// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // This source code is also licensed under the GPLv2 license found in the // COPYING file in the root directory of this source tree. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/db_iter.h" #include #include #include #include #include "db/dbformat.h" #include "db/merge_context.h" #include "db/merge_helper.h" #include "db/pinned_iterators_manager.h" #include "monitoring/perf_context_imp.h" #include "port/port.h" #include "rocksdb/env.h" #include "rocksdb/iterator.h" #include "rocksdb/merge_operator.h" #include "rocksdb/options.h" #include "table/internal_iterator.h" #include "util/arena.h" #include "util/filename.h" #include "util/logging.h" #include "util/mutexlock.h" #include "util/string_util.h" namespace rocksdb { #if 0 static void DumpInternalIter(Iterator* iter) { for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { ParsedInternalKey k; if (!ParseInternalKey(iter->key(), &k)) { fprintf(stderr, "Corrupt '%s'\n", EscapeString(iter->key()).c_str()); } else { fprintf(stderr, "@ '%s'\n", k.DebugString().c_str()); } } } #endif // Memtables and sstables that make the DB representation contain // (userkey,seq,type) => uservalue entries. DBIter // combines multiple entries for the same userkey found in the DB // representation into a single entry while accounting for sequence // numbers, deletion markers, overwrites, etc. class DBIter: public Iterator { public: // The following is grossly complicated. TODO: clean it up // Which direction is the iterator currently moving? // (1) When moving forward, the internal iterator is positioned at // the exact entry that yields this->key(), this->value() // (2) When moving backwards, the internal iterator is positioned // just before all entries whose user key == this->key(). enum Direction { kForward, kReverse }; // LocalStatistics contain Statistics counters that will be aggregated per // each iterator instance and then will be sent to the global statistics when // the iterator is destroyed. // // The purpose of this approach is to avoid perf regression happening // when multiple threads bump the atomic counters from a DBIter::Next(). struct LocalStatistics { explicit LocalStatistics() { ResetCounters(); } void ResetCounters() { next_count_ = 0; next_found_count_ = 0; prev_count_ = 0; prev_found_count_ = 0; bytes_read_ = 0; } void BumpGlobalStatistics(Statistics* global_statistics) { RecordTick(global_statistics, NUMBER_DB_NEXT, next_count_); RecordTick(global_statistics, NUMBER_DB_NEXT_FOUND, next_found_count_); RecordTick(global_statistics, NUMBER_DB_PREV, prev_count_); RecordTick(global_statistics, NUMBER_DB_PREV_FOUND, prev_found_count_); RecordTick(global_statistics, ITER_BYTES_READ, bytes_read_); ResetCounters(); } // Map to Tickers::NUMBER_DB_NEXT uint64_t next_count_; // Map to Tickers::NUMBER_DB_NEXT_FOUND uint64_t next_found_count_; // Map to Tickers::NUMBER_DB_PREV uint64_t prev_count_; // Map to Tickers::NUMBER_DB_PREV_FOUND uint64_t prev_found_count_; // Map to Tickers::ITER_BYTES_READ uint64_t bytes_read_; }; DBIter(Env* env, const ReadOptions& read_options, const ImmutableCFOptions& cf_options, const Comparator* cmp, InternalIterator* iter, SequenceNumber s, bool arena_mode, uint64_t max_sequential_skip_in_iterations, uint64_t version_number) : arena_mode_(arena_mode), env_(env), logger_(cf_options.info_log), user_comparator_(cmp), merge_operator_(cf_options.merge_operator), iter_(iter), sequence_(s), direction_(kForward), valid_(false), current_entry_is_merged_(false), statistics_(cf_options.statistics), version_number_(version_number), iterate_upper_bound_(read_options.iterate_upper_bound), prefix_same_as_start_(read_options.prefix_same_as_start), pin_thru_lifetime_(read_options.pin_data), total_order_seek_(read_options.total_order_seek), range_del_agg_(cf_options.internal_comparator, s, true /* collapse_deletions */) { RecordTick(statistics_, NO_ITERATORS); prefix_extractor_ = cf_options.prefix_extractor; max_skip_ = max_sequential_skip_in_iterations; max_skippable_internal_keys_ = read_options.max_skippable_internal_keys; if (pin_thru_lifetime_) { pinned_iters_mgr_.StartPinning(); } if (iter_) { iter_->SetPinnedItersMgr(&pinned_iters_mgr_); } } virtual ~DBIter() { // Release pinned data if any if (pinned_iters_mgr_.PinningEnabled()) { pinned_iters_mgr_.ReleasePinnedData(); } RecordTick(statistics_, NO_ITERATORS, -1); local_stats_.BumpGlobalStatistics(statistics_); if (!arena_mode_) { delete iter_; } else { iter_->~InternalIterator(); } } virtual void SetIter(InternalIterator* iter) { assert(iter_ == nullptr); iter_ = iter; iter_->SetPinnedItersMgr(&pinned_iters_mgr_); } virtual RangeDelAggregator* GetRangeDelAggregator() { return &range_del_agg_; } virtual bool Valid() const override { return valid_; } virtual Slice key() const override { assert(valid_); return saved_key_.GetUserKey(); } virtual Slice value() const override { assert(valid_); if (current_entry_is_merged_) { // If pinned_value_ is set then the result of merge operator is one of // the merge operands and we should return it. return pinned_value_.data() ? pinned_value_ : saved_value_; } else if (direction_ == kReverse) { return pinned_value_; } else { return iter_->value(); } } virtual Status status() const override { if (status_.ok()) { return iter_->status(); } else { return status_; } } virtual Status GetProperty(std::string prop_name, std::string* prop) override { if (prop == nullptr) { return Status::InvalidArgument("prop is nullptr"); } if (prop_name == "rocksdb.iterator.super-version-number") { // First try to pass the value returned from inner iterator. if (!iter_->GetProperty(prop_name, prop).ok()) { *prop = ToString(version_number_); } return Status::OK(); } else if (prop_name == "rocksdb.iterator.is-key-pinned") { if (valid_) { *prop = (pin_thru_lifetime_ && saved_key_.IsKeyPinned()) ? "1" : "0"; } else { *prop = "Iterator is not valid."; } return Status::OK(); } return Status::InvalidArgument("Undentified property."); } virtual void Next() override; virtual void Prev() override; virtual void Seek(const Slice& target) override; virtual void SeekForPrev(const Slice& target) override; virtual void SeekToFirst() override; virtual void SeekToLast() override; private: void ReverseToForward(); void ReverseToBackward(); void PrevInternal(); void FindParseableKey(ParsedInternalKey* ikey, Direction direction); bool FindValueForCurrentKey(); bool FindValueForCurrentKeyUsingSeek(); void FindPrevUserKey(); void FindNextUserKey(); inline void FindNextUserEntry(bool skipping, bool prefix_check); void FindNextUserEntryInternal(bool skipping, bool prefix_check); bool ParseKey(ParsedInternalKey* key); void MergeValuesNewToOld(); bool TooManyInternalKeysSkipped(bool increment = true); // Temporarily pin the blocks that we encounter until ReleaseTempPinnedData() // is called void TempPinData() { if (!pin_thru_lifetime_) { pinned_iters_mgr_.StartPinning(); } } // Release blocks pinned by TempPinData() void ReleaseTempPinnedData() { if (!pin_thru_lifetime_ && pinned_iters_mgr_.PinningEnabled()) { pinned_iters_mgr_.ReleasePinnedData(); } } inline void ClearSavedValue() { if (saved_value_.capacity() > 1048576) { std::string empty; swap(empty, saved_value_); } else { saved_value_.clear(); } } inline void ResetInternalKeysSkippedCounter() { num_internal_keys_skipped_ = 0; } const SliceTransform* prefix_extractor_; bool arena_mode_; Env* const env_; Logger* logger_; const Comparator* const user_comparator_; const MergeOperator* const merge_operator_; InternalIterator* iter_; SequenceNumber const sequence_; Status status_; IterKey saved_key_; std::string saved_value_; Slice pinned_value_; Direction direction_; bool valid_; bool current_entry_is_merged_; // for prefix seek mode to support prev() Statistics* statistics_; uint64_t max_skip_; uint64_t max_skippable_internal_keys_; uint64_t num_internal_keys_skipped_; uint64_t version_number_; const Slice* iterate_upper_bound_; IterKey prefix_start_buf_; Slice prefix_start_key_; const bool prefix_same_as_start_; // Means that we will pin all data blocks we read as long the Iterator // is not deleted, will be true if ReadOptions::pin_data is true const bool pin_thru_lifetime_; const bool total_order_seek_; // List of operands for merge operator. MergeContext merge_context_; RangeDelAggregator range_del_agg_; LocalStatistics local_stats_; PinnedIteratorsManager pinned_iters_mgr_; // No copying allowed DBIter(const DBIter&); void operator=(const DBIter&); }; inline bool DBIter::ParseKey(ParsedInternalKey* ikey) { if (!ParseInternalKey(iter_->key(), ikey)) { status_ = Status::Corruption("corrupted internal key in DBIter"); ROCKS_LOG_ERROR(logger_, "corrupted internal key in DBIter: %s", iter_->key().ToString(true).c_str()); return false; } else { return true; } } void DBIter::Next() { assert(valid_); // Release temporarily pinned blocks from last operation ReleaseTempPinnedData(); ResetInternalKeysSkippedCounter(); if (direction_ == kReverse) { ReverseToForward(); } else if (iter_->Valid() && !current_entry_is_merged_) { // If the current value is not a merge, the iter position is the // current key, which is already returned. We can safely issue a // Next() without checking the current key. // If the current key is a merge, very likely iter already points // to the next internal position. iter_->Next(); PERF_COUNTER_ADD(internal_key_skipped_count, 1); } if (statistics_ != nullptr) { local_stats_.next_count_++; } // Now we point to the next internal position, for both of merge and // not merge cases. if (!iter_->Valid()) { valid_ = false; return; } FindNextUserEntry(true /* skipping the current user key */, prefix_same_as_start_); if (statistics_ != nullptr && valid_) { local_stats_.next_found_count_++; local_stats_.bytes_read_ += (key().size() + value().size()); } } // PRE: saved_key_ has the current user key if skipping // POST: saved_key_ should have the next user key if valid_, // if the current entry is a result of merge // current_entry_is_merged_ => true // saved_value_ => the merged value // // NOTE: In between, saved_key_ can point to a user key that has // a delete marker or a sequence number higher than sequence_ // saved_key_ MUST have a proper user_key before calling this function // // The prefix_check parameter controls whether we check the iterated // keys against the prefix of the seeked key. Set to false when // performing a seek without a key (e.g. SeekToFirst). Set to // prefix_same_as_start_ for other iterations. inline void DBIter::FindNextUserEntry(bool skipping, bool prefix_check) { PERF_TIMER_GUARD(find_next_user_entry_time); FindNextUserEntryInternal(skipping, prefix_check); } // Actual implementation of DBIter::FindNextUserEntry() void DBIter::FindNextUserEntryInternal(bool skipping, bool prefix_check) { // Loop until we hit an acceptable entry to yield assert(iter_->Valid()); assert(direction_ == kForward); current_entry_is_merged_ = false; // How many times in a row we have skipped an entry with user key less than // or equal to saved_key_. We could skip these entries either because // sequence numbers were too high or because skipping = true. // What saved_key_ contains throughout this method: // - if skipping : saved_key_ contains the key that we need to skip, // and we haven't seen any keys greater than that, // - if num_skipped > 0 : saved_key_ contains the key that we have skipped // num_skipped times, and we haven't seen any keys // greater than that, // - none of the above : saved_key_ can contain anything, it doesn't matter. uint64_t num_skipped = 0; do { ParsedInternalKey ikey; if (!ParseKey(&ikey)) { // Skip corrupted keys. iter_->Next(); continue; } if (iterate_upper_bound_ != nullptr && user_comparator_->Compare(ikey.user_key, *iterate_upper_bound_) >= 0) { break; } if (prefix_extractor_ && prefix_check && prefix_extractor_->Transform(ikey.user_key) .compare(prefix_start_key_) != 0) { break; } if (TooManyInternalKeysSkipped()) { return; } if (ikey.sequence <= sequence_) { if (skipping && user_comparator_->Compare(ikey.user_key, saved_key_.GetUserKey()) <= 0) { num_skipped++; // skip this entry PERF_COUNTER_ADD(internal_key_skipped_count, 1); } else { num_skipped = 0; switch (ikey.type) { case kTypeDeletion: case kTypeSingleDeletion: // Arrange to skip all upcoming entries for this key since // they are hidden by this deletion. saved_key_.SetUserKey( ikey.user_key, !iter_->IsKeyPinned() || !pin_thru_lifetime_ /* copy */); skipping = true; PERF_COUNTER_ADD(internal_delete_skipped_count, 1); break; case kTypeValue: saved_key_.SetUserKey( ikey.user_key, !iter_->IsKeyPinned() || !pin_thru_lifetime_ /* copy */); if (range_del_agg_.ShouldDelete( ikey, RangeDelAggregator::RangePositioningMode:: kForwardTraversal)) { // Arrange to skip all upcoming entries for this key since // they are hidden by this deletion. skipping = true; num_skipped = 0; PERF_COUNTER_ADD(internal_delete_skipped_count, 1); } else { valid_ = true; return; } break; case kTypeMerge: saved_key_.SetUserKey( ikey.user_key, !iter_->IsKeyPinned() || !pin_thru_lifetime_ /* copy */); if (range_del_agg_.ShouldDelete( ikey, RangeDelAggregator::RangePositioningMode:: kForwardTraversal)) { // Arrange