// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #pragma once #include <array> #include <memory> #include "util/math128.h" namespace ROCKSDB_NAMESPACE { namespace ribbon { // RIBBON PHSF & RIBBON Filter (Rapid Incremental Boolean Banding ON-the-fly) // // ribbon_alg.h: generic versions of core algorithms. // // Ribbon is a Perfect Hash Static Function construction useful as a compact // static Bloom filter alternative. It combines (a) a boolean (GF(2)) linear // system construction that approximates a Band Matrix with hashing, // (b) an incremental, on-the-fly Gaussian Elimination algorithm that is // remarkably efficient and adaptable at constructing an upper-triangular // band matrix from a set of band-approximating inputs from (a), and // (c) a storage layout that is fast and adaptable as a filter. // // Footnotes: (a) "Efficient Gauss Elimination for Near-Quadratic Matrices // with One Short Random Block per Row, with Applications" by Stefan // Walzer and Martin Dietzfelbinger ("DW paper") // (b) developed by Peter C. Dillinger, though not the first on-the-fly // GE algorithm. See "On the fly Gaussian Elimination for LT codes" by // Bioglio, Grangetto, Gaeta, and Sereno. // (c) see "interleaved" solution storage below. // // See ribbon_impl.h for high-level behavioral summary. This file focuses // on the core design details. // // ###################################################################### // ################# PHSF -> static filter reduction #################### // // A Perfect Hash Static Function is a data structure representing a // map from anything hashable (a "key") to values of some fixed size. // Crucially, it is allowed to return garbage values for anything not in // the original set of map keys, and it is a "static" structure: entries // cannot be added or deleted after construction. PHSFs representing n // mappings to b-bit values (assume uniformly distributed) require at least // n * b bits to represent, or at least b bits per entry. We typically // describe the compactness of a PHSF by typical bits per entry as some // function of b. For example, the MWHC construction (k=3 "peeling") // requires about 1.0222*b and a variant called Xor+ requires about // 1.08*b + 0.5 bits per entry. // // With more hashing, a PHSF can over-approximate a set as a Bloom filter // does, with no FN queries and predictable false positive (FP) query // rate. Instead of the user providing a value to map each input key to, // a hash function provides the value. Keys in the original set will // return a positive membership query because the underlying PHSF returns // the same value as hashing the key. When a key is not in the original set, // the PHSF returns a "garbage" value, which is only equal to the key's // hash with (false positive) probability 1 in 2^b. // // For a matching false positive rate, standard Bloom filters require // 1.44*b bits per entry. Cache-local Bloom filters (like bloom_impl.h) // require a bit more, around 1.5*b bits per entry. Thus, a Bloom // alternative could save up to or nearly 1/3rd of memory and storage // that RocksDB uses for SST (static) Bloom filters. (Memtable Bloom filter // is dynamic.) // // Recommended reading: // "Xor Filters: Faster and Smaller Than Bloom and Cuckoo Filters" // by Graf and Lemire // First three sections of "Fast Scalable Construction of (Minimal // Perfect Hash) Functions" by Genuzio, Ottaviano, and Vigna // // ###################################################################### // ################## PHSF vs. hash table vs. Bloom ##################### // // You can think of traditional hash tables and related filter variants // such as Cuckoo filters as utilizing an "OR" construction: a hash // function associates a key with some slots and the data is returned if // the data is found in any one of those slots. The collision resolution // is visible in the final data structure and requires extra information. // For example, Cuckoo filter uses roughly 1.05b + 2 bits per entry, and // Golomb-Rice code (aka "GCS") as little as b + 1.5. When the data // structure associates each input key with data in one slot, the // structure implicitly constructs a (near-)minimal (near-)perfect hash // (MPH) of the keys, which requires at least 1.44 bits per key to // represent. This is why approaches with visible collision resolution // have a fixed + 1.5 or more in storage overhead per entry, often in // addition to an overhead multiplier on b. // // By contrast Bloom filters utilize an "AND" construction: a query only // returns true if all bit positions associated with a key are set to 1. // There is no collision resolution, so Bloom filters do not suffer a // fixed bits per entry overhead like the above structures. // // PHSFs typically use a bitwise XOR construction: the data you want is // not in a single slot, but in a linear combination of several slots. // For static data, this gives the best of "AND" and "OR" constructions: // avoids the +1.44 or more fixed overhead by not approximating a MPH and // can do much better than Bloom's 1.44 factor on b with collision // resolution, which here is done ahead of time and invisible at query // time. // // ###################################################################### // ######################## PHSF construction ########################### // // For a typical PHSF, construction is solving a linear system of // equations, typically in GF(2), which is to say that values are boolean // and XOR serves both as addition and subtraction. We can use matrices to // represent the problem: // // C * S = R // (n x m) (m x b) (n x b) // where C = coefficients, S = solution, R = results // and solving for S given C and R. // // Note that C and R each have n rows, one for each input entry for the // PHSF. A row in C is given by a hash function on the PHSF input key, // and the corresponding row in R is the b-bit value to associate with // that input key. (In a filter, rows of R are given by another hash // function on the input key.) // // On solving, the matrix S (solution) is the final PHSF data, as it // maps any row from the original C to its corresponding desired result // in R. We just have to hash our query inputs and compute a linear // combination of rows in S. // // In theory, we could