// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // #pragma once #include <functional> #include <memory> #include <queue> #include <unordered_map> #include <utility> #include <vector> #include "monitoring/instrumented_mutex.h" #include "rocksdb/system_clock.h" #include "test_util/sync_point.h" #include "util/mutexlock.h" namespace ROCKSDB_NAMESPACE { // A Timer class to handle repeated work. // // `Start()` and `Shutdown()` are currently not thread-safe. The client must // serialize calls to these two member functions. // // A single timer instance can handle multiple functions via a single thread. // It is better to leave long running work to a dedicated thread pool. // // Timer can be started by calling `Start()`, and ended by calling `Shutdown()`. // Work (in terms of a `void function`) can be scheduled by calling `Add` with // a unique function name and de-scheduled by calling `Cancel`. // Many functions can be added. // // Impl Details: // A heap is used to keep track of when the next timer goes off. // A map from a function name to the function keeps track of all the functions. class Timer { public: explicit Timer(SystemClock* clock) : clock_(clock), mutex_(clock), cond_var_(&mutex_), running_(false), executing_task_(false) {} ~Timer() { Shutdown(); } // Add a new function to run. // fn_name has to be identical, otherwise, the new one overrides the existing // one, regardless if the function is pending removed (invalid) or not. // start_after_us is the initial delay. // repeat_every_us is the interval between ending time of the last call and // starting time of the next call. For example, repeat_every_us = 2000 and // the function takes 1000us to run. If it starts at time [now]us, then it // finishes at [now]+1000us, 2nd run starting time will be at [now]+3000us. // repeat_every_us == 0 means do not repeat. void Add(std::function<void()> fn, const std::string& fn_name, uint64_t start_after_us, uint64_t repeat_every_us) { std::unique_ptr<FunctionInfo> fn_info(new FunctionInfo( std::move(fn), fn_name, clock_->NowMicros() + start_after_us, repeat_every_us)); { InstrumentedMutexLock l(&mutex_); auto it = map_.find(fn_name); if (it == map_.end()) { heap_.push(fn_info.get()); map_.emplace(std::make_pair(fn_name, std::move(fn_info))); } else { // If it already exists, overriding it. it->second->fn = std::move(fn_info->fn); it->second->valid = true; it->second->next_run_time_us = clock_->NowMicros() + start_after_us; it->second->repeat_every_us = repeat_every_us; } } cond_var_.SignalAll(); } void Cancel(const std::string& fn_name) { InstrumentedMutexLock l(&mutex_); // Mark the function with fn_name as invalid so that it will not be // requeued. auto it = map_.find(fn_name); if (it != map_.end() && it->second) { it->second->Cancel(); } // If the currently running function is fn_name, then we need to wait // until it finishes before returning to caller. while (!heap_.empty() && executing_task_) { FunctionInfo* func_info = heap_.top(); assert(func_info); if (func_info->name == fn_name) { WaitForTaskCompleteIfNecessary(); } else { break; } } } void CancelAll() { InstrumentedMutexLock l(&mutex_); CancelAllWithLock(); } // Start the Timer bool Start() { InstrumentedMutexLock l(&mutex_); if (running_) { return false; } running_ = true; thread_.reset(new port::Thread(&Timer::Run, this)); return true; } // Shutdown the Timer bool Shutdown() { { InstrumentedMutexLock l(&mutex_); if (!running_) { return false; } running_ = false; CancelAllWithLock(); cond_var_.SignalAll(); } if (thread_) { thread_->join(); } return true; } bool HasPendingTask() const { InstrumentedMutexLock l(&mutex_); for (auto it = map_.begin(); it != map_.end(); it++) { if (it->second->IsValid()) { return true; } } return false; } #ifndef NDEBUG // Wait until Timer starting waiting, call the optional callback, then wait // for Timer waiting again. // Tests can provide a custom Clock object to mock time, and use the callback // here to bump current time and trigger Timer. See timer_test for example. // // Note: only support one caller