// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #include #include #include #include "db/compaction/compaction_picker_level.h" #include "test_util/sync_point.h" #include "util/log_buffer.h" namespace rocksdb { bool LevelCompactionPicker::NeedsCompaction( const VersionStorageInfo* vstorage) const { if (!vstorage->ExpiredTtlFiles().empty()) { return true; } if (!vstorage->FilesMarkedForPeriodicCompaction().empty()) { return true; } if (!vstorage->BottommostFilesMarkedForCompaction().empty()) { return true; } if (!vstorage->FilesMarkedForCompaction().empty()) { return true; } for (int i = 0; i <= vstorage->MaxInputLevel(); i++) { if (vstorage->CompactionScore(i) >= 1) { return true; } } return false; } namespace { // A class to build a leveled compaction step-by-step. class LevelCompactionBuilder { public: LevelCompactionBuilder(const std::string& cf_name, VersionStorageInfo* vstorage, CompactionPicker* compaction_picker, LogBuffer* log_buffer, const MutableCFOptions& mutable_cf_options, const ImmutableCFOptions& ioptions) : cf_name_(cf_name), vstorage_(vstorage), compaction_picker_(compaction_picker), log_buffer_(log_buffer), mutable_cf_options_(mutable_cf_options), ioptions_(ioptions) {} // Pick and return a compaction. Compaction* PickCompaction(); // Pick the initial files to compact to the next level. (or together // in Intra-L0 compactions) void SetupInitialFiles(); // If the initial files are from L0 level, pick other L0 // files if needed. bool SetupOtherL0FilesIfNeeded(); // Based on initial files, setup other files need to be compacted // in this compaction, accordingly. bool SetupOtherInputsIfNeeded(); Compaction* GetCompaction(); // For the specfied level, pick a file that we want to compact. // Returns false if there is no file to compact. // If it returns true, inputs->files.size() will be exactly one. // If level is 0 and there is already a compaction on that level, this // function will return false. bool PickFileToCompact(); // For L0->L0, picks the longest span of files that aren't currently // undergoing compaction for which work-per-deleted-file decreases. The span // always starts from the newest L0 file. // // Intra-L0 compaction is independent of all other files, so it can be // performed even when L0->base_level compactions are blocked. // // Returns true if `inputs` is populated with a span of files to be compacted; // otherwise, returns false. bool PickIntraL0Compaction(); void PickExpiredTtlFiles(); void PickFilesMarkedForPeriodicCompaction(); const std::string& cf_name_; VersionStorageInfo* vstorage_; CompactionPicker* compaction_picker_; LogBuffer* log_buffer_; int start_level_ = -1; int output_level_ = -1; int parent_index_ = -1; int base_index_ = -1; double start_level_score_ = 0; bool is_manual_ = false; CompactionInputFiles start_level_inputs_; std::vector compaction_inputs_; CompactionInputFiles output_level_inputs_; std::vector grandparents_; CompactionReason compaction_reason_ = CompactionReason::kUnknown; const MutableCFOptions& mutable_cf_options_; const ImmutableCFOptions& ioptions_; // Pick a path ID to place a newly generated file, with its level static uint32_t GetPathId(const ImmutableCFOptions& ioptions, const MutableCFOptions& mutable_cf_options, int level); static const int kMinFilesForIntraL0Compaction = 4; }; void LevelCompactionBuilder::PickExpiredTtlFiles() { if (vstorage_->ExpiredTtlFiles().empty()) { return; } auto continuation = [&](std::pair level_file) { // If it's being compacted it has nothing to do here. // If this assert() fails that means that some function marked some // files as being_compacted, but didn't call ComputeCompactionScore() assert(!level_file.second->being_compacted); start_level_ = level_file.first; output_level_ = (start_level_ == 0) ? vstorage_->base_level() : start_level_ + 1; if ((start_level_ == vstorage_->num_non_empty_levels() - 1) || (start_level_ == 0 && !compaction_picker_->level0_compactions_in_progress()->empty())) { return false; } start_level_inputs_.files = {level_file.second}; start_level_inputs_.level = start_level_; return compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_, &start_level_inputs_); }; for (auto& level_file : vstorage_->ExpiredTtlFiles()) { if (continuation(level_file)) { // found the compaction! return; } } start_level_inputs_.files.clear(); } void LevelCompactionBuilder::PickFilesMarkedForPeriodicCompaction() { if (vstorage_->FilesMarkedForPeriodicCompaction().empty()) { return; } auto continuation = [&](std::pair level_file) { // If it's being compacted it has nothing to do here. // If this assert() fails that means that some function marked some // files as being_compacted, but didn't call ComputeCompactionScore() assert(!level_file.second->being_compacted); output_level_ = start_level_ = level_file.first; if (start_level_ == 0 && !compaction_picker_->level0_compactions_in_progress()->empty()) { return false; } start_level_inputs_.files = {level_file.second}; start_level_inputs_.level = start_level_; return compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_, &start_level_inputs_); }; for (auto& level_file : vstorage_->FilesMarkedForPeriodicCompaction()) { if (continuation(level_file)) { // found the compaction! return; } } start_level_inputs_.files.clear(); } void LevelCompactionBuilder::SetupInitialFiles() { // Find the compactions by size on all levels. bool skipped_l0_to_base = false; for (int i = 0; i < compaction_picker_->NumberLevels() - 1; i++) { start_level_score_ = vstorage_->CompactionScore(i); start_level_ = vstorage_->CompactionScoreLevel(i); assert(i == 0 || start_level_score_ <= vstorage_->CompactionScore(i - 1)); if (start_level_score_ >= 1) { if (skipped_l0_to_base && start_level_ == vstorage_->base_level()) { // If L0->base_level compaction is pending, don't schedule further // compaction from base level. Otherwise L0->base_level compaction // may starve. continue; } output_level_ = (start_level_ == 0) ? vstorage_->base_level() : start_level_ + 1; if (PickFileToCompact()) { // found the compaction! if (start_level_ == 0) { // L0 score = `num L0 files` / `level0_file_num_compaction_trigger` compaction_reason_ = CompactionReason::kLevelL0FilesNum; } else { // L1+ score = `Level files size` / `MaxBytesForLevel` compaction_reason_ = CompactionReason::kLevelMaxLevelSize; } break; } else { // didn't find the compaction, clear the inputs start_level_inputs_.clear(); if (start_level_ == 0) { skipped_l0_to_base = true; // L0->base_level may be blocked due to ongoing L0->base_level // compactions. It may also be blocked by an ongoing compaction from // base_level downwards. // // In these cases, to reduce L0 file count and thus reduce likelihood // of write stalls, we can attempt compacting a span of files within // L0. if (PickIntraL0Compaction()) { output_level_ = 0; compaction_reason_ = CompactionReason::kLevelL0FilesNum; break; } } } } } // if we didn't find a compaction, check if there are any files marked for // compaction if (start_level_inputs_.empty()) { parent_index_ = base_index_ = -1; compaction_picker_->PickFilesMarkedForCompaction( cf_name_, vstorage_, &start_level_, &output_level_, &start_level_inputs_); if (!start_level_inputs_.empty()) { is_manual_ = true; compaction_reason_ = CompactionReason::kFilesMarkedForCompaction; return; } } // Bottommost Files Compaction on deleting tombstones if (start_level_inputs_.empty()) { size_t i; for (i = 0; i < vstorage_->BottommostFilesMarkedForCompaction().size(); ++i) { auto& level_and_file = vstorage_->BottommostFilesMarkedForCompaction()[i]; assert(!level_and_file.second->being_compacted); start_level_inputs_.level = output_level_ = start_level_ = level_and_file.first; start_level_inputs_.files = {level_and_file.second}; if (compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_, &start_level_inputs_)) { break; } } if (i == vstorage_->BottommostFilesMarkedForCompaction().size()) { start_level_inputs_.clear(); } else { assert(!start_level_inputs_.empty()); compaction_reason_ = CompactionReason::kBottommostFiles; return; } } // TTL Compaction if (start_level_inputs_.empty()) { PickExpiredTtlFiles(); if (!start_level_inputs_.empty()) { compaction_reason_ = CompactionReason::kTtl; return; } } // Periodic Compaction if (start_level_inputs_.empty()) { PickFilesMarkedForPeriodicCompaction(); if (!start_level_inputs_.empty()) { compaction_reason_ = CompactionReason::kPeriodicCompaction; return; } } } bool