chose m = n and let a hash function associate // each input key with random rows in C. A solution exists with high // probability, and uses essentially minimum space, b bits per entry // (because we set m = n) but this has terrible scaling, something // like O(n^2) space and O(n^3) time during construction (Gaussian // elimination) and O(n) query time. But computational efficiency is // key, and the core of this is avoiding scanning all of S to answer // each query. // // The traditional approach (MWHC, aka Xor filter) starts with setting // only some small fixed number of columns (typically k=3) to 1 for each // row of C, with remaining entries implicitly 0. This is implemented as // three hash functions over [0,m), and S can be implemented as a vector // vector of b-bit values. Now, a query only involves looking up k rows // (values) in S and computing their bitwise XOR. Additionally, this // construction can use a linear time algorithm called "peeling" for // finding a solution in many cases of one existing, but peeling // generally requires a larger space overhead factor in the solution // (m/n) than is required with Gaussian elimination. // // Recommended reading: // "Peeling Close to the Orientability Threshold – Spatial Coupling in // Hashing-Based Data Structures" by Stefan Walzer // // ###################################################################### // ##################### Ribbon PHSF construction ####################### // // Ribbon constructs coefficient rows essentially the same as in the // Walzer/Dietzfelbinger paper cited above: for some chosen fixed width // r (kCoeffBits in code), each key is hashed to a starting column in // [0, m - r] (GetStart() in code) and an r-bit sequence of boolean // coefficients (GetCoeffRow() in code). If you sort the rows by start, // the C matrix would look something like this: // // [####00000000000000000000] // [####00000000000000000000] // [000####00000000000000000] // [0000####0000000000000000] // [0000000####0000000000000] // [000000000####00000000000] // [000000000####00000000000] // [0000000000000####0000000] // [0000000000000000####0000] // [00000000000000000####000] // [00000000000000000000####] // // where each # could be a 0 or 1, chosen uniformly by a hash function. // (Except we typically set the start column value to 1.) This scheme // uses hashing to approximate a band matrix, and it has a solution iff // it reduces to an upper-triangular boolean r-band matrix, like this: // // [1###00000000000000000000] // [01##00000000000000000000] // [000000000000000000000000] // [0001###00000000000000000] // [000000000000000000000000] // [000001##0000000000000000] // [000000000000000000000000] // [00000001###0000000000000] // [000000001###000000000000] // [0000000001##000000000000] // ... // [00000000000000000000001#] // [000000000000000000000001] // // where we have expanded to an m x m matrix by filling with rows of // all zeros as needed. As in Gaussian elimination, this form is ready for // generating a solution through back-substitution. // // The awesome thing about the Ribbon construction (from the DW paper) is // how row reductions keep each row representable as a start column and // r coefficients, because row reductions are only needed when two rows // have the same number of leading zero columns. Thus, the combination // of those rows, the bitwise XOR of the r-bit coefficient rows, cancels // out the leading 1s, so starts (at least) one column later and only // needs (at most) r - 1 coefficients. // // ###################################################################### // ###################### Ribbon PHSF scalability ####################### // // Although more practical detail is in ribbon_impl.h, it's worth // understanding some of the overall benefits and limitations of the // Ribbon PHSFs. // // High-end scalability is a primary issue for Ribbon PHSFs, because in // a single Ribbon linear system with fixed r and fixed m/n ratio, the // solution probability approaches zero as n approaches infinity. // For a given n, solution probability improves with larger r and larger // m/n. // // By contrast, peeling-based PHSFs have somewhat worse storage ratio // or solution probability for small n (less than ~1000). This is // especially true with spatial-coupling, where benefits are only // notable for n on the order of 100k or 1m or more. // // To make best use of current hardware, r=128 seems to be closest to // a "generally good" choice for Ribbon, at least in RocksDB where SST // Bloom filters typically hold around 10-100k keys, and almost always // less than 10m keys. r=128 ribbon has a high chance of encoding success // (with first hash seed) when storage overhead is around 5% (m/n ~ 1.05) // for roughly 10k - 10m keys in a single linear system. r=64 only scales // up to about 10k keys with the same storage overhead. Construction and // access times for r=128 are similar to r=64. r=128 tracks nearly // twice as much data during construction, but in most cases we expect // the scalability benefits of r=128 vs. r=64 to make it preferred. // // A natural approach to scaling Ribbon beyond ~10m keys is splitting // (or "sharding") the inputs into multiple linear systems with their // own hash seeds. This can also help to control peak memory consumption. // TODO: much more to come // // ###################################################################### // #################### Ribbon on-the-fly banding ####################### // // "Banding" is what we call the process of reducing the inputs to an // upper-triangular r-band matrix ready for finishing a solution with // back-substitution. Although the DW paper presents an algorithm for // this ("SGauss"), the awesome properties of their construction enable // an even simpler, faster, and more backtrackable algorithm. In simplest // terms, the SGauss algorithm requires sorting the inputs by start // columns, but it's possible to make Gaussian elimination resemble hash // table insertion! // // The enhanced algorithm is based on these observations: // - When processing a coefficient row with first 1 in column j, // - If it's the first at column j to be processed, it can be part of // the banding at row j. (And that decision never overwritten, with // no loss of generality!) // - Else, it