_writes) { return Status::InvalidArgument(); } // Open file using underlying Env implementation std::unique_ptr underlying; Status status = EnvWrapper::ReuseWritableFile(fname, old_fname, &underlying, options); if (!status.ok()) { return status; } // Initialize & write prefix (if needed) AlignedBuffer prefixBuf; Slice prefixSlice; size_t prefixLength = provider_->GetPrefixLength(); if (prefixLength > 0) { // Initialize prefix prefixBuf.Alignment(underlying->GetRequiredBufferAlignment()); prefixBuf.AllocateNewBuffer(prefixLength); provider_->CreateNewPrefix(fname, prefixBuf.BufferStart(), prefixLength); prefixSlice = Slice(prefixBuf.BufferStart(), prefixLength); // Write prefix status = underlying->Append(prefixSlice); if (!status.ok()) { return status; } } // Create cipher stream std::unique_ptr stream; status = provider_->CreateCipherStream(fname, options, prefixSlice, &stream); if (!status.ok()) { return status; } (*result) = std::unique_ptr(new EncryptedWritableFile(underlying.release(), stream.release(), prefixLength)); return Status::OK(); } // Open `fname` for random read and write, if file doesn't exist the file // will be created. On success, stores a pointer to the new file in // *result and returns OK. On failure returns non-OK. // // The returned file will only be accessed by one thread at a time. Status NewRandomRWFile(const std::string& fname, std::unique_ptr* result, const EnvOptions& options) override { result->reset(); if (options.use_mmap_reads || options.use_mmap_writes) { return Status::InvalidArgument(); } // Check file exists bool isNewFile = !FileExists(fname).ok(); // Open file using underlying Env implementation std::unique_ptr underlying; Status status = EnvWrapper::NewRandomRWFile(fname, &underlying, options); if (!status.ok()) { return status; } // Read or Initialize & write prefix (if needed) AlignedBuffer prefixBuf; Slice prefixSlice; size_t prefixLength = provider_->GetPrefixLength(); if (prefixLength > 0) { prefixBuf.Alignment(underlying->GetRequiredBufferAlignment()); prefixBuf.AllocateNewBuffer(prefixLength); if (!isNewFile) { // File already exists, read prefix status = underlying->Read(0, prefixLength, &prefixSlice, prefixBuf.BufferStart()); if (!status.ok()) { return status; } } else { // File is new, initialize & write prefix provider_->CreateNewPrefix(fname, prefixBuf.BufferStart(), prefixLength); prefixSlice = Slice(prefixBuf.BufferStart(), prefixLength); // Write prefix status = underlying->Write(0, prefixSlice); if (!status.ok()) { return status; } } } // Create cipher stream std::unique_ptr stream; status = provider_->CreateCipherStream(fname, options, prefixSlice, &stream); if (!status.ok()) { return status; } (*result) = std::unique_ptr(new EncryptedRandomRWFile(underlying.release(), stream.release(), prefixLength)); return Status::OK(); } // Store in *result the attributes of the children of the specified directory. // In case the implementation lists the directory prior to iterating the files // and files are concurrently deleted, the deleted files will be omitted from // result. // The name attributes are relative to "dir". // Original contents of *results are dropped. // Returns OK if "dir" exists and "*result" contains its children. // NotFound if "dir" does not exist, the calling process does not have // permission to access "dir", or if "dir" is invalid. // IOError if an IO Error was encountered Status GetChildrenFileAttributes( const std::string& dir, std::vector* result) override { auto status = EnvWrapper::GetChildrenFileAttributes(dir, result); if (!status.ok()) { return status; } size_t prefixLength = provider_->GetPrefixLength(); for (auto it = std::begin(*result); it!