to skip all upcoming entries for this key since // they are hidden by this deletion. skipping = true; num_skipped = 0; PERF_COUNTER_ADD(internal_delete_skipped_count, 1); } else { // By now, we are sure the current ikey is going to yield a // value current_entry_is_merged_ = true; valid_ = true; MergeValuesNewToOld(); // Go to a different state machine return; } break; default: assert(false); break; } } } else { // This key was inserted after our snapshot was taken. PERF_COUNTER_ADD(internal_recent_skipped_count, 1); // Here saved_key_ may contain some old key, or the default empty key, or // key assigned by some random other method. We don't care. if (user_comparator_->Compare(ikey.user_key, saved_key_.GetUserKey()) <= 0) { num_skipped++; } else { saved_key_.SetUserKey( ikey.user_key, !iter_->IsKeyPinned() || !pin_thru_lifetime_ /* copy */); skipping = false; num_skipped = 0; } } // If we have sequentially iterated via numerous equal keys, then it's // better to seek so that we can avoid too many key comparisons. if (num_skipped > max_skip_) { num_skipped = 0; std::string last_key; if (skipping) { // We're looking for the next user-key but all we see are the same // user-key with decreasing sequence numbers. Fast forward to // sequence number 0 and type deletion (the smallest type). AppendInternalKey(&last_key, ParsedInternalKey(saved_key_.GetUserKey(), 0, kTypeDeletion)); // Don't set skipping = false because we may still see more user-keys // equal to saved_key_. } else { // We saw multiple entries with this user key and sequence numbers // higher than sequence_. Fast forward to sequence_. // Note that this only covers a case when a higher key was overwritten // many times since our snapshot was taken, not the case when a lot of // different keys were inserted after our snapshot was taken. AppendInternalKey(&last_key, ParsedInternalKey(saved_key_.GetUserKey(), sequence_, kValueTypeForSeek)); } iter_->Seek(last_key); RecordTick(statistics_, NUMBER_OF_RESEEKS_IN_ITERATION); } else { iter_->Next(); } } while (iter_->Valid()); valid_ = false; } // Merge values of the same user key starting from the current iter_ position // Scan from the newer entries to older entries. // PRE: iter_->key() points to the first merge type entry // saved_key_ stores the user key // POST: saved_value_ has the merged value for the user key // iter_ points to the next entry (or invalid) void DBIter::MergeValuesNewToOld() { if (!merge_operator_) { ROCKS_LOG_ERROR(logger_, "Options::merge_operator is null."); status_ = Status::InvalidArgument("merge_operator_ must be set."); valid_ = false; return; } // Temporarily pin the blocks that hold merge operands TempPinData(); merge_context_.Clear(); // Start the merge process by pushing the first operand merge_context_.PushOperand(iter_->value(), iter_->IsValuePinned() /* operand_pinned */); ParsedInternalKey ikey; Status s; for (iter_->Next(); iter_->Valid(); iter_->Next()) { if (!ParseKey(&ikey)) { // skip corrupted key continue; } if (!user_comparator_->Equal(ikey.user_key, saved_key_.GetUserKey())) { // hit the next user key, stop right here break; } else if (kTypeDeletion == ikey.type || kTypeSingleDeletion == ikey.type || range_del_agg_.ShouldDelete( ikey, RangeDelAggregator::RangePositioningMode:: kForwardTraversal)) { // hit a delete with the same user key, stop right here // iter_ is positioned after delete iter_->Next(); break; } else if (kTypeValue == ikey.type) { // hit a put, merge the put value with operands and store the // final result in saved_value_. We are done! // ignore corruption if there is any. const Slice val = iter_->value(); s = MergeHelper::TimedFullMerge( merge_operator_, ikey.user_key, &val, merge_context_.GetOperands(), &saved_value_, logger_, statistics_, env_, &pinned_value_); if (!s.ok()) { status_ = s; } // iter_ is positioned after put iter_->Next(); return; } else if (kTypeMerge == ikey.type) { // hit a merge, add the value as an operand and run associative merge. // when complete, add result to operands and continue. merge_context_.PushOperand(iter_->value(), iter_->IsValuePinned() /* operand_pinned */); PERF_COUNTER_ADD(internal_merge_count, 1); } else { assert(false); } } // we either exhausted all internal keys under this user key, or hit // a deletion marker. // feed null as the existing value to the merge operator, such that // client can