can be combined with existing row j and re-processed, // which will look for a later "empty" row or reach "no solution". // // We call our banding algorithm "incremental" and "on-the-fly" because // (like hash table insertion) we are "finished" after each input // processed, with respect to all inputs processed so far. Although the // band matrix is an intermediate step to the solution structure, we have // eliminated intermediate steps and unnecessary data tracking for // banding. // // Building on "incremental" and "on-the-fly", the banding algorithm is // easily backtrackable because no (non-empty) rows are overwritten in // the banding. Thus, if we want to "try" adding an additional set of // inputs to the banding, we only have to record which rows were written // in order to efficiently backtrack to our state before considering // the additional set. (TODO: how this can mitigate scalability and // reach sub-1% overheads) // // Like in a linear-probed hash table, as the occupancy approaches and // surpasses 90-95%, collision resolution dominates the construction // time. (Ribbon doesn't usually pay at query time; see solution // storage below.) This means that we can speed up construction time // by using a higher m/n ratio, up to negative returns around 1.2. // At m/n ~= 1.2, which still saves memory substantially vs. Bloom // filter's 1.5, construction speed (including back-substitution) is not // far from sorting speed, but still a few times slower than cache-local // Bloom construction speed. // // Back-substitution from an upper-triangular boolean band matrix is // especially fast and easy. All the memory accesses are sequential or at // least local, no random. If the number of result bits (b) is a // compile-time constant, the back-substitution state can even be tracked // in CPU registers. Regardless of the solution representation, we prefer // column-major representation for tracking back-substitution state, as // r (the band width) will typically be much larger than b (result bits // or columns), so better to handle r-bit values b times (per solution // row) than b-bit values r times. // // ###################################################################### // ##################### Ribbon solution storage ######################## // // Row-major layout is typical for boolean (bit) matrices, including for // MWHC (Xor) filters where a query combines k b-bit values, and k is // typically smaller than b. Even for k=4 and b=2, at least k=4 random // look-ups are required regardless of layout. // // Ribbon PHSFs are quite different, however, because // (a) all of the solution rows relevant to a query are within a single // range of r rows, and // (b) the number of solution rows involved (r/2 on average, or r if // avoiding conditional accesses) is typically much greater than // b, the number of solution columns. // // Row-major for Ribbon PHSFs therefore tends to incur undue CPU overhead // by processing (up to) r entries of b bits each, where b is typically // less than 10 for filter applications. // // Column-major layout has poor locality because of accessing up to b // memory locations in different pages (and obviously cache lines). Note // that negative filter queries do not typically need to access all // solution columns, as they can return when a mismatch is found in any // result/solution column. This optimization doesn't always pay off on // recent hardware, where the penalty for unpredictable conditional // branching can exceed the penalty for unnecessary work, but the // optimization is essentially unavailable with row-major layout. // // The best compromise seems to be interleaving column-major on the small // scale with row-major on the large scale. For example, let a solution // "block" be r rows column-major encoded as b r-bit values in sequence. // Each query accesses (up to) 2 adjacent blocks, which will typically // span 1-3 cache lines in adjacent memory. We get very close to the same // locality as row-major, but with much faster reconstruction of each // result column, at least for filter applications where b is relatively // small and negative queries can return early. // // ###################################################################### // ###################### Fractional result bits ######################## // // Bloom filters have great flexibility that alternatives mostly do not // have. One of those flexibilities is in utilizing any ratio of data // structure bits per key. With a typical memory allocator like jemalloc, // this flexibility can save roughly 10% of the filters' footprint in // DRAM by rounding up and down filter sizes to minimize memory internal // fragmentation (see optimize_filters_for_memory RocksDB option). // // At first glance, PHSFs only offer a whole number of bits per "slot" // (m rather than number of keys n), but coefficient locality in the // Ribbon construction makes fractional bits/key quite possible and // attractive for filter applications. This works by a prefix of the // structure using b-1 solution columns and the rest using b solution // columns. See InterleavedSolutionStorage below for more detail. // // Because false positive rates are non-linear in bits/key, this approach // is not quite optimal in terms of information theory. In common cases, // we see additional space overhead up to about 1.5% vs. theoretical // optimal to achieve the same FP rate. We consider this a quite acceptable // overhead for very efficiently utilizing space that might otherwise be // wasted. // // This property of Ribbon even makes it "elastic." A Ribbon filter and // its small metadata for answering queries can be adapted into another // Ribbon filter filling any smaller multiple of r bits (plus small // metadata), with a correspondingly higher FP rate. None of the data // thrown away during construction needs to be recalled for this reduction. // Similarly a single Ribbon construction can be separated (by solution // column) into two or more structures (or "layers" or "levels") with // independent filtering ability (no FP correlation, just as solution or // result columns in a single structure) despite being constructed as part // of a single linear system. (TODO: implement) // See also "ElasticBF: Fine-grained and Elastic Bloom Filter Towards // Efficient Read for LSM-tree-based KV Stores." // // ###################################################################### // ################### CODE: Ribbon core algorithms ##################### // ###################################################################### // // These algorithms are templatized for genericity but near-maximum // performance in a given application. The template parameters // adhere to informal class/struct type concepts outlined below. (This // code is written for C++11 so does not use formal C++ concepts.) // Rough architecture for these algorithms: // // +-----------+ +---+ +-----------------+ // | AddInputs | --> | H | --> | BandingStorage | // +-----------+ | a | +-----------------+ // | s | | // | h | Back substitution // | e | V // +-----------+ | r | +-----------------+ // | Query Key | --> | | >+< | SolutionStorage | // +-----------+ +---+ | +-----------------+ // V // Query result // Common to other concepts // concept RibbonTypes { // // An unsigned integer type for an r-bit subsequence of coefficients. // // r (or kCoeffBits) is taken to be sizeof(CoeffRow) * 8, as it would // // generally only hurt scalability to leave bits of CoeffRow unused. // typename CoeffRow; // // An unsigned integer type big enough to hold a result row (b bits, // // or number of solution/result columns). // // In many applications, especially filters, the number of result // // columns is decided at run time, so ResultRow simply needs to be // // big enough for the largest number of columns allowed. // typename ResultRow; // // An unsigned integer type sufficient for representing the number of // // rows in the solution structure, and at least the arithmetic // // promotion size (usually 32 bits). uint32_t recommended because a // // single Ribbon construction doesn't really scale to billions of // // entries. // typename Index; // }; // ###################################################################### // ######################## Hashers and Banding ######################### // Hasher concepts abstract out hashing details. // concept PhsfQueryHasher extends RibbonTypes { // // Type for a lookup key, which is hashable. // typename Key; // // // Type for hashed summary of a Key. uint64_t is recommended. // typename Hash; // // // Compute a hash value summarizing a Key // Hash GetHash(const Key &) const; // // // Given a hash value and a number of columns that can start an // // r-sequence of coefficients (== m - r + 1), return the start // // column to associate with that hash value. (Starts can be chosen // // uniformly or "smash" extra entries into the beginning and end for // // better utilization at those extremes of the structure. Details in // // ribbon.impl.h) // Index GetStart(Hash, Index num_starts) const; // // // Given a hash value, return the r-bit sequence of coefficients to // // associate with it. It's generally OK if // // sizeof(CoeffRow) > sizeof(Hash) // // as long as the hash itself is not too prone to collisions for the // // applications and the CoeffRow is generated uniformly from // // available hash data, but relatively independent of the start. // // // // Must be non-zero, because that's required for a solution to exist // // when mapping to non-zero result row. (Note: BandingAdd could be // // modified to allow 0 coeff row if that only occurs with 0 result // // row, which really only makes sense for filter implementation, // // where both values are hash-derived. Or BandingAdd could reject 0 // // coeff row, forcing next seed, but that has potential problems with // // generality/scalability.) // CoeffRow GetCoeffRow(Hash) const; // }; // concept FilterQueryHasher extends PhsfQueryHasher { // // For building or querying a filter, this returns the expected // // result row associated with a hashed input. For general PHSF, // // this must return 0. // // // // Although not strictly required, there's a slightly better chance of // // solver success if result row is masked down here to only the bits // // actually needed. // ResultRow GetResultRowFromHash(Hash) const; // } // concept BandingHasher extends FilterQueryHasher { // // For a filter, this will generally be the same as Key. // // For a general PHSF, it must either // // (a) include a key and a result it maps to (e.g. in a std::pair), or // // (b) GetResultRowFromInput looks up the result somewhere rather than // // extracting it. // typename AddInput; // // // Instead of requiring a way to extract a Key from an // // AddInput, we require getting the hash of the Key part // // of an AddInput, which is trivial if AddInput == Key. // Hash GetHash(const AddInput &) const; // // // For building a non-filter PHSF, this extracts or looks up the result // // row to associate with an input. For filter PHSF, this must return 0. // ResultRow GetResultRowFromInput(const AddInput &) const; // // // Whether the solver can assume the lowest bit of GetCoeffRow is // // always 1. When true, it should improve solver efficiency slightly. // static bool kFirstCoeffAlwaysOne; // } // Abstract storage for the the result of "banding" the inputs (Gaussian // elimination to an upper-triangular boolean band matrix). Because the // banding is an incremental / on-the-fly algorithm, this also represents // all the intermediate state between input entries. // // concept BandingStorage extends RibbonTypes { // // Tells the banding algorithm to prefetch memory associated with // // the next input before processing the current input. Generally // // recommended iff the BandingStorage doesn't easily fit in CPU // // cache. // bool UsePrefetch() const; // // // Prefetches (e.g. __builtin_prefetch) memory associated with a // // slot index i. // void Prefetch(Index i) const; // // // Returns a pointer to CoeffRow for slot index i. // CoeffRow* CoeffRowPtr(Index i); // // // Returns a pointer to ResultRow for slot index i. (Gaussian row // // operations involve both side of the equation.) // ResultRow* ResultRowPtr(Index i); // // // Returns the number of columns that can start an r-sequence of // // coefficients, which is the number of slots minus r (kCoeffBits) // // plus one. (m - r + 1) // Index GetNumStarts() const; // }; // Optional storage for backtracking data in banding a set of input // entries. It