=std::end(*result); ++it) { assert(it->size_bytes >= prefixLength); it->size_bytes -= prefixLength; } return Status::OK(); } // Store the size of fname in *file_size. Status GetFileSize(const std::string& fname, uint64_t* file_size) override { auto status = EnvWrapper::GetFileSize(fname, file_size); if (!status.ok()) { return status; } size_t prefixLength = provider_->GetPrefixLength(); assert(*file_size >= prefixLength); *file_size -= prefixLength; return Status::OK(); } private: EncryptionProvider *provider_; }; // Returns an Env that encrypts data when stored on disk and decrypts data when // read from disk. Env* NewEncryptedEnv(Env* base_env, EncryptionProvider* provider) { return new EncryptedEnv(base_env, provider); } // Encrypt one or more (partial) blocks of data at the file offset. // Length of data is given in dataSize. Status BlockAccessCipherStream::Encrypt(uint64_t fileOffset, char *data, size_t dataSize) { // Calculate block index auto blockSize = BlockSize(); uint64_t blockIndex = fileOffset / blockSize; size_t blockOffset = fileOffset % blockSize; std::unique_ptr blockBuffer; std::string scratch; AllocateScratch(scratch); // Encrypt individual blocks. while (1) { char *block = data; size_t n = std::min(dataSize, blockSize - blockOffset); if (n != blockSize) { // We're not encrypting a full block. // Copy data to blockBuffer if (!blockBuffer.get()) { // Allocate buffer blockBuffer = std::unique_ptr(new char[blockSize]); } block = blockBuffer.get(); // Copy plain data to block buffer memmove(block + blockOffset, data, n); } auto status = EncryptBlock(blockIndex, block, (char*)scratch.data()); if (!status.ok()) { return status; } if (block != data) { // Copy encrypted data back to `data`. memmove(data, block + blockOffset, n); } dataSize -= n; if (dataSize == 0) { return Status::OK(); } data += n; blockOffset = 0; blockIndex++; } } // Decrypt one or more (partial) blocks of data at the file offset. // Length of data is given in dataSize. Status BlockAccessCipherStream::Decrypt(uint64_t fileOffset, char *data, size_t dataSize) { // Calculate block index auto blockSize = BlockSize(); uint64_t blockIndex = fileOffset / blockSize; size_t blockOffset = fileOffset % blockSize; std::unique_ptr blockBuffer; std::string scratch; AllocateScratch(scratch); assert(fileOffset < dataSize); // Decrypt individual blocks. while (1) { char *block = data; size_t n = std::min(dataSize, blockSize - blockOffset); if (n != blockSize) { // We're not decrypting a full block. // Copy data to blockBuffer if (!blockBuffer.get()) { // Allocate buffer blockBuffer = std::unique_ptr(new char[blockSize]); } block = blockBuffer.get(); // Copy encrypted data to block buffer memmove(block + blockOffset, data, n); } auto status = DecryptBlock(blockIndex, block, (char*)scratch.data()); if (!status.ok()) { return status; } if (block != data) { // Copy decrypted data back to `data`. memmove(data, block + blockOffset, n); } // Simply decrementing dataSize by n could cause it to underflow, // which will very likely make it read over the original bounds later assert(dataSize >= n); if (dataSize < n) { return Status::Corruption("Cannot decrypt data at given offset"); } dataSize -= n; if (dataSize == 0) { return Status::OK(); } data += n; blockOffset = 0; blockIndex++; } } // Encrypt a block of data. // Length of data is equal to BlockSize(). Status ROT13BlockCipher::Encrypt(char *data) { for (size_t i = 0; i < blockSize_; ++i) { data[i] += 13; } return Status::OK(); } // Decrypt a block of data. // Length of data is equal to BlockSize(). Status ROT13BlockCipher::Decrypt(char *data) { return Encrypt(data); } // Allocate scratch space which is passed to EncryptBlock/DecryptBlock. void CTRCipherStream::AllocateScratch(std::string& scratch) { auto blockSize = cipher_.BlockSize(); scratch.reserve(blockSize); } // Encrypt a block of data at the given block index. // Length of data is equal to BlockSize(); Status CTRCipherStream::EncryptBlock(uint64_t blockIndex, char *data, char* scratch) { // Create nonce + counter auto blockSize = cipher_.BlockSize(); memmove(scratch, iv_.data(), blockSize); EncodeFixed64(scratch, blockIndex + initialCounter_); // Encrypt nonce+counter auto status = cipher_.Encrypt(scratch); if (!status.ok()) { return status; } // XOR data with ciphertext. for (size_t i = 0; i < blockSize; i++) { data[i] = data[i] ^ scratch[i]; } return Status::OK(); } // Decrypt