differentiate this scenario and do things accordingly. s = MergeHelper::TimedFullMerge(merge_operator_, saved_key_.GetUserKey(), nullptr, merge_context_.GetOperands(), &saved_value_, logger_, statistics_, env_, &pinned_value_); if (!s.ok()) { status_ = s; } } void DBIter::Prev() { assert(valid_); ReleaseTempPinnedData(); ResetInternalKeysSkippedCounter(); if (direction_ == kForward) { ReverseToBackward(); } PrevInternal(); if (statistics_ != nullptr) { local_stats_.prev_count_++; if (valid_) { local_stats_.prev_found_count_++; local_stats_.bytes_read_ += (key().size() + value().size()); } } } void DBIter::ReverseToForward() { if (prefix_extractor_ != nullptr && !total_order_seek_) { IterKey last_key; last_key.SetInternalKey(ParsedInternalKey( saved_key_.GetUserKey(), kMaxSequenceNumber, kValueTypeForSeek)); iter_->Seek(last_key.GetInternalKey()); } FindNextUserKey(); direction_ = kForward; if (!iter_->Valid()) { iter_->SeekToFirst(); range_del_agg_.InvalidateTombstoneMapPositions(); } } void DBIter::ReverseToBackward() { if (prefix_extractor_ != nullptr && !total_order_seek_) { IterKey last_key; last_key.SetInternalKey(ParsedInternalKey(saved_key_.GetUserKey(), 0, kValueTypeForSeekForPrev)); iter_->SeekForPrev(last_key.GetInternalKey()); } if (current_entry_is_merged_) { // Not placed in the same key. Need to call Prev() until finding the // previous key. if (!iter_->Valid()) { iter_->SeekToLast(); range_del_agg_.InvalidateTombstoneMapPositions(); } ParsedInternalKey ikey; FindParseableKey(&ikey, kReverse); while (iter_->Valid() && user_comparator_->Compare(ikey.user_key, saved_key_.GetUserKey()) > 0) { if (ikey.sequence > sequence_) { PERF_COUNTER_ADD(internal_recent_skipped_count, 1); } else { PERF_COUNTER_ADD(internal_key_skipped_count, 1); } iter_->Prev(); FindParseableKey(&ikey, kReverse); } } #ifndef NDEBUG if (iter_->Valid()) { ParsedInternalKey ikey; assert(ParseKey(&ikey)); assert(user_comparator_->Compare(ikey.user_key, saved_key_.GetUserKey()) <= 0); } #endif FindPrevUserKey(); direction_ = kReverse; } void DBIter::PrevInternal() { if (!iter_->Valid()) { valid_ = false; return; } ParsedInternalKey ikey; while (iter_->Valid()) { saved_key_.SetUserKey( ExtractUserKey(iter_->key()), !iter_->IsKeyPinned() || !pin_thru_lifetime_ /* copy */); if (FindValueForCurrentKey()) { valid_ = true; if (!iter_->Valid()) { return; } FindParseableKey(&ikey, kReverse); if (user_comparator_->Equal(ikey.user_key, saved_key_.GetUserKey())) { FindPrevUserKey(); } if (valid_ && prefix_extractor_ && prefix_same_as_start_ && prefix_extractor_->Transform(saved_key_.GetUserKey()) .compare(prefix_start_key_) != 0) { valid_ = false; } return; } if (TooManyInternalKeysSkipped(false)) { return; } if (!iter_->Valid()) { break; } FindParseableKey(&ikey, kReverse); if (user_comparator_->Equal(ikey.user_key, saved_key_.GetUserKey())) { FindPrevUserKey(); } } // We haven't found any key - iterator is not valid // Or the prefix is different than start prefix assert(!iter_->Valid()); valid_ = false; } // This function checks, if the entry with biggest sequence_number <= sequence_ // is non kTypeDeletion or kTypeSingleDeletion. If it's not, we save value in // saved_value_ bool DBIter::FindValueForCurrentKey() { assert(iter_->Valid()); merge_context_.Clear(); current_entry_is_merged_ = false; // last entry before merge (could be kTypeDeletion, kTypeSingleDeletion or // kTypeValue) ValueType last_not_merge_type = kTypeDeletion; ValueType last_key_entry_type = kTypeDeletion; ParsedInternalKey ikey; FindParseableKey(&ikey, kReverse); // Temporarily pin blocks that hold (merge operands / the value) ReleaseTempPinnedData(); TempPinData(); size_t num_skipped = 0; while (iter_->Valid() && ikey.sequence <= sequence_ && user_comparator_->Equal(ikey.user_key, saved_key_.GetUserKey())) { if (TooManyInternalKeysSkipped()) { return false; } // We iterate too much: let's use Seek() to avoid too much key comparisons if (num_skipped >= max_skip_) { return FindValueForCurrentKeyUsingSeek(); } last_key_entry_type = ikey.type; switch (last_key_entry_type) { case kTypeValue: if (range_del_agg_.ShouldDelete( ikey, RangeDelAggregator::RangePositioningMode::kBackwardTraversal)) { last_key_entry_type = kTypeRangeDeletion; PERF_COUNTER_ADD(internal_delete_skipped_count, 1); } else { assert(iter_->IsValuePinned()); pinned_value_ = iter_->value(); } merge_context_.Clear(); last_not_merge_type = last_key_entry_type; break; case kTypeDeletion: case kTypeSingleDeletion: merge_context_.Clear(); last_not_merge_type = last_key_entry_type; PERF_COUNTER_ADD(internal_delete_skipped_count, 1); break; case kTypeMerge: if (range_del_agg_.ShouldDelete( ikey, RangeDelAggregator::RangePositioningMode::kBackwardTraversal)) { merge_context_.Clear(); last_key_entry_type = kTypeRangeDeletion; last_not_merge_type = last_key_entry_type; PERF_COUNTER_ADD(internal_delete_skipped_count, 1); } else { assert(merge_operator_ != nullptr); merge_context_.PushOperandBack( iter_->value(), iter_->IsValuePinned() /* operand_pinned */); PERF_COUNTER_ADD(internal_merge_count, 1); } break; default: assert(false); } PERF_COUNTER_ADD(internal_key_skipped_count, 1); assert(user_comparator_->Equal(ikey.user_key, saved_key_.GetUserKey())); iter_->Prev(); ++num_skipped; FindParseableKey(&ikey, kReverse); } Status s; switch (last_key_entry_type) { case kTypeDeletion: case kTypeSingleDeletion: case kTypeRangeDeletion: valid_ = false; return false; case kTypeMerge: current_entry_is_merged_ = true; if (last_not_merge_type == kTypeDeletion || last_not_merge_type == kTypeSingleDeletion || last_not_merge_type == kTypeRangeDeletion) { s = MergeHelper::TimedFullMerge( merge_operator_, saved_key_.GetUserKey(), nullptr, merge_context_.GetOperands(), &saved_value_, logger_, statistics_, env_, &pinned_value_); } else { assert(last_not_merge_type == kTypeValue); s = MergeHelper::TimedFullMerge( merge_operator_, saved_key_.GetUserKey(), &pinned_value_, merge_context_.GetOperands(), &saved_value_, logger_, statistics_, env_, &pinned_value_); } break; case kTypeValue: // do nothing - we've already has value in saved_value_ break; default: assert(false); break; } valid_ = true; if (!s.ok()) { status_ = s; } return true; } // This function is used in FindValueForCurrentKey. // We use Seek() function instead of Prev() to find necessary value bool DBIter::FindValueForCurrentKeyUsingSeek() { // FindValueForCurrentKey will enable pinning before calling // FindValueForCurrentKeyUsingSeek() assert(pinned_iters_mgr_.PinningEnabled()); std::string last_key; AppendInternalKey(&last_key, ParsedInternalKey(saved_key_.GetUserKey(), sequence_, kValueTypeForSeek)); iter_->Seek(last_key); RecordTick(statistics_, NUMBER_OF_RESEEKS_IN_ITERATION); // assume there is at least one parseable key for this user key ParsedInternalKey ikey; FindParseableKey(&ikey, kForward); if (ikey.type == kTypeDeletion || ikey.type == kTypeSingleDeletion || range_del_agg_.ShouldDelete( ikey, RangeDelAggregator::RangePositioningMode::kBackwardTraversal)) { valid_ = false; return false; } if (ikey.type == kTypeValue) { assert(iter_->IsValuePinned()); pinned_value_ = iter_->value(); valid_ = true; return true; } // kTypeMerge. We need to collect all kTypeMerge values and save them // in operands current_entry_is_merged_ = true; merge_context_.Clear(); while ( iter_->Valid() && user_comparator_->Equal(ikey.user_key, saved_key_.GetUserKey()) && ikey.type == kTypeMerge && !range_del_agg_.ShouldDelete( ikey, RangeDelAggregator::RangePositioningMode::kBackwardTraversal)) { merge_context_.PushOperand(iter_->value(), iter_->IsValuePinned() /* operand_pinned */); PERF_COUNTER_ADD(internal_merge_count, 1); iter_->Next(); FindParseableKey(&ikey, kForward); } Status s; if (!iter_->Valid() || !user_comparator_->Equal(ikey.user_key, saved_key_.GetUserKey()) || ikey.type == kTypeDeletion || ikey.type == kTypeSingleDeletion || range_del_agg_.ShouldDelete( ikey, RangeDelAggregator::RangePositioningMode::kBackwardTraversal)) { s = MergeHelper::TimedFullMerge(merge_operator_, saved_key_.GetUserKey(), nullptr, merge_context_.GetOperands(), &saved_value_, logger_, statistics_, env_, &pinned_value_); // Make iter_ valid and point to saved_key_ if (!iter_->Valid() || !user_comparator_->Equal(ikey.user_key, saved_key_.GetUserKey())) { iter_->Seek(last_key); RecordTick(statistics_, NUMBER_OF_RESEEKS_IN_ITERATION); } valid_ = true; if (!s.ok()) { status_ = s; } return true; } const Slice& val = iter_->value(); s = MergeHelper::TimedFullMerge(merge_operator_, saved_key_.GetUserKey(), &val, merge_context_.GetOperands(), &saved_value_, logger_, statistics_, env_, &pinned_value_); valid_ = true; if (!s.ok()) { status_ = s; } return true; } // Used in Next to change directions // Go to next user key // Don't use Seek(), // because next