LevelCompactionBuilder::SetupOtherL0FilesIfNeeded() { if (start_level_ == 0 && output_level_ != 0) { return compaction_picker_->GetOverlappingL0Files( vstorage_, &start_level_inputs_, output_level_, &parent_index_); } return true; } bool LevelCompactionBuilder::SetupOtherInputsIfNeeded() { // Setup input files from output level. For output to L0, we only compact // spans of files that do not interact with any pending compactions, so don't // need to consider other levels. if (output_level_ != 0) { output_level_inputs_.level = output_level_; if (!compaction_picker_->SetupOtherInputs( cf_name_, mutable_cf_options_, vstorage_, &start_level_inputs_, &output_level_inputs_, &parent_index_, base_index_)) { return false; } compaction_inputs_.push_back(start_level_inputs_); if (!output_level_inputs_.empty()) { compaction_inputs_.push_back(output_level_inputs_); } // In some edge cases we could pick a compaction that will be compacting // a key range that overlap with another running compaction, and both // of them have the same output level. This could happen if // (1) we are running a non-exclusive manual compaction // (2) AddFile ingest a new file into the LSM tree // We need to disallow this from happening. if (compaction_picker_->FilesRangeOverlapWithCompaction(compaction_inputs_, output_level_)) { // This compaction output could potentially conflict with the output // of a currently running compaction, we cannot run it. return false; } compaction_picker_->GetGrandparents(vstorage_, start_level_inputs_, output_level_inputs_, &grandparents_); } else { compaction_inputs_.push_back(start_level_inputs_); } return true; } Compaction* LevelCompactionBuilder::PickCompaction() { // Pick up the first file to start compaction. It may have been extended // to a clean cut. SetupInitialFiles(); if (start_level_inputs_.empty()) { return nullptr; } assert(start_level_ >= 0 && output_level_ >= 0); // If it is a L0 -> base level compaction, we need to set up other L0 // files if needed. if (!SetupOtherL0FilesIfNeeded()) { return nullptr; } // Pick files in the output level and expand more files in the start level // if needed. if (!SetupOtherInputsIfNeeded()) { return nullptr; } // Form a compaction object containing the files we picked. Compaction* c = GetCompaction(); TEST_SYNC_POINT_CALLBACK("LevelCompactionPicker::PickCompaction:Return", c); return c; } Compaction* LevelCompactionBuilder::GetCompaction() { auto c = new Compaction( vstorage_, ioptions_, mutable_cf_options_, std::move(compaction_inputs_), output_level_, MaxFileSizeForLevel(mutable_cf_options_, output_level_, ioptions_.compaction_style, vstorage_->base_level(), ioptions_.level_compaction_dynamic_level_bytes), mutable_cf_options_.max_compaction_bytes, GetPathId(ioptions_, mutable_cf_options_, output_level_), GetCompressionType(ioptions_, vstorage_, mutable_cf_options_, output_level_, vstorage_->base_level()), GetCompressionOptions(ioptions_, vstorage_, output_level_), /* max_subcompactions */ 0, std::move(grandparents_), is_manual_, start_level_score_, false /* deletion_compaction */, compaction_reason_); // If it's level 0 compaction, make sure we don't execute any other level 0 // compactions in parallel compaction_picker_->RegisterCompaction(c); // Creating a compaction influences the compaction score because the score // takes running compactions into account (by skipping files that are already // being compacted). Since we just changed compaction score, we recalculate it // here vstorage_->ComputeCompactionScore(ioptions_, mutable_cf_options_); return c; } /* * Find the optimal path to place a file * Given a level, finds the path where levels up to it will fit in levels * up to and including this path */ uint32_t LevelCompactionBuilder::GetPathId( const ImmutableCFOptions& ioptions, const MutableCFOptions& mutable_cf_options, int level) { uint32_t p = 0; assert(!ioptions.cf_paths.empty()); // size remaining in the most recent path uint64_t current_path_size = ioptions.cf_paths[0].target_size; uint64_t level_size; int cur_level = 0; // max_bytes_for_level_base denotes L1 size. // We estimate L0 size to be the same as L1. level_size = mutable_cf_options.max_bytes_for_level_base; // Last