a block of data at the given block index. // Length of data is equal to BlockSize(); Status CTRCipherStream::DecryptBlock(uint64_t blockIndex, char *data, char* scratch) { // For CTR decryption & encryption are the same return EncryptBlock(blockIndex, data, scratch); } // GetPrefixLength returns the length of the prefix that is added to every file // and used for storing encryption options. // For optimal performance, the prefix length should be a multiple of // the page size. size_t CTREncryptionProvider::GetPrefixLength() { return defaultPrefixLength; } // decodeCTRParameters decodes the initial counter & IV from the given // (plain text) prefix. static void decodeCTRParameters(const char *prefix, size_t blockSize, uint64_t &initialCounter, Slice &iv) { // First block contains 64-bit initial counter initialCounter = DecodeFixed64(prefix); // Second block contains IV iv = Slice(prefix + blockSize, blockSize); } // CreateNewPrefix initialized an allocated block of prefix memory // for a new file. Status CTREncryptionProvider::CreateNewPrefix(const std::string& /*fname*/, char* prefix, size_t prefixLength) { // Create & seed rnd. Random rnd((uint32_t)Env::Default()->NowMicros()); // Fill entire prefix block with random values. for (size_t i = 0; i < prefixLength; i++) { prefix[i] = rnd.Uniform(256) & 0xFF; } // Take random data to extract initial counter & IV auto blockSize = cipher_.BlockSize(); uint64_t initialCounter; Slice prefixIV; decodeCTRParameters(prefix, blockSize, initialCounter, prefixIV); // Now populate the rest of the prefix, starting from the third block. PopulateSecretPrefixPart(prefix + (2 * blockSize), prefixLength - (2 * blockSize), blockSize); // Encrypt the prefix, starting from block 2 (leave block 0, 1 with initial counter & IV unencrypted) CTRCipherStream cipherStream(cipher_, prefixIV.data(), initialCounter); auto status = cipherStream.Encrypt(0, prefix + (2 * blockSize), prefixLength - (2 * blockSize)); if (!status.ok()) { return status; } return Status::OK(); } // PopulateSecretPrefixPart initializes the data into a new prefix block // in plain text. // Returns the amount of space (starting from the start of the prefix) // that has been initialized. size_t CTREncryptionProvider::PopulateSecretPrefixPart(char* /*prefix*/, size_t /*prefixLength*/, size_t /*blockSize*/) { // Nothing to do here, put in custom data in override when needed. return 0; } Status CTREncryptionProvider::CreateCipherStream( const std::string& fname, const EnvOptions& options, Slice& prefix, std::unique_ptr* result) { // Read plain text part of prefix. auto blockSize = cipher_.BlockSize(); uint64_t initialCounter; Slice iv; decodeCTRParameters(prefix.data(), blockSize, initialCounter, iv); // If the prefix is smaller than twice the block size, we would below read a // very large chunk of the file (and very likely read over the bounds) assert(prefix.size() >= 2 * blockSize); if (prefix.size() < 2 * blockSize) { return Status::Corruption("Unable to read from file " + fname + ": read attempt would read beyond file bounds"); } // Decrypt the encrypted part of the prefix, starting from block 2 (block 0, 1 with initial counter & IV are unencrypted) CTRCipherStream cipherStream(cipher_, iv.data(), initialCounter); auto status = cipherStream.Decrypt(0, (char*)prefix.data() + (2 * blockSize), prefix.size() - (2 * blockSize)); if (!status.ok()) { return status; } // Create cipher stream return CreateCipherStreamFromPrefix(fname, options, initialCounter, iv, prefix, result); } // CreateCipherStreamFromPrefix creates a block access cipher stream for a file given // given name and options. The given prefix is already decrypted. Status CTREncryptionProvider::CreateCipherStreamFromPrefix( const std::string& /*fname*/, const EnvOptions& /*options*/, uint64_t initialCounter, const Slice& iv, const Slice& /*prefix*/, std::unique_ptr* result) { (*result) = std::unique_ptr( new CTRCipherStream(cipher_, iv.data(), initialCounter)); return Status::OK(); } #endif // ROCKSDB_LITE } // namespace rocksdb