user key will be very close void DBIter::FindNextUserKey() { if (!iter_->Valid()) { return; } ParsedInternalKey ikey; FindParseableKey(&ikey, kForward); while (iter_->Valid() && !user_comparator_->Equal(ikey.user_key, saved_key_.GetUserKey())) { iter_->Next(); FindParseableKey(&ikey, kForward); } } // Go to previous user_key void DBIter::FindPrevUserKey() { if (!iter_->Valid()) { return; } size_t num_skipped = 0; // Suppress false positive clang analyzer warnings. #ifdef __clang_analyzer__ ParsedInternalKey ikey(Slice(), 0, 0); #else ParsedInternalKey ikey; #endif // __clang_analyzer__ FindParseableKey(&ikey, kReverse); int cmp; while (iter_->Valid() && ((cmp = user_comparator_->Compare(ikey.user_key, saved_key_.GetUserKey())) == 0 || (cmp > 0 && ikey.sequence > sequence_))) { if (TooManyInternalKeysSkipped()) { return; } if (cmp == 0) { if (num_skipped >= max_skip_) { num_skipped = 0; IterKey last_key; last_key.SetInternalKey(ParsedInternalKey( saved_key_.GetUserKey(), kMaxSequenceNumber, kValueTypeForSeek)); iter_->Seek(last_key.GetInternalKey()); RecordTick(statistics_, NUMBER_OF_RESEEKS_IN_ITERATION); } else { ++num_skipped; } } if (ikey.sequence > sequence_) { PERF_COUNTER_ADD(internal_recent_skipped_count, 1); } else { PERF_COUNTER_ADD(internal_key_skipped_count, 1); } iter_->Prev(); FindParseableKey(&ikey, kReverse); } } bool DBIter::TooManyInternalKeysSkipped(bool increment) { if ((max_skippable_internal_keys_ > 0) && (num_internal_keys_skipped_ > max_skippable_internal_keys_)) { valid_ = false; status_ = Status::Incomplete("Too many internal keys skipped."); return true; } else if (increment) { num_internal_keys_skipped_++; } return false; } // Skip all unparseable keys void DBIter::FindParseableKey(ParsedInternalKey* ikey, Direction direction) { while (iter_->Valid() && !ParseKey(ikey)) { if (direction == kReverse) { iter_->Prev(); } else { iter_->Next(); } } } void DBIter::Seek(const Slice& target) { StopWatch sw(env_, statistics_, DB_SEEK); ReleaseTempPinnedData(); ResetInternalKeysSkippedCounter(); saved_key_.Clear(); saved_key_.SetInternalKey(target, sequence_); { PERF_TIMER_GUARD(seek_internal_seek_time); iter_->Seek(saved_key_.GetInternalKey()); range_del_agg_.InvalidateTombstoneMapPositions(); } RecordTick(statistics_, NUMBER_DB_SEEK); if (iter_->Valid()) { if (prefix_extractor_ && prefix_same_as_start_) { prefix_start_key_ = prefix_extractor_->Transform(target); } direction_ = kForward; ClearSavedValue(); FindNextUserEntry(false /* not skipping */, prefix_same_as_start_); if (!valid_) { prefix_start_key_.clear(); } if (statistics_ != nullptr) { if (valid_) { RecordTick(statistics_, NUMBER_DB_SEEK_FOUND); RecordTick(statistics_, ITER_BYTES_READ, key().size() + value().size()); } } } else { valid_ = false; } if (valid_ && prefix_extractor_ && prefix_same_as_start_) { prefix_start_buf_.SetUserKey(prefix_start_key_); prefix_start_key_ = prefix_start_buf_.GetUserKey(); } } void DBIter::SeekForPrev(const Slice& target) { StopWatch sw(env_, statistics_, DB_SEEK); ReleaseTempPinnedData(); ResetInternalKeysSkippedCounter(); saved_key_.Clear(); // now saved_key is used to store internal key. saved_key_.SetInternalKey(target, 0 /* sequence_number */, kValueTypeForSeekForPrev); { PERF_TIMER_GUARD(seek_internal_seek_time); iter_->SeekForPrev(saved_key_.GetInternalKey()); range_del_agg_.InvalidateTombstoneMapPositions(); } RecordTick(statistics_, NUMBER_DB_SEEK); if (iter_->Valid()) { if (prefix_extractor_ && prefix_same_as_start_) { prefix_start_key_ = prefix_extractor_->Transform(target); } direction_ = kReverse; ClearSavedValue(); PrevInternal(); if (!valid_) { prefix_start_key_.clear(); } if (statistics_ != nullptr) { if (valid_) { RecordTick(statistics_, NUMBER_DB_SEEK_FOUND); RecordTick(statistics_, ITER_BYTES_READ, key().size() + value().size()); } } } else { valid_ = false; } if (valid_ && prefix_extractor_ && prefix_same_as_start_) { prefix_start_buf_.SetUserKey(prefix_start_key_); prefix_start_key_ = prefix_start_buf_.GetUserKey(); } } void DBIter::SeekToFirst() { // Don't use iter_::Seek() if we set a prefix extractor // because prefix seek will be used. if (prefix_extractor_ != nullptr) { max_skip_ = std::numeric_limits::max(); } direction_ = kForward; ReleaseTempPinnedData(); ResetInternalKeysSkippedCounter(); ClearSavedValue(); { PERF_TIMER_GUARD(seek_internal_seek_time); iter_->SeekToFirst(); range_del_agg_.InvalidateTombstoneMapPositions(); } RecordTick(statistics_, NUMBER_DB_SEEK); if (iter_->Valid()) { saved_key_.SetUserKey( ExtractUserKey(iter_->key()), !iter_->IsKeyPinned() || !pin_thru_lifetime_ /* copy */); FindNextUserEntry(false /* not skipping */, false /* no prefix check */); if (statistics_ != nullptr) { if (valid_) { RecordTick(statistics_, NUMBER_DB_SEEK_FOUND); RecordTick(statistics_, ITER_BYTES_READ, key().size() + value().size()); } } } else { valid_ = false; } if (valid_ && prefix_extractor_ && prefix_same_as_start_) { prefix_start_buf_.SetUserKey( prefix_extractor_->Transform(saved_key_.GetUserKey())); prefix_start_key_ = prefix_start_buf_.GetUserKey(); } } void DBIter::SeekToLast() { // Don't use iter_::Seek() if we set a prefix extractor // because prefix seek will be used. if (prefix_extractor_ != nullptr) { max_skip_ = std::numeric_limits::max(); } direction_ = kReverse; ReleaseTempPinnedData(); ResetInternalKeysSkippedCounter(); ClearSavedValue(); { PERF_TIMER_GUARD(seek_internal_seek_time); iter_->SeekToLast(); range_del_agg_.InvalidateTombstoneMapPositions(); } // When the iterate_upper_bound is set to a value, // it will seek to the last key before the // ReadOptions.iterate_upper_bound if (iter_->Valid() && iterate_upper_bound_ != nullptr) { SeekForPrev(*iterate_upper_bound_); range_del_agg_.InvalidateTombstoneMapPositions(); if (!Valid()) { return; } else if (user_comparator_->Equal(*iterate_upper_bound_, key())) { Prev(); } } else { PrevInternal(); } if (statistics_ != nullptr) { RecordTick(statistics_, NUMBER_DB_SEEK); if (valid_) { RecordTick(statistics_, NUMBER_DB_SEEK_FOUND); RecordTick(statistics_, ITER_BYTES_READ, key().size() + value().size()); } } if (valid_ && prefix_extractor_ && prefix_same_as_start_) { prefix_start_buf_.SetUserKey( prefix_extractor_->Transform(saved_key_.GetUserKey())); prefix_start_key_ = prefix_start_buf_.GetUserKey(); } } Iterator* NewDBIterator(Env* env, const ReadOptions& read_options, const ImmutableCFOptions& cf_options, const Comparator* user_key_comparator, InternalIterator* internal_iter, const SequenceNumber& sequence, uint64_t max_sequential_skip_in_iterations, uint64_t version_number) { DBIter* db_iter = new DBIter( env, read_options, cf_options, user_key_comparator, internal_iter, sequence, false, max_sequential_skip_in_iterations, version_number); return db_iter; } ArenaWrappedDBIter::~ArenaWrappedDBIter() { db_iter_->~DBIter(); } void ArenaWrappedDBIter::SetDBIter(DBIter* iter) { db_iter_ = iter; } RangeDelAggregator* ArenaWrappedDBIter::GetRangeDelAggregator() { return db_iter_->GetRangeDelAggregator(); } void ArenaWrappedDBIter::SetIterUnderDBIter(InternalIterator* iter) { static_cast(db_iter_)->SetIter(iter); } inline bool ArenaWrappedDBIter::Valid() const { return db_iter_->Valid(); } inline void ArenaWrappedDBIter::SeekToFirst() { db_iter_->SeekToFirst(); } inline void ArenaWrappedDBIter::SeekToLast() { db_iter_->SeekToLast(); } inline void ArenaWrappedDBIter::Seek(const Slice& target) { db_iter_->Seek(target); } inline void ArenaWrappedDBIter::SeekForPrev(const Slice& target) { db_iter_->SeekForPrev(target); } inline void ArenaWrappedDBIter::Next() { db_iter_->Next(); } inline void ArenaWrappedDBIter::Prev() { db_iter_->Prev(); } inline Slice ArenaWrappedDBIter::key() const { return db_iter_->key(); } inline Slice ArenaWrappedDBIter::value() const { return db_iter_->value(); } inline Status ArenaWrappedDBIter::status() const { return db_iter_->status(); } inline Status ArenaWrappedDBIter::GetProperty(std::string prop_name, std::string* prop) { return db_iter_->GetProperty(prop_name, prop); } void ArenaWrappedDBIter::RegisterCleanup(CleanupFunction function, void* arg1, void* arg2) { db_iter_->RegisterCleanup(function, arg1, arg2); } ArenaWrappedDBIter* NewArenaWrappedDbIterator( Env* env, const ReadOptions& read_options, const ImmutableCFOptions& cf_options, const Comparator* user_key_comparator, const SequenceNumber& sequence, uint64_t max_sequential_skip_in_iterations, uint64_t version_number) { ArenaWrappedDBIter* iter = new ArenaWrappedDBIter(); Arena* arena = iter->GetArena(); auto mem = arena->AllocateAligned(sizeof(DBIter)); DBIter* db_iter = new (mem) DBIter(env, read_options, cf_options, user_key_comparator, nullptr, sequence, true, max_sequential_skip_in_iterations, version_number); iter->SetDBIter(db_iter); return iter; } } // namespace rocksdb