path is the fallback while (p < ioptions.cf_paths.size() - 1) { if (level_size <= current_path_size) { if (cur_level == level) { // Does desired level fit in this path? return p; } else { current_path_size -= level_size; if (cur_level > 0) { if (ioptions.level_compaction_dynamic_level_bytes) { // Currently, level_compaction_dynamic_level_bytes is ignored when // multiple db paths are specified. https://github.com/facebook/ // rocksdb/blob/master/db/column_family.cc. // Still, adding this check to avoid accidentally using // max_bytes_for_level_multiplier_additional level_size = static_cast( level_size * mutable_cf_options.max_bytes_for_level_multiplier); } else { level_size = static_cast( level_size * mutable_cf_options.max_bytes_for_level_multiplier * mutable_cf_options.MaxBytesMultiplerAdditional(cur_level)); } } cur_level++; continue; } } p++; current_path_size = ioptions.cf_paths[p].target_size; } return p; } bool LevelCompactionBuilder::PickFileToCompact() { // level 0 files are overlapping. So we cannot pick more // than one concurrent compactions at this level. This // could be made better by looking at key-ranges that are // being compacted at level 0. if (start_level_ == 0 && !compaction_picker_->level0_compactions_in_progress()->empty()) { TEST_SYNC_POINT("LevelCompactionPicker::PickCompactionBySize:0"); return false; } start_level_inputs_.clear(); assert(start_level_ >= 0); // Pick the largest file in this level that is not already // being compacted const std::vector& file_size = vstorage_->FilesByCompactionPri(start_level_); const std::vector& level_files = vstorage_->LevelFiles(start_level_); unsigned int cmp_idx; for (cmp_idx = vstorage_->NextCompactionIndex(start_level_); cmp_idx < file_size.size(); cmp_idx++) { int index = file_size[cmp_idx]; auto* f = level_files[index]; // do not pick a file to compact if it is being compacted // from n-1 level. if (f->being_compacted) { continue; } start_level_inputs_.files.push_back(f); start_level_inputs_.level = start_level_; if (!compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_, &start_level_inputs_) || compaction_picker_->FilesRangeOverlapWithCompaction( {start_level_inputs_}, output_level_)) { // A locked (pending compaction) input-level file was pulled in due to // user-key overlap. start_level_inputs_.clear(); continue; } // Now that input level is fully expanded, we check whether any output files // are locked due to pending compaction. // // Note we rely on ExpandInputsToCleanCut() to tell us whether any output- // level files are locked, not just the extra ones pulled in for user-key // overlap. InternalKey smallest, largest; compaction_picker_->GetRange(start_level_inputs_, &smallest, &largest); CompactionInputFiles output_level_inputs; output_level_inputs.level = output_level_; vstorage_->GetOverlappingInputs(output_level_, &smallest, &largest, &output_level_inputs.files); if (!output_level_inputs.empty() && !compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_, &output_level_inputs)) { start_level_inputs_.clear(); continue; } base_index_ = index; break; } // store where to start the iteration in the next call to PickCompaction vstorage_->SetNextCompactionIndex(start_level_, cmp_idx); return start_level_inputs_.size() > 0; } bool LevelCompactionBuilder::PickIntraL0Compaction() { start_level_inputs_.clear(); const std::vector& level_files = vstorage_->LevelFiles(0 /* level */); if (level_files.size() < static_cast( mutable_cf_options_.level0_file_num_compaction_trigger + 2) || level_files[0]->being_compacted) { // If L0 isn't accumulating much files beyond the regular trigger, don't // resort to L0->L0 compaction yet. return false; } return FindIntraL0Compaction( level_files, kMinFilesForIntraL0Compaction, port::kMaxUint64, mutable_cf_options_.max_compaction_bytes, &start_level_inputs_); } } // namespace Compaction* LevelCompactionPicker::PickCompaction( const std::string& cf_name, const MutableCFOptions& mutable_cf_options, VersionStorageInfo* vstorage, LogBuffer* log_buffer) { LevelCompactionBuilder builder(cf_name, vstorage, this, log_buffer, mutable_cf_options, ioptions_); return builder.PickCompaction(); } } // namespace rocksdb