of this method. void TEST_WaitForRun(std::function<void()> callback = nullptr) { InstrumentedMutexLock l(&mutex_); // It act as a spin lock while (executing_task_ || (!heap_.empty() && heap_.top()->next_run_time_us <= clock_->NowMicros())) { cond_var_.TimedWait(clock_->NowMicros() + 1000); } if (callback != nullptr) { callback(); } cond_var_.SignalAll(); do { cond_var_.TimedWait(clock_->NowMicros() + 1000); } while (executing_task_ || (!heap_.empty() && heap_.top()->next_run_time_us <= clock_->NowMicros())); } size_t TEST_GetPendingTaskNum() const { InstrumentedMutexLock l(&mutex_); size_t ret = 0; for (auto it = map_.begin(); it != map_.end(); it++) { if (it->second->IsValid()) { ret++; } } return ret; } #endif // NDEBUG private: void Run() { InstrumentedMutexLock l(&mutex_); while (running_) { if (heap_.empty()) { // wait TEST_SYNC_POINT("Timer::Run::Waiting"); cond_var_.Wait(); continue; } FunctionInfo* current_fn = heap_.top(); assert(current_fn); if (!current_fn->IsValid()) { heap_.pop(); map_.erase(current_fn->name); continue; } if (current_fn->next_run_time_us <= clock_->NowMicros()) { // make a copy of the function so it won't be changed after // mutex_.unlock. std::function<void()> fn = current_fn->fn; executing_task_ = true; mutex_.Unlock(); // Execute the work fn(); mutex_.Lock(); executing_task_ = false; cond_var_.SignalAll(); // Remove the work from the heap once it is done executing. // Note that we are just removing the pointer from the heap. Its // memory is still managed in the map (as it holds a unique ptr). // So current_fn is still a valid ptr. heap_.pop(); // current_fn may be cancelled already. if (current_fn->IsValid() && current_fn->repeat_every_us > 0) { assert(running_); current_fn->next_run_time_us = clock_->NowMicros() + current_fn->repeat_every_us; // Schedule new work into the heap with new time. heap_.push(current_fn); } } else { cond_var_.TimedWait(current_fn->next_run_time_us); } } } void CancelAllWithLock() { mutex_.AssertHeld(); if (map_.empty() && heap_.empty()) { return; } // With mutex_ held, set all tasks to invalid so that they will not be // re-queued. for (auto& elem : map_) { auto& func_info = elem.second; assert(func_info); func_info->Cancel(); } // WaitForTaskCompleteIfNecessary() may release mutex_ WaitForTaskCompleteIfNecessary(); while (!heap_.empty()) { heap_.pop(); } map_.clear(); } // A wrapper around std::function to keep track when it should run next // and at what frequency. struct FunctionInfo { // the actual work std::function<void()> fn; // name of the function std::string name; // when the function should run next uint64_t next_run_time_us; // repeat interval uint64_t repeat_every_us; // controls whether this function is valid. // A function is valid upon construction and until someone explicitly // calls `Cancel()`. bool valid; FunctionInfo(std::function<void()>&& _fn, const std::string& _name, const uint64_t _next_run_time_us, uint64_t _repeat_every_us) : fn(std::move(_fn)), name(_name), next_run_time_us(_next_run_time_us), repeat_every_us(_repeat_every_us), valid(true) {} void Cancel() { valid = false; } bool IsValid() const { return valid; } }; void WaitForTaskCompleteIfNecessary() { mutex_.AssertHeld(); while (executing_task_) { TEST_SYNC_POINT("Timer::WaitForTaskCompleteIfNecessary:TaskExecuting"); cond_var_.Wait(); } } struct RunTimeOrder { bool operator()(const FunctionInfo* f1, const FunctionInfo* f2) { return f1->next_run_time_us > f2->next_run_time_us; } }; SystemClock* clock_; // This mutex controls both the heap_ and the map_. It needs to be held for // making any changes in them. mutable InstrumentedMutex mutex_; InstrumentedCondVar cond_var_; std::unique_ptr<port::Thread> thread_; bool running_; bool executing_task_; std::priority_queue<FunctionInfo*, std::vector<FunctionInfo*>, RunTimeOrder> heap_; // In addition to providing a mapping from a function name to a function, // it is also responsible for memory management. std::unordered_map<std::string, std::unique_ptr<FunctionInfo>> map_; }; } // namespace ROCKSDB_NAMESPACE