exposes an array structure which will generally be // used as a stack. It must be able to accommodate as many entries // as are passed in as inputs to `BandingAddRange`. // // concept BacktrackStorage extends RibbonTypes { // // If false, backtracking support will be disabled in the algorithm. // // This should preferably be an inline compile-time constant function. // bool UseBacktrack() const; // // // Records `to_save` as the `i`th backtrack entry // void BacktrackPut(Index i, Index to_save); // // // Recalls the `i`th backtrack entry // Index BacktrackGet(Index i) const; // } // Adds a single entry to BandingStorage (and optionally, BacktrackStorage), // returning true if successful or false if solution is impossible with // current hasher (and presumably its seed) and number of "slots" (solution // or banding rows). (A solution is impossible when there is a linear // dependence among the inputs that doesn't "cancel out".) // // Pre- and post-condition: the BandingStorage represents a band matrix // ready for back substitution (row echelon form except for zero rows), // augmented with result values such that back substitution would give a // solution satisfying all the cr@start -> rr entries added. template <bool kFirstCoeffAlwaysOne, typename BandingStorage, typename BacktrackStorage> bool BandingAdd(BandingStorage *bs, typename BandingStorage::Index start, typename BandingStorage::ResultRow rr, typename BandingStorage::CoeffRow cr, BacktrackStorage *bts, typename BandingStorage::Index *backtrack_pos) { using CoeffRow = typename BandingStorage::CoeffRow; using Index = typename BandingStorage::Index; Index i = start; if (!kFirstCoeffAlwaysOne) { // Requires/asserts that cr != 0 int tz = CountTrailingZeroBits(cr); i += static_cast<Index>(tz); cr >>= tz; } for (;;) { assert((cr & 1) == 1); CoeffRow other = *(bs->CoeffRowPtr(i)); if (other == 0) { *(bs->CoeffRowPtr(i)) = cr; *(bs->ResultRowPtr(i)) = rr; bts->BacktrackPut(*backtrack_pos, i); ++*backtrack_pos; return true; } assert((other & 1) == 1); // Gaussian row reduction cr ^= other; rr ^= *(bs->ResultRowPtr(i)); if (cr == 0) { // Inconsistency or (less likely) redundancy break; } // Find relative offset of next non-zero coefficient. int tz = CountTrailingZeroBits(cr); i += static_cast<Index>(tz); cr >>= tz; } // Failed, unless result row == 0 because e.g. a duplicate input or a // stock hash collision, with same result row. (For filter, stock hash // collision implies same result row.) Or we could have a full equation // equal to sum of other equations, which is very possible with // small range of values for result row. return rr == 0; } // Adds a range of entries to BandingStorage returning true if successful // or false if solution is impossible with current hasher (and presumably // its seed) and number of "slots" (solution or banding rows). (A solution // is impossible when there is a linear dependence among the inputs that // doesn't "cancel out".) Here "InputIterator" is an iterator over AddInputs. // // If UseBacktrack in the BacktrackStorage, this function call rolls back // to prior state on failure. If !UseBacktrack, some subset of the entries // will have been added to the BandingStorage, so best considered to be in // an indeterminate state. // template <typename BandingStorage, typename BacktrackStorage, typename BandingHasher, typename InputIterator> bool BandingAddRange(BandingStorage *bs, BacktrackStorage *bts, const BandingHasher &bh, InputIterator begin, InputIterator end) { using CoeffRow = typename BandingStorage::CoeffRow; using Index = typename BandingStorage::Index; using ResultRow = typename BandingStorage::ResultRow; using Hash = typename BandingHasher::Hash; static_assert(IsUnsignedUpTo128<CoeffRow>::value, "must be unsigned"); static_assert(IsUnsignedUpTo128<Index>::value, "must be unsigned"); static_assert(IsUnsignedUpTo128<ResultRow>::value, "must be unsigned"); constexpr bool kFCA1 = BandingHasher::kFirstCoeffAlwaysOne; if (begin == end) { // trivial return true; } const Index num_starts = bs->GetNumStarts(); InputIterator cur = begin; Index backtrack_pos = 0; if (!bs->UsePrefetch()) { // Simple version, no prefetch for (;;) { Hash h = bh.GetHash(*cur); Index start = bh.GetStart(h, num_starts); ResultRow rr = bh.GetResultRowFromInput(*cur) | bh.GetResultRowFromHash(h); CoeffRow cr = bh.GetCoeffRow(h); if (!BandingAdd<kFCA1>(bs, start, rr, cr, bts, &backtrack_pos)) { break; } if ((++cur) == end) { return true; } } } else { // Pipelined w/prefetch // Prime the pipeline Hash h = bh.GetHash(*cur); Index start = bh.GetStart(h, num_starts); ResultRow rr = bh.GetResultRowFromInput(*cur); bs->Prefetch(start); // Pipeline for (;;) { rr |= bh.GetResultRowFromHash(h); CoeffRow cr = bh.GetCoeffRow(h); if ((++cur) == end) { if (!BandingAdd<kFCA1>(bs, start, rr, cr, bts, &backtrack_pos)) { break; } return true; } Hash next_h = bh.GetHash(*cur); Index next_start = bh.GetStart(next_h, num_starts); ResultRow next_rr = bh.GetResultRowFromInput(*cur); bs->Prefetch(next_start); if (!BandingAdd<kFCA1>(bs, start, rr, cr, bts, &backtrack_pos)) { break; } h = next_h; start = next_start; rr = next_rr; } } // failed; backtrack (if implemented) if (bts->UseBacktrack()) { while (backtrack_pos > 0) { --backtrack_pos; Index i = bts->BacktrackGet(backtrack_pos); *(bs->CoeffRowPtr(i)) = 0; // Not strictly required, but is required for good FP rate on // inputs that might have been backtracked out. (We don't want // anything we've backtracked on to leak into final result, as // that might not be "harmless".) *(bs->ResultRowPtr(i)) = 0; } } return false; } // Adds a range of entries to BandingStorage returning true if successful // or false if solution is impossible with current hasher (and presumably // its seed) and number of "slots" (solution or banding rows). (A solution // is impossible when there is a linear dependence among the inputs that // doesn't "cancel out".) Here "InputIterator" is an iterator over AddInputs. // // On failure, some subset of the entries will have been added to the // BandingStorage, so best considered to be in an indeterminate state. // template <typename BandingStorage, typename BandingHasher, typename InputIterator> bool BandingAddRange(BandingStorage *bs, const BandingHasher &bh, InputIterator begin, InputIterator