/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ #include "thrift/lib/cpp/config.h" #include "thrift/lib/cpp/concurrency/Thread.h" #include "thrift/lib/cpp/concurrency/PosixThreadFactory.h" #include "thrift/lib/cpp/concurrency/Monitor.h" #include "thrift/lib/cpp/concurrency/Util.h" #include #include #include #include namespace apache { namespace thrift { namespace concurrency { namespace test { using boost::shared_ptr; using namespace apache::thrift::concurrency; /** * ThreadManagerTests class * * @version $Id:$ */ class ThreadFactoryTests { public: static const double ERROR; class Task: public Runnable { public: Task() {} void run() { std::cout << "\t\t\tHello World" << std::endl; } }; /** * Hello world test */ bool helloWorldTest() { PosixThreadFactory threadFactory = PosixThreadFactory(); shared_ptr task = shared_ptr(new ThreadFactoryTests::Task()); shared_ptr thread = threadFactory.newThread(task); thread->start(); thread->join(); std::cout << "\t\t\tSuccess!" << std::endl; return true; } /** * Reap N threads */ class ReapNTask: public Runnable { public: ReapNTask(Monitor& monitor, int& activeCount) : _monitor(monitor), _count(activeCount) {} void run() { Synchronized s(_monitor); _count--; //std::cout << "\t\t\tthread count: " << _count << std::endl; if (_count == 0) { _monitor.notify(); } } Monitor& _monitor; int& _count; }; bool reapNThreads(int loop=1, int count=10) { PosixThreadFactory threadFactory = PosixThreadFactory(); Monitor* monitor = new Monitor(); for(int lix = 0; lix < loop; lix++) { int* activeCount = new int(count); std::set > threads; int tix; for (tix = 0; tix < count; tix++) { try { threads.insert(threadFactory.newThread(shared_ptr(new ReapNTask(*monitor, *activeCount)))); } catch(SystemResourceException& e) { std::cout << "\t\t\tfailed to create " << lix * count + tix << " thread " << e.what() << std::endl; throw e; } } tix = 0; for (std::set >::const_iterator thread = threads.begin(); thread != threads.end(); tix++, ++thread) { try { (*thread)->start(); } catch(SystemResourceException& e) { std::cout << "\t\t\tfailed to start " << lix * count + tix << " thread " << e.what() << std::endl; throw e; } } { Synchronized s(*monitor); while (*activeCount > 0) { monitor->wait(1000); } } std::cout << "\t\t\treaped " << lix * count << " threads" << std::endl; } std::cout << "\t\t\tSuccess!" << std::endl; return true; } class SynchStartTask: public Runnable { public: enum STATE { UNINITIALIZED, STARTING, STARTED, STOPPING, STOPPED }; SynchStartTask(Monitor& monitor, volatile STATE& state) : _monitor(monitor), _state(state) {} void run() { { Synchronized s(_monitor); if (_state == SynchStartTask::STARTING) { _state = SynchStartTask::STARTED; _monitor.notify(); } } { Synchronized s(_monitor); while (_state == SynchStartTask::STARTED) { _monitor.wait(); } if (_state == SynchStartTask::STOPPING) { _state = SynchStartTask::STOPPED; _monitor.notifyAll(); } } } private: Monitor& _monitor; volatile STATE& _state; }; bool synchStartTest() { Monitor monitor; SynchStartTask::STATE state = SynchStartTask::UNINITIALIZED; shared_ptr task = shared_ptr(new SynchStartTask(monitor, state)); PosixThreadFactory threadFactory = PosixThreadFactory(); shared_ptr thread = threadFactory.newThread(task); if (state == SynchStartTask::UNINITIALIZED) { state = SynchStartTask::STARTING; thread->start(); } { Synchronized s(monitor); while (state == SynchStartTask::STARTING) { monitor.wait(); } } assert(state != SynchStartTask::STARTING); { Synchronized s(monitor); try { monitor.wait(100); } catch(TimedOutException& e) { } if (state == SynchStartTask::STARTED) { state = SynchStartTask::STOPPING; monitor.notify(); } while (state == SynchStartTask::STOPPING) { monitor.wait(); } } assert(state == SynchStartTask::STOPPED); bool success = true; std::cout << "\t\t\t" << (success ? "Success" : "Failure") << "!" << std::endl; return true; } /** See how accurate monitor timeout is. */ bool monitorTimeoutTest(size_t count=1000, int64_t timeout=10) { Monitor monitor; int64_t startTime = Util::currentTime(); for (size_t ix = 0; ix < count; ix++) { { Synchronized s(monitor); try { monitor.wait(timeout); } catch(TimedOutException& e) { } } } int64_t endTime = Util::currentTime(); double error = ((endTime - startTime) - (count * timeout)) / (double)(count * timeout); if (error < 0.0) { error *= 1.0; } bool success = error < ThreadFactoryTests::ERROR; std::cout << "\t\t\t" << (success ? "Success" : "Failure") << "! expected time: " << count * timeout << "ms elapsed time: "<< endTime - startTime << "ms error%: " << error * 100.0 << std::endl; return success; } class FloodTask : public Runnable { public: FloodTask(const size_t id) :_id(id) {} ~FloodTask(){ if(_id % 1000 == 0) { std::cout << "\t\tthread " << _id << " done" << std::endl; } } void run(){ if(_id % 1000 == 0) { std::cout << "\t\tthread " << _id << " started" << std::endl; } usleep(1); } const size_t _id; }; void foo(PosixThreadFactory *tf) { } bool floodNTest(size_t loop=1, size_t count=100000) { bool success = false; for(size_t lix = 0; lix < loop; lix++) { PosixThreadFactory threadFactory = PosixThreadFactory(); threadFactory.setDetached(true); for(size_t tix = 0; tix < count; tix++) { try { shared_ptr task(new FloodTask(lix * count + tix )); shared_ptr thread = threadFactory.newThread(task); thread->start(); usleep(1); } catch (TException& e) { std::cout << "\t\t\tfailed to start " << lix * count + tix << " thread " << e.what() << std::endl; return success; } } std::cout << "\t\t\tflooded " << (lix + 1) * count << " threads" << std::endl; success = true; } return success; } }; const double ThreadFactoryTests::ERROR = .20; }}}} // apache::thrift::concurrency::test