// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #include "db/db_test_util.h" #include "test_util/sync_point.h" namespace ROCKSDB_NAMESPACE { class MockFS; class MockRandomAccessFile : public FSRandomAccessFileOwnerWrapper { public: MockRandomAccessFile(std::unique_ptr& file, bool support_prefetch, std::atomic_int& prefetch_count) : FSRandomAccessFileOwnerWrapper(std::move(file)), support_prefetch_(support_prefetch), prefetch_count_(prefetch_count) {} IOStatus Prefetch(uint64_t offset, size_t n, const IOOptions& options, IODebugContext* dbg) override { if (support_prefetch_) { prefetch_count_.fetch_add(1); return target()->Prefetch(offset, n, options, dbg); } else { return IOStatus::NotSupported("Prefetch not supported"); } } private: const bool support_prefetch_; std::atomic_int& prefetch_count_; }; class MockFS : public FileSystemWrapper { public: explicit MockFS(const std::shared_ptr& wrapped, bool support_prefetch) : FileSystemWrapper(wrapped), support_prefetch_(support_prefetch) {} static const char* kClassName() { return "MockFS"; } const char* Name() const override { return kClassName(); } IOStatus NewRandomAccessFile(const std::string& fname, const FileOptions& opts, std::unique_ptr* result, IODebugContext* dbg) override { std::unique_ptr file; IOStatus s; s = target()->NewRandomAccessFile(fname, opts, &file, dbg); result->reset( new MockRandomAccessFile(file, support_prefetch_, prefetch_count_)); return s; } void ClearPrefetchCount() { prefetch_count_ = 0; } bool IsPrefetchCalled() { return prefetch_count_ > 0; } int GetPrefetchCount() { return prefetch_count_.load(std::memory_order_relaxed); } private: const bool support_prefetch_; std::atomic_int prefetch_count_{0}; }; class PrefetchTest : public DBTestBase, public ::testing::WithParamInterface> { public: PrefetchTest() : DBTestBase("prefetch_test", true) {} }; INSTANTIATE_TEST_CASE_P(PrefetchTest, PrefetchTest, ::testing::Combine(::testing::Bool(), ::testing::Bool())); std::string BuildKey(int num, std::string postfix = "") { return "my_key_" + std::to_string(num) + postfix; } TEST_P(PrefetchTest, Basic) { // First param is if the mockFS support_prefetch or not bool support_prefetch = std::get<0>(GetParam()) && test::IsPrefetchSupported(env_->GetFileSystem(), dbname_); // Second param is if directIO is enabled or not bool use_direct_io = std::get<1>(GetParam()); const int kNumKeys = 1100; std::shared_ptr fs = std::make_shared(env_->GetFileSystem(), support_prefetch); std::unique_ptr env(new CompositeEnvWrapper(env_, fs)); Options options = CurrentOptions(); options.write_buffer_size = 1024; options.create_if_missing = true; options.compression = kNoCompression; options.env = env.get(); if (use_direct_io) { options.use_direct_reads = true; options.use_direct_io_for_flush_and_compaction = true; } int buff_prefetch_count = 0; SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start", [&](void*) { buff_prefetch_count++; }); SyncPoint::GetInstance()->EnableProcessing(); Status s = TryReopen(options); if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) { // If direct IO is not supported, skip the test return; } else { ASSERT_OK(s); } // create first key range WriteBatch batch; for (int i = 0; i < kNumKeys; i++) { ASSERT_OK(batch.Put(BuildKey(i), "value for range 1 key")); } ASSERT_OK(db_->Write(WriteOptions(), &batch)); // create second key range batch.Clear(); for (int i = 0; i < kNumKeys; i++) { ASSERT_OK(batch.Put(BuildKey(i, "key2"), "value for range 2 key")); } ASSERT_OK(db_->Write(WriteOptions(), &batch)); // delete second key range batch.Clear(); for (int i = 0; i < kNumKeys; i++) { ASSERT_OK(batch.Delete(BuildKey(i, "key2"))); } ASSERT_OK(db_->Write(WriteOptions(), &batch)); // compact database std::string start_key = BuildKey(0); std::string end_key = BuildKey(kNumKeys - 1); Slice least(start_key.data(), start_key.size()); Slice greatest(end_key.data(), end_key.size()); // commenting out the line below causes the example to work correctly ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest)); if (support_prefetch && !use_direct_io) { // If underline file system supports prefetch, and directIO is not enabled // make sure prefetch() is called and FilePrefetchBuffer is not used. ASSERT_TRUE(fs->IsPrefetchCalled()); fs->ClearPrefetchCount(); ASSERT_EQ(0, buff_prefetch_count); } else { // If underline file system doesn't support prefetch, or directIO is // enabled, make sure prefetch() is not called and FilePrefetchBuffer is // used. ASSERT_FALSE(fs->IsPrefetchCalled()); ASSERT_GT(buff_prefetch_count, 0); buff_prefetch_count = 0; } // count the keys { auto iter = std::unique_ptr(db_->NewIterator(ReadOptions())); int num_keys = 0; for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { num_keys++; } } // Make sure prefetch is called only if file system support prefetch. if (support_prefetch && !use_direct_io) { ASSERT_TRUE(fs->IsPrefetchCalled()); fs->ClearPrefetchCount(); ASSERT_EQ(0, buff_prefetch_count); } else { ASSERT_FALSE(fs->IsPrefetchCalled()); ASSERT_GT(buff_prefetch_count, 0); buff_prefetch_count = 0; } Close(); } #ifndef ROCKSDB_LITE TEST_P(PrefetchTest, ConfigureAutoMaxReadaheadSize) { // First param is if the mockFS support_prefetch or not bool support_prefetch = std::get<0>(GetParam()) && test::IsPrefetchSupported(env_->GetFileSystem(), dbname_); // Second param is if directIO is enabled or not bool use_direct_io = std::get<1>(GetParam()); std::shared_ptr fs = std::make_shared(env_->GetFileSystem(), support_prefetch); std::unique_ptr env(new CompositeEnvWrapper(env_, fs)); Options options = CurrentOptions(); options.write_buffer_size = 1024; options.create_if_missing = true; options.compression = kNoCompression; options.env = env.get(); options.disable_auto_compactions = true; if (use_direct_io) { options.use_direct_reads = true; options.use_direct_io_for_flush_and_compaction = true; } BlockBasedTableOptions table_options; table_options.no_block_cache = true; table_options.cache_index_and_filter_blocks = false; table_options.metadata_block_size = 1024; table_options.index_type = BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch; table_options.max_auto_readahead_size = 0; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); int buff_prefetch_count = 0; SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start", [&](void*) { buff_prefetch_count++; }); // DB open will create table readers unless we reduce the table cache // capacity. SanitizeOptions will set max_open_files to minimum of 20. Table // cache is allocated with max_open_files - 10 as capacity. So override // max_open_files to 10 so table cache capacity will become 0. This will // prevent file open during DB open and force the file to be opened during // Iteration. SyncPoint::GetInstance()->SetCallBack( "SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) { int* max_open_files = (int*)arg; *max_open_files = 11; }); SyncPoint::GetInstance()->EnableProcessing(); Status s = TryReopen(options); if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) { // If direct IO is not supported, skip the test return; } else { ASSERT_OK(s); } Random rnd(309); int key_count = 0; const int num_keys_per_level = 100; // Level 0 : Keys in range [0, 99], Level 1:[100, 199], Level 2:[200, 299]. for (int level = 2; level >= 0; level--) { key_count = level * num_keys_per_level; for (int i = 0; i < num_keys_per_level; ++i) { ASSERT_OK(Put(Key(key_count++), rnd.RandomString(500))); } ASSERT_OK(Flush()); MoveFilesToLevel(level); } Close(); std::vector buff_prefectch_level_count = {0, 0, 0}; TryReopen(options); { auto iter = std::unique_ptr(db_->NewIterator(ReadOptions())); fs->ClearPrefetchCount(); buff_prefetch_count = 0; for (int level = 2; level >= 0; level--) { key_count = level * num_keys_per_level; switch (level) { case 0: // max_auto_readahead_size is set 0 so data and index blocks are not // prefetched. ASSERT_OK(db_->SetOptions( {{"block_based_table_factory", "{max_auto_readahead_size=0;}"}})); break; case 1: // max_auto_readahead_size is set less than // BlockBasedTable::kInitAutoReadaheadSize. So readahead_size