end) { using Index = typename BandingStorage::Index; struct NoopBacktrackStorage { bool UseBacktrack() { return false; } void BacktrackPut(Index, Index) {} Index BacktrackGet(Index) { assert(false); return 0; } } nbts; return BandingAddRange(bs, &nbts, bh, begin, end); } // ###################################################################### // ######################### Solution Storage ########################### // Back-substitution and query algorithms unfortunately depend on some // details of data layout in the final data structure ("solution"). Thus, // there is no common SolutionStorage covering all the reasonable // possibilities. // ###################### SimpleSolutionStorage ######################### // SimpleSolutionStorage is for a row-major storage, typically with no // unused bits in each ResultRow. This is mostly for demonstration // purposes as the simplest solution storage scheme. It is relatively slow // for filter queries. // concept SimpleSolutionStorage extends RibbonTypes { // // This is called at the beginning of back-substitution for the // // solution storage to do any remaining configuration before data // // is stored to it. If configuration is previously finalized, this // // could be a simple assertion or even no-op. Ribbon algorithms // // only call this from back-substitution, and only once per call, // // before other functions here. // void PrepareForNumStarts(Index num_starts) const; // // Must return num_starts passed to PrepareForNumStarts, or the most // // recent call to PrepareForNumStarts if this storage object can be // // reused. Note that num_starts == num_slots - kCoeffBits + 1 because // // there must be a run of kCoeffBits slots starting from each start. // Index GetNumStarts() const; // // Load the solution row (type ResultRow) for a slot // ResultRow Load(Index slot_num) const; // // Store the solution row (type ResultRow) for a slot // void Store(Index slot_num, ResultRow data); // }; // Back-substitution for generating a solution from BandingStorage to // SimpleSolutionStorage. template <typename SimpleSolutionStorage, typename BandingStorage> void SimpleBackSubst(SimpleSolutionStorage *sss, const BandingStorage &bs) { using CoeffRow = typename BandingStorage::CoeffRow; using Index = typename BandingStorage::Index; using ResultRow = typename BandingStorage::ResultRow; static_assert(sizeof(Index) == sizeof(typename SimpleSolutionStorage::Index), "must be same"); static_assert( sizeof(CoeffRow) == sizeof(typename SimpleSolutionStorage::CoeffRow), "must be same"); static_assert( sizeof(ResultRow) == sizeof(typename SimpleSolutionStorage::ResultRow), "must be same"); constexpr auto kCoeffBits = static_cast<Index>(sizeof(CoeffRow) * 8U); constexpr auto kResultBits = static_cast<Index>(sizeof(ResultRow) * 8U); // A column-major buffer of the solution matrix, containing enough // recently-computed solution data to compute the next solution row // (based also on banding data). std::array<CoeffRow, kResultBits> state; state.fill(0); const Index num_starts = bs.GetNumStarts(); sss->PrepareForNumStarts(num_starts); const Index num_slots = num_starts + kCoeffBits - 1; for (Index i = num_slots; i > 0;) { --i; CoeffRow cr = *const_cast<BandingStorage &>(bs).CoeffRowPtr(i); ResultRow rr = *const_cast<BandingStorage &>(bs).ResultRowPtr(i); // solution row ResultRow sr = 0; for (Index j = 0; j < kResultBits; ++j) { // Compute next solution bit at row i, column j (see derivation below) CoeffRow tmp = state[j] << 1; bool bit = (BitParity(tmp & cr) ^ ((rr >> j) & 1)) != 0; tmp |= bit ? CoeffRow{1} : CoeffRow{0}; // Now tmp is solution at column j from row i for next kCoeffBits // more rows. Thus, for valid solution, the dot product of the // solution column with the coefficient row has to equal the result // at that column, // BitParity(tmp & cr) == ((rr >> j) & 1) // Update state. state[j] = tmp; // add to solution row sr |= (bit ? ResultRow{1} : ResultRow{0}) << j; } sss->Store(i, sr); } } // Common functionality for querying a key (already hashed) in // SimpleSolutionStorage. template <typename SimpleSolutionStorage> typename SimpleSolutionStorage::ResultRow SimpleQueryHelper( typename SimpleSolutionStorage::Index start_slot, typename SimpleSolutionStorage::CoeffRow cr, const SimpleSolutionStorage &sss) { using CoeffRow = typename SimpleSolutionStorage::CoeffRow; using ResultRow = typename SimpleSolutionStorage::ResultRow; constexpr unsigned kCoeffBits = static_cast<unsigned>(sizeof(CoeffRow) * 8U); ResultRow result = 0; for (unsigned i = 0; i < kCoeffBits; ++i) { // Bit masking whole value is generally faster here than 'if' result ^= sss.Load(start_slot + i) & (ResultRow{0} - (static_cast<ResultRow>(cr >> i) & ResultRow{1})); } return result; } // General PHSF query a key from SimpleSolutionStorage. template <typename SimpleSolutionStorage, typename PhsfQueryHasher> typename SimpleSolutionStorage::ResultRow SimplePhsfQuery( const typename PhsfQueryHasher::Key &key, const PhsfQueryHasher &hasher, const SimpleSolutionStorage &sss) { const typename PhsfQueryHasher::Hash hash = hasher.GetHash(key); static_assert(sizeof(typename SimpleSolutionStorage::Index) == sizeof(typename PhsfQueryHasher::Index), "must be same"); static_assert(sizeof(typename SimpleSolutionStorage::CoeffRow) == sizeof(typename PhsfQueryHasher::CoeffRow), "must be same"); return SimpleQueryHelper(hasher.GetStart(hash, sss.GetNumStarts()), hasher.GetCoeffRow(hash), sss); } // Filter query a key from SimpleSolutionStorage. template <typename SimpleSolutionStorage, typename FilterQueryHasher> bool SimpleFilterQuery(const typename FilterQueryHasher::Key &key, const FilterQueryHasher &hasher, const SimpleSolutionStorage &sss) { const typename FilterQueryHasher::Hash hash = hasher.GetHash(key); const typename SimpleSolutionStorage::ResultRow expected = hasher.GetResultRowFromHash(hash); static_assert(sizeof(typename SimpleSolutionStorage::Index) == sizeof(typename FilterQueryHasher::Index), "must be same"); static_assert(sizeof(typename SimpleSolutionStorage::CoeffRow) == sizeof(typename FilterQueryHasher::CoeffRow), "must be same"); static_assert(sizeof(typename SimpleSolutionStorage::ResultRow) == sizeof(typename FilterQueryHasher::ResultRow), "must be same"); return expected == SimpleQueryHelper(hasher.GetStart(hash, sss.GetNumStarts()), hasher.GetCoeffRow(hash), sss); } // #################### InterleavedSolutionStorage ###################### // InterleavedSolutionStorage is row-major at a high level, for good // locality, and column-major at a low level, for CPU efficiency // especially in filter queries or relatively small number of result bits // (== solution columns). The storage is a sequence of "blocks" where a // block has one CoeffRow-sized segment for each solution column. Each // query spans at most two blocks; the starting solution row is typically // in the row-logical middle of a block and spans to the middle of the // next block. (See diagram below.) // // InterleavedSolutionStorage supports choosing b (number of result or // solution columns) at run time, and even supports mixing b and b-1 solution // columns in a single linear system solution, for filters that can // effectively utilize any size space (multiple of CoeffRow) for minimizing // FP rate for any number of added keys. To simplify query implementation // (with lower-index columns first), the b-bit portion comes after the b-1 // portion of the structure. // // Diagram (=== marks logical block boundary; b=4; ### is data used by a // query crossing the b-1 to b boundary, each Segment has type CoeffRow): // ... // +======================+ // | S e g m e n t col=0 | // +----------------------+ // | S e g m e n t col=1 | // +----------------------+ // | S e g m e n t col=2 | // +======================+ // | S e g m e n #########| // +----------------------+ // | S e g m e n #########| // +----------------------+ // | S e g m e n #########| // +======================+ Result/solution columns: above = 3, below = 4 // |#############t col=0 | // +----------------------+ // |#############t col=1 | // +----------------------+ // |#############t col=2 | // +----------------------+ // | S e g m e n t col=3 | // +======================+ // | S e g m e n t col=0 | // +----------------------+ // | S e g m e n t col=1 | // +----------------------+ // | S e g m e n t col=2 | // +----------------------+ // | S e g m e n t col=3 | // +======================+ // ... // // InterleavedSolutionStorage will be adapted by the algorithms from // simple array-like segment storage. That array-like storage is templatized // in part so that an implementation may choose to handle byte ordering // at access time. // // concept InterleavedSolutionStorage extends RibbonTypes { // // This is called at the beginning of back-substitution for the // // solution storage to do any remaining configuration before data // // is stored to it. If configuration is previously finalized, this // // could be a simple assertion or even no-op. Ribbon algorithms // // only call this from back-substitution, and only once per call, // // before other functions here. // void PrepareForNumStarts(Index num_starts) const; // // Must return num_starts passed to PrepareForNumStarts, or the most // // recent call to PrepareForNumStarts if this storage object can be // // reused. Note that num_starts == num_slots - kCoeffBits + 1 because // // there must be a run of kCoeffBits slots starting from each start. // Index GetNumStarts() const; // // The larger number of solution columns used (called "b" above). // Index GetUpperNumColumns() const; // // If returns > 0, then block numbers below that use // // GetUpperNumColumns() - 1 columns per solution row, and the rest // // use GetUpperNumColumns(). A block represents kCoeffBits "slots", // // where all but the last kCoeffBits - 1 slots are also starts. And // // a block contains a segment for each solution column. // // An implementation may only support uniform columns per solution // // row and return constant 0 here. // Index GetUpperStartBlock() const; // // // ### "Array of segments" portion of API ### // // The number of values of type CoeffRow used in this solution // // representation. (This value can be inferred from the previous // // three functions, but is expected at least for sanity / assertion // // checking.) // Index GetNumSegments() const; // // Load an entry from the logical array of segments // CoeffRow LoadSegment(Index segment_num) const; // // Store an entry to the logical array of segments // void StoreSegment(Index segment_num, CoeffRow data); // }; // A helper for InterleavedBackSubst. template <typename BandingStorage> inline void BackSubstBlock(typename BandingStorage::CoeffRow *state, typename BandingStorage::Index num_columns, const BandingStorage &bs, typename BandingStorage::Index start_slot) { using CoeffRow = typename BandingStorage::CoeffRow; using Index = typename BandingStorage::Index; using ResultRow = typename BandingStorage::ResultRow; constexpr auto kCoeffBits = static_cast<Index>(sizeof(CoeffRow) * 8U); for (Index i = start_slot + kCoeffBits; i > start_slot;) { --i; CoeffRow cr = *const_cast<BandingStorage &>(bs).CoeffRowPtr(i); ResultRow rr = *const_cast<BandingStorage &>(bs).ResultRowPtr(i); for (Index j = 0; j < num_columns; ++j) { // Compute next solution bit at row i, column j (see derivation below) CoeffRow tmp = state[j] << 1; int bit = BitParity(tmp & cr) ^ ((rr >> j) & 1); tmp |= static_cast<CoeffRow>(bit); // Now tmp is solution at column j from row i for next kCoeffBits // more rows. Thus, for valid solution, the dot product of the // solution column with the coefficient row has to equal the result // at that column, // BitParity(tmp & cr) == ((rr >> j) & 1) // Update state. state[j] = tmp; } } } // Back-substitution for generating a solution from BandingStorage to // InterleavedSolutionStorage. template <typename InterleavedSolutionStorage, typename BandingStorage> void InterleavedBackSubst(InterleavedSolutionStorage *iss, const BandingStorage &bs) { using CoeffRow = typename BandingStorage::CoeffRow; using Index = typename BandingStorage::Index; static_assert( sizeof(Index) == sizeof(typename InterleavedSolutionStorage::Index), "must be same"); static_assert( sizeof(CoeffRow) == sizeof(typename InterleavedSolutionStorage::CoeffRow), "must be same"); constexpr auto kCoeffBits = static_cast<Index>(sizeof(CoeffRow) * 8U); const Index num_starts = bs.GetNumStarts(); // Although it might be nice to have a filter that returns "always false" // when no key is added, we aren't specifically supporting that here // because it would require another condition branch in the query. assert(num_starts > 0); iss->PrepareForNumStarts(num_starts); const Index num_slots = num_starts + kCoeffBits - 1; assert(num_slots % kCoeffBits == 0); const Index num_blocks = num_slots / kCoeffBits; const Index num_segments = iss->GetNumSegments(); // For now upper, then lower Index num_columns = iss->GetUpperNumColumns(); const Index upper_start_block = iss->GetUpperStartBlock(); if (num_columns == 0) { // Nothing to do, presumably because there's not enough space for even // a single segment. assert(num_segments == 0); // When num_columns == 0, a Ribbon filter query will always return true, // or a PHSF query always 0. return; } // We should be utilizing all available segments assert(num_segments == (upper_start_block * (num_columns - 1)) + ((num_blocks - upper_start_block) * num_columns)); // TODO: consider fixed-column specializations with stack-allocated state // A column-major buffer of the solution matrix, containing enough // recently-computed solution data to compute the next solution row // (based also on banding data). std::unique_ptr<CoeffRow[]> state{new CoeffRow[num_columns]()}; Index block = num_blocks; Index segment = num_segments; while (block > upper_start_block) { --block; BackSubstBlock(state.get(), num_columns, bs, block * kCoeffBits); segment -= num_columns; for (Index i = 0; i < num_columns; ++i) { iss->StoreSegment(segment + i, state[i]); } } // Now (if applicable), region using lower number of columns // (This should be optimized away if GetUpperStartBlock() returns // constant 0.) --num_columns; while (block > 0) { --block; BackSubstBlock(state.get(), num_columns, bs, block * kCoeffBits); segment -= num_columns; for (Index i = 0; i < num_columns; ++i) { iss->StoreSegment(segment + i, state[i]); } } // Verify everything processed assert(block == 0); assert(segment == 0); } // General PHSF query a key from InterleavedSolutionStorage. template <typename InterleavedSolutionStorage, typename PhsfQueryHasher> typename InterleavedSolutionStorage::ResultRow InterleavedPhsfQuery( const typename PhsfQueryHasher::Key &key, const PhsfQueryHasher &hasher, const InterleavedSolutionStorage &iss) { using Hash = typename PhsfQueryHasher::Hash; using CoeffRow = typename InterleavedSolutionStorage::CoeffRow; using Index = typename InterleavedSolutionStorage::Index; using ResultRow = typename InterleavedSolutionStorage::ResultRow; static_assert(sizeof(Index) == sizeof(typename PhsfQueryHasher::Index), "must be same"); static_assert(sizeof(CoeffRow) == sizeof(typename PhsfQueryHasher::CoeffRow), "must be same"); constexpr auto kCoeffBits = static_cast<Index>(sizeof(CoeffRow) * 8U); const Hash hash = hasher.GetHash(key); const Index start_slot = hasher.GetStart(hash, iss.GetNumStarts()); const Index upper_start_block = iss.GetUpperStartBlock(); Index num_columns = iss.GetUpperNumColumns(); Index start_block_num = start_slot / kCoeffBits; Index segment = start_block_num * num_columns - std::min(start_block_num, upper_start_block); // Change to lower num columns if applicable. // (This should not compile to a conditional branch.) num_columns -= (start_block_num < upper_start_block) ? 1 : 0; const CoeffRow cr = hasher.GetCoeffRow(hash); Index start_bit = start_slot % kCoeffBits; ResultRow sr = 0; const CoeffRow cr_left = cr << start_bit; for (Index i = 0; i < num_columns; ++i) { sr ^= BitParity(iss.LoadSegment(segment + i) & cr_left) << i; } if (start_bit > 0) { segment += num_columns; const CoeffRow cr_right = cr >> (kCoeffBits - start_bit); for (Index i = 0; i < num_columns; ++i) { sr ^= BitParity(iss.LoadSegment(segment + i) & cr_right) << i; } } return sr; } // Filter query a key from InterleavedFilterQuery. template <typename InterleavedSolutionStorage, typename FilterQueryHasher> bool InterleavedFilterQuery(const typename FilterQueryHasher::Key &key, const FilterQueryHasher &hasher, const InterleavedSolutionStorage &iss) { // BEGIN mostly copied from InterleavedPhsfQuery using Hash = typename FilterQueryHasher::Hash; using CoeffRow = typename InterleavedSolutionStorage::CoeffRow; using Index = typename InterleavedSolutionStorage::Index; using ResultRow = typename InterleavedSolutionStorage::ResultRow; static_assert(sizeof(Index) == sizeof(typename FilterQueryHasher::Index), "must be same"); static_assert( sizeof(CoeffRow) == sizeof(typename FilterQueryHasher::CoeffRow), "must be same"); static_assert( sizeof(ResultRow) == sizeof(typename FilterQueryHasher::ResultRow), "must be same"); constexpr auto kCoeffBits = static_cast<Index>(sizeof(CoeffRow) * 8U); const Hash hash = hasher.GetHash(key); const Index start_slot = hasher.GetStart(hash, iss.GetNumStarts()); const Index upper_start_block = iss.GetUpperStartBlock(); Index num_columns = iss.GetUpperNumColumns(); Index start_block_num = start_slot / kCoeffBits; Index segment = start_block_num * num_columns - std::min(start_block_num, upper_start_block); // Change to lower num columns if applicable. // (This should not compile to a conditional branch.) num_columns -= (start_block_num < upper_start_block) ? 1 : 0; const CoeffRow cr = hasher.GetCoeffRow(hash); Index start_bit = start_slot % kCoeffBits; // END mostly copied from InterleavedPhsfQuery. const ResultRow expected = hasher.GetResultRowFromHash(hash); // TODO: consider optimizations such as // * mask fetched values and shift cr, rather than shifting fetched values // * get rid of start_bit == 0 condition with careful fetching & shifting if (start_bit == 0) { for (Index i = 0; i < num_columns; ++i) { if (BitParity(iss.LoadSegment(segment + i) & cr) != (static_cast<int>(expected >> i) & 1)) { return false; } } } else { for (Index i = 0; i < num_columns; ++i) { CoeffRow soln_col = (iss.LoadSegment(segment + i) >> static_cast<unsigned>(start_bit)) | (iss.LoadSegment(segment + num_columns + i) << static_cast<unsigned>(kCoeffBits - start_bit)); if (BitParity(soln_col & cr) != (static_cast<int>(expected >> i) & 1)) { return false; } } } // otherwise, all match return true; } // TODO: refactor Interleaved*Query so that queries can be "prepared" by // prefetching memory, to hide memory latency for multiple queries in a // single thread. } // namespace ribbon } // namespace ROCKSDB_NAMESPACE