// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "file/file_prefetch_buffer.h" #include #include "file/random_access_file_reader.h" #include "monitoring/histogram.h" #include "monitoring/iostats_context_imp.h" #include "port/port.h" #include "test_util/sync_point.h" #include "util/random.h" #include "util/rate_limiter.h" namespace ROCKSDB_NAMESPACE { void FilePrefetchBuffer::CalculateOffsetAndLen(size_t alignment, uint64_t offset, size_t roundup_len, size_t index, bool refit_tail, uint64_t& chunk_len) { uint64_t chunk_offset_in_buffer = 0; bool copy_data_to_new_buffer = false; // Check if requested bytes are in the existing buffer_. // If only a few bytes exist -- reuse them & read only what is really needed. // This is typically the case of incremental reading of data. // If no bytes exist in buffer -- full pread. if (bufs_[index].buffer_.CurrentSize() > 0 && offset >= bufs_[index].offset_ && offset <= bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize()) { // Only a few requested bytes are in the buffer. memmove those chunk of // bytes to the beginning, and memcpy them back into the new buffer if a // new buffer is created. chunk_offset_in_buffer = Rounddown( static_cast(offset - bufs_[index].offset_), alignment); chunk_len = static_cast(bufs_[index].buffer_.CurrentSize()) - chunk_offset_in_buffer; assert(chunk_offset_in_buffer % alignment == 0); // assert(chunk_len % alignment == 0); assert(chunk_offset_in_buffer + chunk_len <= bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize()); if (chunk_len > 0) { copy_data_to_new_buffer = true; } else { // this reset is not necessary, but just to be safe. chunk_offset_in_buffer = 0; } } // Create a new buffer only if current capacity is not sufficient, and memcopy // bytes from old buffer if needed (i.e., if chunk_len is greater than 0). if (bufs_[index].buffer_.Capacity() < roundup_len) { bufs_[index].buffer_.Alignment(alignment); bufs_[index].buffer_.AllocateNewBuffer( static_cast(roundup_len), copy_data_to_new_buffer, chunk_offset_in_buffer, static_cast(chunk_len)); } else if (chunk_len > 0 && refit_tail) { // New buffer not needed. But memmove bytes from tail to the beginning since // chunk_len is greater than 0. bufs_[index].buffer_.RefitTail(static_cast(chunk_offset_in_buffer), static_cast(chunk_len)); } else if (chunk_len > 0) { // For async prefetching, it doesn't call RefitTail with chunk_len > 0. // Allocate new buffer if needed because aligned buffer calculate remaining // buffer as capacity_ - cursize_ which might not be the case in this as we // are not refitting. // TODO akanksha: Update the condition when asynchronous prefetching is // stable. bufs_[index].buffer_.Alignment(alignment); bufs_[index].buffer_.AllocateNewBuffer( static_cast(roundup_len), copy_data_to_new_buffer, chunk_offset_in_buffer, static_cast(chunk_len)); } } Status FilePrefetchBuffer::Read(const IOOptions& opts, RandomAccessFileReader* reader, Env::IOPriority rate_limiter_priority, uint64_t read_len, uint64_t chunk_len, uint64_t rounddown_start, uint32_t index) { Slice result; Status s = reader->Read(opts, rounddown_start + chunk_len, read_len, &result, bufs_[index].buffer_.BufferStart() + chunk_len, nullptr, rate_limiter_priority); #ifndef NDEBUG if (result.size() < read_len) { // Fake an IO error to force db_stress fault injection to ignore // truncated read errors IGNORE_STATUS_IF_ERROR(Status::IOError()); } #endif if (!s.ok()) { return s; } // Update the buffer offset and size. bufs_[index].offset_ = rounddown_start; bufs_[index].buffer_.Size(static_cast(chunk_len) + result.size()); return s; } Status FilePrefetchBuffer::ReadAsync(const IOOptions& opts, RandomAccessFileReader* reader, Env::IOPriority rate_limiter_priority, uint64_t read_len, uint64_t chunk_len, uint64_t rounddown_start, uint32_t index) { // Reset io_handle. if (io_handle_ != nullptr && del_fn_ != nullptr) { del_fn_(io_handle_); io_handle_ = nullptr; del_fn_ = nullptr; } // callback for async read request. auto fp = std::bind(&FilePrefetchBuffer::PrefetchAsyncCallback, this, std::placeholders::_1, std::placeholders::_2); FSReadRequest req; Slice result; req.len = read_len; req.offset = rounddown_start + chunk_len; req.result = result; req.scratch = bufs_[index].buffer_.BufferStart() + chunk_len; Status s = reader->ReadAsync(req, opts, fp, nullptr /*cb_arg*/, &io_handle_, &del_fn_, rate_limiter_priority); if (s.ok()) { async_read_in_progress_ = true; } return s; } Status FilePrefetchBuffer::Prefetch(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset, size_t n, Env::IOPriority rate_limiter_priority) { if (!enable_ || reader == nullptr) { return Status::OK(); } TEST_SYNC_POINT("FilePrefetchBuffer::Prefetch:Start"); if (offset + n <= bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) { // All requested bytes are already in the curr_ buffer. So no need to Read // again. return Status::OK(); } size_t alignment = reader->file()->GetRequiredBufferAlignment(); size_t offset_ = static_cast(offset); uint64_t rounddown_offset = Rounddown(offset_, alignment); uint64_t roundup_end = Roundup(offset_ + n, alignment); uint64_t roundup_len = roundup_end - rounddown_offset; assert(roundup_len >= alignment); assert(roundup_len % alignment == 0); uint64_t chunk_len = 0; CalculateOffsetAndLen(alignment, offset, roundup_len, curr_, true /*refit_tail*/, chunk_len); size_t read_len = static_cast(roundup_len - chunk_len); Status s = Read(opts, reader, rate_limiter_priority, read_len, chunk_len, rounddown_offset, curr_); return s; } // Copy data from src to third buffer. void FilePrefetchBuffer::CopyDataToBuffer(uint32_t src, uint64_t& offset, size_t& length) { if (length == 0) { return; } uint64_t copy_offset = (offset - bufs_[src].offset_); size_t copy_len = 0; if (offset + length <= bufs_[src].offset_ + bufs_[src].buffer_.CurrentSize()) { // All the bytes are in src. copy_len = length; } else { copy_len = bufs_[src].buffer_.CurrentSize() - copy_offset; } memcpy(bufs_[2].buffer_.BufferStart() + bufs_[2].buffer_.CurrentSize(), bufs_[src].buffer_.BufferStart() + copy_offset, copy_len); bufs_[2].buffer_.Size(bufs_[2].buffer_.CurrentSize() + copy_len); // Update offset and length. offset += copy_len; length -= copy_len; // length > 0 indicates it has consumed all data from the src buffer and it // still needs to read more other buffer. if (length > 0) { bufs_[src].buffer_.Clear(); } } // If async_read = true: // async_read is enabled in case of sequential reads. So when // buffers are switched, we clear the curr_ buffer as we assume the data has // been consumed because of sequential reads. // // Scenarios for prefetching asynchronously: // Case1: If both buffers are empty, prefetch n bytes // synchronously in curr_ // and prefetch readahead_size_/2 async in second buffer. // Case2: If second buffer has partial or full data, make it current and // prefetch readahead_size_/2 async in second buffer. In case of // partial data, prefetch remaining bytes from size n synchronously to // fulfill the requested bytes request. // Case3: If curr_ has partial data, prefetch remaining bytes from size n // synchronously in curr_ to fulfill the requested bytes request and // prefetch readahead_size_/2 bytes async in second buffer. // Case4: If data is in both buffers, copy requested data from curr_ and second // buffer to third buffer. If all requested bytes have been copied, do // the asynchronous prefetching in second buffer. Status FilePrefetchBuffer::PrefetchAsync(const IOOptions& opts, RandomAccessFileReader* reader, FileSystem* fs, uint64_t offset, size_t length, size_t readahead_size, Env::IOPriority rate_limiter_priority, bool& copy_to_third_buffer) { if (!enable_) { return Status::OK(); } if (async_read_in_progress_ && fs != nullptr) { // Wait for prefetch data to complete. // No mutex is needed as PrefetchAsyncCallback updates the result in second // buffer and FilePrefetchBuffer should wait for Poll before accessing the // second buffer. std::vector handles; handles.emplace_back(io_handle_); fs->Poll(handles, 1).PermitUncheckedError(); } // TODO akanksha: Update TEST_SYNC_POINT after new tests are added. TEST_SYNC_POINT("FilePrefetchBuffer::Prefetch:Start"); Status s; size_t prefetch_size = length + readahead_size; size_t alignment = reader->file()->GetRequiredBufferAlignment(); // Index of second buffer. uint32_t second = curr_ ^ 1; // First clear the buffers if it contains outdated data. Outdated data can be // because previous sequential reads were read from the cache instead of these // buffer. { if (bufs_[curr_].buffer_.CurrentSize() > 0 && offset >= bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) { bufs_[curr_].buffer_.Clear(); } if (bufs_[second].buffer_.CurrentSize() > 0 && offset >= bufs_[second].offset_ + bufs_[second].buffer_.CurrentSize()) { bufs_[second].buffer_.Clear(); } } // If data is in second buffer, make it curr_. Second buffer can be either // partial filled or full. if (bufs_[second].buffer_.CurrentSize() > 0 && offset >= bufs_[second].offset_ && offset < bufs_[second].offset_ + bufs_[second].buffer_.CurrentSize()) { // Clear the curr_ as buffers have been swapped and curr_ contains the // outdated data and switch the buffers. bufs_[curr_].buffer_.Clear(); curr_ = curr_ ^ 1; second = curr_ ^ 1; } // After swap check if all the requested bytes are in curr_, it will go for // async prefetching only. if (bufs_[curr_].buffer_.CurrentSize() > 0 && offset + length <= bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) { offset += length; length = 0; prefetch_size -= length; } // Data is overlapping i.e. some of the data is in curr_ buffer and remaining // in second buffer. if (bufs_[curr_].buffer_.CurrentSize() > 0 && bufs_[second].buffer_.CurrentSize() > 0 && offset >= bufs_[curr_].offset_ && offset < bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize() && offset + length > bufs_[second].offset_) { // Allocate new buffer to third buffer; bufs_[2].buffer_.Clear(); bufs_[2].buffer_.Alignment(alignment); bufs_[2].buffer_.AllocateNewBuffer(length); bufs_[2].offset_ = offset; copy_to_third_buffer = true; // Move data from curr_ buffer to third. CopyDataToBuffer(curr_, offset, length); if (length == 0) { // Requested data has been copied and curr_ still has unconsumed data. return s; } CopyDataToBuffer(second, offset, length); // Length == 0: All the requested data has been copied to third buffer. It // should go for only async prefetching. // Length > 0: More data needs to be consumed so it will continue async and // sync prefetching and copy the remaining data to third buffer in the end. // swap the buffers. curr_ = curr_ ^ 1; prefetch_size -= length; } // Update second again if swap happened. second = curr_ ^ 1; size_t _offset = static_cast(offset); // offset and size alignment for curr_ buffer with synchronous prefetching uint64_t rounddown_start1 = Rounddown(_offset, alignment); uint64_t roundup_end1 = Roundup(_offset + prefetch_size, alignment); uint64_t roundup_len1 = roundup_end1 - rounddown_start1; assert(roundup_len1 >= alignment); assert(roundup_len1 % alignment == 0); uint64_t chunk_len1 = 0; uint64_t read_len1 = 0; // For length == 0, skip the synchronous prefetching. read_len1 will be 0. if (length > 0) { CalculateOffsetAndLen(alignment, offset, roundup_len1, curr_, false /*refit_tail*/, chunk_len1); assert(roundup_len1 >= chunk_len1); read_len1 = static_cast(roundup_len1 - chunk_len1); } { // offset and size alignment for second buffer for asynchronous // prefetching uint64_t rounddown_start2 = roundup_end1; uint64_t roundup_end2 = Roundup(rounddown_start2 + readahead_size, alignment); // For length == 0, do the asynchronous prefetching in second instead of // synchronous prefetching in curr_. if (length == 0) { rounddown_start2 = bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize(); roundup_end2 = Roundup(rounddown_start2 + prefetch_size, alignment); } uint64_t roundup_len2 = roundup_end2 - rounddown_start2; uint64_t chunk_len2 = 0; CalculateOffsetAndLen(alignment, rounddown_start2, roundup_len2, second, false /*refit_tail*/, chunk_len2); // Update the buffer offset. bufs_[second].offset_ = rounddown_start2; assert(roundup_len2 >= chunk_len2); uint64_t read_len2 = static_cast(roundup_len2 - chunk_len2); ReadAsync(opts, reader, rate_limiter_priority, read_len2, chunk_len2, rounddown_start2, second) .PermitUncheckedError(); } if (read_len1 > 0) { s = Read(opts, reader, rate_limiter_priority, read_len1, chunk_len1, rounddown_start1, curr_); if (!s.ok()) { return s; } } // Copy remaining requested bytes to third_buffer. if (copy_to_third_buffer && length > 0) { CopyDataToBuffer(curr_, offset, length); } return s; } bool FilePrefetchBuffer::TryReadFromCache(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset, size_t n, Slice* result, Status* status, Env::IOPriority rate_limiter_priority, bool for_compaction /* = false */) { if (track_min_offset_ && offset < min_offset_read_) { min_offset_read_ = static_cast(offset); } if (!enable_ || (offset < bufs_[curr_].offset_)) { return false; } // If the buffer contains only a few of the requested bytes: // If readahead is enabled: prefetch the remaining bytes + readahead bytes // and satisfy the request. // If readahead is not enabled: return false. TEST_SYNC_POINT_CALLBACK("FilePrefetchBuffer::TryReadFromCache", &readahead_size_); if (offset + n > bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) { if (readahead_size_ > 0) { Status s; assert(reader != nullptr); assert(max_readahead_size_ >= readahead_size_); if (for_compaction) { s = Prefetch(opts, reader, offset, std::max(n, readahead_size_), rate_limiter_priority); } else { if (implicit_auto_readahead_) { if (!IsEligibleForPrefetch(offset, n)) { // Ignore status as Prefetch is not called. s.PermitUncheckedError(); return false; } } s = Prefetch(opts, reader, offset, n + readahead_size_, rate_limiter_priority); } if (!s.ok()) { if (status) { *status = s; } #ifndef NDEBUG IGNORE_STATUS_IF_ERROR(s); #endif return false; } readahead_size_ = std::min(max_readahead_size_, readahead_size_ * 2); } else { return false; } } UpdateReadPattern(offset, n, false /*decrease_readaheadsize*/); uint64_t offset_in_buffer = offset - bufs_[curr_].offset_; *result = Slice(bufs_[curr_].buffer_.BufferStart() + offset_in_buffer, n); return true; } // TODO akanksha: Merge this function with TryReadFromCache once async // functionality is stable. bool FilePrefetchBuffer::TryReadFromCacheAsync( const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset, size_t n, Slice* result, Status* status, Env::IOPriority rate_limiter_priority, bool for_compaction /* = false */, FileSystem* fs) { if (track_min_offset_ && offset < min_offset_read_) { min_offset_read_ = static_cast(offset); } if (!enable_ || (offset < bufs_[curr_].offset_)) { return false; } bool prefetched = false; bool copy_to_third_buffer = false; // If the buffer contains only a few of the requested bytes: // If readahead is enabled: prefetch the remaining bytes + readahead bytes // and satisfy the request. // If readahead is not enabled: return false. TEST_SYNC_POINT_CALLBACK("FilePrefetchBuffer::TryReadFromCache", &readahead_size_); if (offset + n > bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) { if (readahead_size_ > 0) { Status s; assert(reader != nullptr); assert(max_readahead_size_ >= readahead_size_); if (for_compaction) { s = Prefetch(opts, reader, offset, std::max(n, readahead_size_), rate_limiter_priority); } else { if (implicit_auto_readahead_) { if (!IsEligibleForPrefetch(offset, n)) { // Ignore status as Prefetch is not called. s.PermitUncheckedError(); return false; } } if (implicit_auto_readahead_ && async_io_) { // Prefetch n + readahead_size_/2 synchronously as remaining // readahead_size_/2 will be prefetched asynchronously. s = PrefetchAsync(opts, reader, fs, offset, n, readahead_size_ / 2, rate_limiter_priority, copy_to_third_buffer); } else { s = Prefetch(opts, reader, offset, n + readahead_size_, rate_limiter_priority); } } if (!s.ok()) { if (status) { *status = s; } #ifndef NDEBUG IGNORE_STATUS_IF_ERROR(s); #endif return false; } prefetched = true; } else { return false; } } UpdateReadPattern(offset, n, false /*decrease_readaheadsize*/); uint32_t index = curr_; if (copy_to_third_buffer) { index = 2; } uint64_t offset_in_buffer = offset - bufs_[index].offset_; *result = Slice(bufs_[index].buffer_.BufferStart() + offset_in_buffer, n); if (prefetched) { readahead_size_ = std::min(max_readahead_size_, readahead_size_ * 2); } return true; } void FilePrefetchBuffer::PrefetchAsyncCallback(const FSReadRequest& req, void* /*cb_arg*/) { async_read_in_progress_ = false; uint32_t index = curr_ ^ 1; if (req.status.ok()) { if (req.offset + req.result.size() <= bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize()) { // All requested bytes are already in the buffer. So no need to update. return; } if (req.offset < bufs_[index].offset_) { // Next block to be read has changed (Recent read was not a sequential // read). So ignore this read. return; } size_t current_size = bufs_[index].buffer_.CurrentSize(); bufs_[index].buffer_.Size(current_size + req.result.size()); } // Release io_handle_. if (io_handle_ != nullptr && del_fn_ != nullptr) { del_fn_(io_handle_); io_handle_ = nullptr; del_fn_ = nullptr; } } } // namespace ROCKSDB_NAMESPACE