remains // equal to max_auto_readahead_size. ASSERT_OK(db_->SetOptions({{"block_based_table_factory", "{max_auto_readahead_size=4096;}"}})); break; case 2: ASSERT_OK(db_->SetOptions({{"block_based_table_factory", "{max_auto_readahead_size=65536;}"}})); break; default: assert(false); } for (int i = 0; i < num_keys_per_level; ++i) { iter->Seek(Key(key_count++)); iter->Next(); } buff_prefectch_level_count[level] = buff_prefetch_count; if (support_prefetch && !use_direct_io) { if (level == 0) { ASSERT_FALSE(fs->IsPrefetchCalled()); } else { ASSERT_TRUE(fs->IsPrefetchCalled()); } fs->ClearPrefetchCount(); } else { ASSERT_FALSE(fs->IsPrefetchCalled()); if (level == 0) { ASSERT_EQ(buff_prefetch_count, 0); } else { ASSERT_GT(buff_prefetch_count, 0); } buff_prefetch_count = 0; } } } if (!support_prefetch) { ASSERT_GT(buff_prefectch_level_count[1], buff_prefectch_level_count[2]); } SyncPoint::GetInstance()->DisableProcessing(); SyncPoint::GetInstance()->ClearAllCallBacks(); Close(); } #endif // !ROCKSDB_LITE TEST_P(PrefetchTest, PrefetchWhenReseek) { // First param is if the mockFS support_prefetch or not bool support_prefetch = std::get<0>(GetParam()) && test::IsPrefetchSupported(env_->GetFileSystem(), dbname_); const int kNumKeys = 2000; std::shared_ptr fs = std::make_shared(env_->GetFileSystem(), support_prefetch); std::unique_ptr env(new CompositeEnvWrapper(env_, fs)); // Second param is if directIO is enabled or not bool use_direct_io = std::get<1>(GetParam()); Options options = CurrentOptions(); options.write_buffer_size = 1024; options.create_if_missing = true; options.compression = kNoCompression; options.env = env.get(); BlockBasedTableOptions table_options; table_options.no_block_cache = true; table_options.cache_index_and_filter_blocks = false; table_options.metadata_block_size = 1024; table_options.index_type = BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); if (use_direct_io) { options.use_direct_reads = true; options.use_direct_io_for_flush_and_compaction = true; } int buff_prefetch_count = 0; SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start", [&](void*) { buff_prefetch_count++; }); SyncPoint::GetInstance()->EnableProcessing(); Status s = TryReopen(options); if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) { // If direct IO is not supported, skip the test return; } else { ASSERT_OK(s); } WriteBatch batch; Random rnd(309); for (int i = 0; i < kNumKeys; i++) { ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000))); } ASSERT_OK(db_->Write(WriteOptions(), &batch)); std::string start_key = BuildKey(0); std::string end_key = BuildKey(kNumKeys - 1); Slice least(start_key.data(), start_key.size()); Slice greatest(end_key.data(), end_key.size()); ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest)); fs->ClearPrefetchCount(); buff_prefetch_count = 0; { auto iter = std::unique_ptr(db_->NewIterator(ReadOptions())); /* * Reseek keys from sequential Data Blocks within same partitioned * index. After 2 sequential reads it will prefetch the data block. * Data Block size is nearly 4076 so readahead will fetch 8 * 1024 data more * initially (2 more data blocks). */ iter->Seek(BuildKey(0)); iter->Seek(BuildKey(1000)); iter->Seek(BuildKey(1004)); // Prefetch Data iter->Seek(BuildKey(1008)); iter->Seek(BuildKey(1011)); iter->Seek(BuildKey(1015)); // Prefetch Data iter->Seek(BuildKey(1019)); // Missed 2 blocks but they are already in buffer so no reset. iter->Seek(BuildKey(103)); // Already in buffer. iter->Seek(BuildKey(1033)); // Prefetch Data if (support_prefetch && !use_direct_io) { ASSERT_EQ(fs->GetPrefetchCount(), 3); fs->ClearPrefetchCount(); } else { ASSERT_EQ(buff_prefetch_count, 3); buff_prefetch_count = 0; } } { /* * Reseek keys from non sequential data blocks within same partitioned * index. buff_prefetch_count will be 0 in that case. */ auto iter = std::unique_ptr(db_->NewIterator(ReadOptions())); iter->Seek(BuildKey(0)); iter->Seek(BuildKey(1008)); iter->Seek(BuildKey(1019)); iter->Seek(BuildKey(1033)); iter->Seek(BuildKey(1048)); if (support_prefetch && !use_direct_io) { ASSERT_EQ(fs->GetPrefetchCount(), 0); fs->ClearPrefetchCount(); } else { ASSERT_EQ(buff_prefetch_count, 0); buff_prefetch_count = 0; } } { /* * Reesek keys from Single Data Block. */ auto iter = std::unique_ptr(db_->NewIterator(ReadOptions())); iter->Seek(BuildKey(0)); iter->Seek(BuildKey(1)); iter->Seek(BuildKey(10)); iter->Seek(BuildKey(100)); if (support_prefetch && !use_direct_io) { ASSERT_EQ(fs->GetPrefetchCount(), 0); fs->ClearPrefetchCount(); } else { ASSERT_EQ(buff_prefetch_count, 0); buff_prefetch_count = 0; } } { /* * Reseek keys from sequential data blocks to set implicit auto readahead * and prefetch data but after that iterate over different (non sequential) * data blocks which won't prefetch any data further. So buff_prefetch_count * will be 1 for the first one. */ auto iter = std::unique_ptr(db_->NewIterator(ReadOptions())); iter->Seek(BuildKey(0)); iter->Seek(BuildKey(1000)); iter->Seek(BuildKey(1004)); // This iteration will prefetch buffer iter->Seek(BuildKey(1008)); iter->Seek( BuildKey(996)); // Reseek won't prefetch any data and // readahead_size will be initiallized to 8*1024. iter->Seek(BuildKey(992)); iter->Seek(BuildKey(989)); if (support_prefetch && !use_direct_io) { ASSERT_EQ(fs->GetPrefetchCount(), 1); fs->ClearPrefetchCount(); } else { ASSERT_EQ(buff_prefetch_count, 1); buff_prefetch_count = 0; } // Read sequentially to confirm readahead_size is reset to initial value (2 // more data blocks) iter->Seek(BuildKey(1011)); iter->Seek(BuildKey(1015)); iter->Seek(BuildKey(1019)); // Prefetch Data iter->Seek(BuildKey(1022)); iter->Seek(BuildKey(1026)); iter->Seek(BuildKey(103)); // Prefetch Data if (support_prefetch && !use_direct_io) { ASSERT_EQ(fs->GetPrefetchCount(), 2); fs->ClearPrefetchCount(); } else { ASSERT_EQ(buff_prefetch_count, 2); buff_prefetch_count = 0; } } { /* Reseek keys from sequential partitioned index block. Since partitioned * index fetch are sequential, buff_prefetch_count will be 1. */ auto iter = std::unique_ptr(db_->NewIterator(ReadOptions())); iter->Seek(BuildKey(0)); iter->Seek(BuildKey(1167)); iter->Seek(BuildKey(1334)); // This iteration will prefetch buffer iter->Seek(BuildKey(1499)); iter->Seek(BuildKey(1667)); iter->Seek(BuildKey(1847)); iter->Seek(BuildKey(1999)); if (support_prefetch && !use_direct_io) { ASSERT_EQ(fs->GetPrefetchCount(), 1); fs->ClearPrefetchCount(); } else { ASSERT_EQ(buff_prefetch_count, 1); buff_prefetch_count = 0; } } { /* * Reseek over different keys from different blocks. buff_prefetch_count is * set 0. */ auto iter = std::unique_ptr(db_->NewIterator(ReadOptions())); int i = 0; int j = 1000; do { iter->Seek(BuildKey(i)); if (!iter->Valid()) { break; } i = i + 100; iter->Seek(BuildKey(j)); j = j + 100; } while (i < 1000 && j < kNumKeys && iter->Valid()); if (support_prefetch && !use_direct_io) { ASSERT_EQ(fs->GetPrefetchCount(), 0); fs->ClearPrefetchCount(); } else { ASSERT_EQ(buff_prefetch_count, 0); buff_prefetch_count = 0; } } { /* Iterates sequentially over all keys. It will prefetch the buffer.*/ auto iter = std::unique_ptr(db_->NewIterator(ReadOptions())); for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { } if (support_prefetch && !use_direct_io) { ASSERT_EQ(fs->GetPrefetchCount(), 13); fs->ClearPrefetchCount(); } else { ASSERT_EQ(buff_prefetch_count, 13); buff_prefetch_count = 0; } } SyncPoint::GetInstance()->DisableProcessing(); SyncPoint::GetInstance()->ClearAllCallBacks(); Close(); } TEST_P(PrefetchTest, PrefetchWhenReseekwithCache) { // First param is if the mockFS support_prefetch or not bool support_prefetch = std::get<0>(GetParam()) && test::IsPrefetchSupported(env_->GetFileSystem(), dbname_); const int kNumKeys = 2000; std::shared_ptr fs = std::make_shared(env_->GetFileSystem(), support_prefetch); std::unique_ptr env(new CompositeEnvWrapper(env_, fs)); // Second param is if directIO is enabled or not bool use_direct_io = std::get<1>(GetParam()); Options options = CurrentOptions(); options.write_buffer_size = 1024; options.create_if_missing = true; options.compression = kNoCompression; options.env = env.get(); BlockBasedTableOptions table_options; std::shared_ptr cache = NewLRUCache(4 * 1024 * 1024, 2); // 8MB table_options.block_cache = cache; table_options.cache_index_and_filter_blocks = false; table_options.metadata_block_size = 1024; table_options.index_type = BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); if (use_direct_io) { options.use_direct_reads = true; options.use_direct_io_for_flush_and_compaction = true; } int buff_prefetch_count = 0; SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start", [&](void*) { buff_prefetch_count++; }); SyncPoint::GetInstance()->EnableProcessing(); Status s = TryReopen(options); if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) { // If direct IO is not supported, skip the test return; } else { ASSERT_OK(s); } WriteBatch batch; Random rnd(309); for (int i = 0; i < kNumKeys; i++) { ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000))); } ASSERT_OK(db_->Write(WriteOptions(), &batch)); std::string start_key = BuildKey(0); std::string end_key = BuildKey(kNumKeys - 1); Slice least(start_key.data(), start_key.size()); Slice greatest(end_key.data(), end_key.size()); ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest)); fs->ClearPrefetchCount(); buff_prefetch_count = 0; { /* * Reseek keys from sequential Data Blocks within same partitioned * index. After 2 sequential reads it will prefetch the data block. * Data Block size is nearly 4076 so readahead will fetch 8 * 1024 data more * initially (2 more data blocks). */ auto iter = std::unique_ptr(db_->NewIterator(ReadOptions())); // Warm up the cache iter->Seek(BuildKey(1011)); iter->Seek(BuildKey(1015)); iter->Seek(BuildKey(1019)); if (support_prefetch && !use_direct_io) { ASSERT_EQ(fs->GetPrefetchCount(), 1); fs->ClearPrefetchCount(); } else { ASSERT_EQ(buff_prefetch_count, 1); buff_prefetch_count = 0; } } { // After caching, blocks will be read from cache (Sequential blocks) auto iter = std::unique_ptr(db_->NewIterator(ReadOptions())); iter->Seek(BuildKey(0)); iter->Seek(BuildKey(1000)); iter->Seek(BuildKey(1004)); // Prefetch data (not in cache). // Missed one sequential block but next is in already in buffer so readahead // will not be reset. iter->Seek(BuildKey(1011)); // Prefetch data but blocks are in cache so no prefetch and reset. iter->Seek(BuildKey(1015)); iter->Seek(BuildKey(1019)); iter->Seek(BuildKey(1022)); // Prefetch data with readahead_size = 4 blocks. iter->Seek(BuildKey(1026)); iter->Seek(BuildKey(103)); iter->Seek(BuildKey(1033)); iter->Seek(BuildKey(1037)); if (support_prefetch && !use_direct_io) { ASSERT_EQ(fs->GetPrefetchCount(), 3); fs->ClearPrefetchCount(); } else { ASSERT_EQ(buff_prefetch_count, 2); buff_prefetch_count = 0; } } SyncPoint::GetInstance()->DisableProcessing(); SyncPoint::GetInstance()->ClearAllCallBacks(); Close(); } class PrefetchTest1 : public DBTestBase, public ::testing::WithParamInterface> { public: PrefetchTest1() : DBTestBase("prefetch_test1", true) {} }; INSTANTIATE_TEST_CASE_P(PrefetchTest1, PrefetchTest1, ::testing::Combine(::testing::Bool(), ::testing::Bool())); #ifndef ROCKSDB_LITE TEST_P(PrefetchTest1, DBIterLevelReadAhead) { const int kNumKeys = 1000; // Set options std::shared_ptr fs = std::make_shared(env_->GetFileSystem(), false); std::unique_ptr env(new CompositeEnvWrapper(env_, fs)); bool is_adaptive_readahead = std::get<1>(GetParam()); Options options = CurrentOptions(); options.write_buffer_size = 1024; options.create_if_missing = true; options.compression = kNoCompression; options.statistics = CreateDBStatistics(); options.env = env.get(); bool use_direct_io = std::get<0>(GetParam()); if (use_direct_io) { options.use_direct_reads = true; options.use_direct_io_for_flush_and_compaction = true; } BlockBasedTableOptions table_options; table_options.no_block_cache = true; table_options.cache_index_and_filter_blocks = false; table_options.metadata_block_size = 1024; table_options.index_type = BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); Status s = TryReopen(options); if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) { // If direct IO is not supported, skip the test return; } else { ASSERT_OK(s); } WriteBatch batch; Random rnd(309); int total_keys = 0; for (int j = 0; j < 5; j++) { for (int i = j * kNumKeys; i < (j + 1) * kNumKeys; i++) { ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000))); total_keys++; } ASSERT_OK(db_->Write(WriteOptions(), &batch)); ASSERT_OK(Flush()); } MoveFilesToLevel(2); int buff_prefetch_count = 0; int readahead_carry_over_count = 0; int num_sst_files = NumTableFilesAtLevel(2); size_t current_readahead_size = 0; // Test - Iterate over the keys sequentially. { SyncPoint::GetInstance()->SetCallBack( "FilePrefetchBuffer::Prefetch:Start", [&](void*) { buff_prefetch_count++; }); // The callback checks, since reads are sequential, readahead_size doesn't // start from 8KB when iterator moves to next file and its called // num_sst_files-1 times (excluding for first file). SyncPoint::GetInstance()->SetCallBack( "BlockPrefetcher::SetReadaheadState", [&](void* arg) { readahead_carry_over_count++; size_t readahead_size = *reinterpret_cast(arg); if (readahead_carry_over_count) { ASSERT_GT(readahead_size, 8 * 1024); // ASSERT_GE(readahead_size, current_readahead_size); } }); SyncPoint::GetInstance()->SetCallBack( "FilePrefetchBuffer::TryReadFromCache", [&](void* arg) { current_readahead_size = *reinterpret_cast(arg); ASSERT_GT(current_readahead_size, 0); }); SyncPoint::GetInstance()->EnableProcessing(); ReadOptions ro; if (is_adaptive_readahead) { ro.adaptive_readahead = true; // TODO akanksha: Remove after adding new units. ro.async_io = true; } ASSERT_OK(options.statistics->Reset()); auto iter = std::unique_ptr(db_->NewIterator(ro)); int num_keys = 0; for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { ASSERT_OK(iter->status()); num_keys++; } ASSERT_EQ(num_keys, total_keys); ASSERT_GT(buff_prefetch_count, 0); // For index and data blocks. if (is_adaptive_readahead) { ASSERT_EQ(readahead_carry_over_count, 2 * (num_sst_files - 1)); } else { ASSERT_EQ(readahead_carry_over_count, 0); } // Check stats to make sure async prefetch is done. { HistogramData async_read_bytes; options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes); if (ro.async_io && !use_direct_io) { ASSERT_GT(async_read_bytes.count, 0); } else { ASSERT_EQ(async_read_bytes.count, 0); } } SyncPoint::GetInstance()->DisableProcessing(); SyncPoint::GetInstance()->ClearAllCallBacks(); } Close(); } #endif //! ROCKSDB_LITE class PrefetchTest2 : public DBTestBase, public ::testing::WithParamInterface { public: PrefetchTest2() : DBTestBase("prefetch_test2", true) {} }; INSTANTIATE_TEST_CASE_P(PrefetchTest2, PrefetchTest2, ::testing::Bool()); #ifndef ROCKSDB_LITE TEST_P(PrefetchTest2, NonSequentialReads) { const int kNumKeys = 1000; // Set options std::shared_ptr fs = std::make_shared(env_->GetFileSystem(), false); std::unique_ptr env(new CompositeEnvWrapper(env_, fs)); Options options = CurrentOptions(); options.write_buffer_size = 1024; options.create_if_missing = true; options.compression = kNoCompression; options.env = env.get(); if (GetParam()) { options.use_direct_reads = true; options.use_direct_io_for_flush_and_compaction = true; } BlockBasedTableOptions table_options; table_options.no_block_cache = true; table_options.cache_index_and_filter_blocks = false; table_options.metadata_block_size = 1024; table_options.index_type = BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); Status s = TryReopen(options); if (GetParam() && (s.IsNotSupported() || s.IsInvalidArgument())) { // If direct IO is not supported, skip the test return; } else { ASSERT_OK(s); } WriteBatch batch; Random rnd(309); for (int j = 0; j < 5; j++) { for (int i = j * kNumKeys; i < (j + 1) * kNumKeys; i++) { ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000))); } ASSERT_OK(db_->Write(WriteOptions(), &batch)); ASSERT_OK(Flush()); } MoveFilesToLevel(2); int buff_prefetch_count = 0; int set_readahead = 0; size_t readahead_size = 0; SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start", [&](void*) { buff_prefetch_count++; }); SyncPoint::GetInstance()->SetCallBack( "BlockPrefetcher::SetReadaheadState", [&](void* /*arg*/) { set_readahead++; }); SyncPoint::GetInstance()->SetCallBack( "FilePrefetchBuffer::TryReadFromCache", [&](void* arg) { readahead_size = *reinterpret_cast(arg); }); SyncPoint::GetInstance()->EnableProcessing(); { // Iterate until prefetch is done. ReadOptions ro; ro.adaptive_readahead = true; // TODO akanksha: Remove after adding new units. ro.async_io = true; auto iter = std::unique_ptr(db_->NewIterator(ro)); iter->SeekToFirst(); while (iter->Valid() && buff_prefetch_count == 0) { iter->Next(); } ASSERT_EQ(readahead_size, 8 * 1024); ASSERT_EQ(buff_prefetch_count, 1); ASSERT_EQ(set_readahead, 0); buff_prefetch_count = 0; // Move to last file and check readahead size fallbacks to 8KB. So next // readahead size after prefetch should be 8 * 1024; iter->Seek(BuildKey(4004)); while (iter->Valid() && buff_prefetch_count == 0) { iter->Next(); } ASSERT_EQ(readahead_size, 8 * 1024); ASSERT_EQ(set_readahead, 0); ASSERT_EQ(buff_prefetch_count, 1); } Close(); } #endif //! ROCKSDB_LITE TEST_P(PrefetchTest2, DecreaseReadAheadIfInCache) { const int kNumKeys = 2000; // Set options std::shared_ptr fs = std::make_shared(env_->GetFileSystem(), false); std::unique_ptr env(new CompositeEnvWrapper(env_, fs)); Options options = CurrentOptions(); options.write_buffer_size = 1024; options.create_if_missing = true; options.compression = kNoCompression; options.env = env.get(); if (GetParam()) { options.use_direct_reads = true; options.use_direct_io_for_flush_and_compaction = true; } options.statistics = CreateDBStatistics(); BlockBasedTableOptions table_options; std::shared_ptr cache = NewLRUCache(4 * 1024 * 1024, 2); // 8MB table_options.block_cache = cache; table_options.cache_index_and_filter_blocks = false; table_options.metadata_block_size = 1024; table_options.index_type = BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); Status s = TryReopen(options); if (GetParam() && (s.IsNotSupported() || s.IsInvalidArgument())) { // If direct IO is not supported, skip the test return; } else { ASSERT_OK(s); } WriteBatch batch; Random rnd(309); for (int i = 0; i < kNumKeys; i++) { ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000))); } ASSERT_OK(db_->Write(WriteOptions(), &batch)); std::string start_key = BuildKey(0); std::string end_key = BuildKey(kNumKeys - 1); Slice least(start_key.data(), start_key.size()); Slice greatest(end_key.data(), end_key.size()); ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest)); int buff_prefetch_count = 0; size_t current_readahead_size = 0; size_t expected_current_readahead_size = 8 * 1024; size_t decrease_readahead_size = 8 * 1024; SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start", [&](void*) { buff_prefetch_count++; }); SyncPoint::GetInstance()->SetCallBack( "FilePrefetchBuffer::TryReadFromCache", [&](void* arg) { current_readahead_size = *reinterpret_cast(arg); }); SyncPoint::GetInstance()->EnableProcessing(); ReadOptions ro; ro.adaptive_readahead = true; ro.async_io = true; { /* * Reseek keys from sequential Data Blocks within same partitioned * index. After 2 sequential reads it will prefetch the data block. * Data Block size is nearly 4076 so readahead will fetch 8 * 1024 data * more initially (2 more data blocks). */ auto iter = std::unique_ptr(db_->NewIterator(ro)); // Warm up the cache iter->Seek(BuildKey(1011)); iter->Seek(BuildKey(1015)); iter->Seek(BuildKey(1019)); buff_prefetch_count = 0; } { ASSERT_OK(options.statistics->Reset()); // After caching, blocks will be read from cache (Sequential blocks) auto iter = std::unique_ptr(db_->NewIterator(ro)); iter->Seek(BuildKey(0)); ASSERT_TRUE(iter->Valid()); iter->Seek(BuildKey(1000)); ASSERT_TRUE(iter->Valid()); iter->Seek(BuildKey(1004)); // Prefetch data (not in cache). ASSERT_TRUE(iter->Valid()); ASSERT_EQ(current_readahead_size, expected_current_readahead_size); // Missed one sequential block but 1011 is already in buffer so // readahead will not be reset. iter->Seek(BuildKey(1011)); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(current_readahead_size, expected_current_readahead_size); // Eligible to Prefetch data (not in buffer) but block is in cache so no // prefetch will happen and will result in decrease in readahead_size. // readahead_size will be 8 * 1024 iter->Seek(BuildKey(1015)); ASSERT_TRUE(iter->Valid()); expected_current_readahead_size -= decrease_readahead_size; // 1016 is the same block as 1015. So no change in readahead_size. iter->Seek(BuildKey(1016)); ASSERT_TRUE(iter->Valid()); // Prefetch data (not in buffer) but found in cache. So decrease // readahead_size. Since it will 0 after decrementing so readahead_size will // be set to initial value. iter->Seek(BuildKey(1019)); ASSERT_TRUE(iter->Valid()); expected_current_readahead_size = std::max( decrease_readahead_size, (expected_current_readahead_size >= decrease_readahead_size ? (expected_current_readahead_size - decrease_readahead_size) : 0)); // Prefetch next sequential data. iter->Seek(BuildKey(1022)); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(current_readahead_size, expected_current_readahead_size); ASSERT_EQ(buff_prefetch_count, 2); // Check stats to make sure async prefetch is done. { HistogramData async_read_bytes; options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes); if (GetParam()) { ASSERT_EQ(async_read_bytes.count, 0); } else { ASSERT_GT(async_read_bytes.count, 0); } } buff_prefetch_count = 0; } Close(); } extern "C" bool RocksDbIOUringEnable() { return true; } // Tests the default implementation of ReadAsync API with PosixFileSystem. TEST_F(PrefetchTest2, ReadAsyncWithPosixFS) { if (mem_env_ || encrypted_env_) { ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment"); return; } const int kNumKeys = 1000; std::shared_ptr fs = std::make_shared( FileSystem::Default(), /*support_prefetch=*/false); std::unique_ptr env(new CompositeEnvWrapper(env_, fs)); bool use_direct_io = false; Options options = CurrentOptions(); options.write_buffer_size = 1024; options.create_if_missing = true; options.compression = kNoCompression; options.env = env.get(); options.statistics = CreateDBStatistics(); if (use_direct_io) { options.use_direct_reads = true; options.use_direct_io_for_flush_and_compaction = true; } BlockBasedTableOptions table_options; table_options.no_block_cache = true; table_options.cache_index_and_filter_blocks = false; table_options.metadata_block_size = 1024; table_options.index_type = BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); Status s = TryReopen(options); if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) { // If direct IO is not supported, skip the test return; } else { ASSERT_OK(s); } int total_keys = 0; // Write the keys. { WriteBatch batch; Random rnd(309); for (int j = 0; j < 5; j++) { for (int i = j * kNumKeys; i < (j + 1) * kNumKeys; i++) { ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000))); total_keys++; } ASSERT_OK(db_->Write(WriteOptions(), &batch)); ASSERT_OK(Flush()); } MoveFilesToLevel(2); } int buff_prefetch_count = 0; SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start", [&](void*) { buff_prefetch_count++; }); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); // Read the keys. { ReadOptions ro; ro.adaptive_readahead = true; ro.async_io = true; ASSERT_OK(options.statistics->Reset()); auto iter = std::unique_ptr(db_->NewIterator(ro)); int num_keys = 0; for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { ASSERT_OK(iter->status()); num_keys++; } ASSERT_EQ(num_keys, total_keys); ASSERT_GT(buff_prefetch_count, 0); // Check stats to make sure async prefetch is done. { HistogramData async_read_bytes; options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes); #if defined(ROCKSDB_IOURING_PRESENT) ASSERT_GT(async_read_bytes.count, 0); #else ASSERT_EQ(async_read_bytes.count, 0); #endif } } SyncPoint::GetInstance()->DisableProcessing(); SyncPoint::GetInstance()->ClearAllCallBacks(); Close(); } } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }