// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "cache/lru_cache.h" #include #include #include #include #include "util/mutexlock.h" namespace ROCKSDB_NAMESPACE { LRUHandleTable::LRUHandleTable() : list_(nullptr), length_(0), elems_(0) { Resize(); } LRUHandleTable::~LRUHandleTable() { ApplyToAllCacheEntries([](LRUHandle* h) { if (!h->HasRefs()) { h->Free(); } }); delete[] list_; } LRUHandle* LRUHandleTable::Lookup(const Slice& key, uint32_t hash) { return *FindPointer(key, hash); } LRUHandle* LRUHandleTable::Insert(LRUHandle* h) { LRUHandle** ptr = FindPointer(h->key(), h->hash); LRUHandle* old = *ptr; h->next_hash = (old == nullptr ? nullptr : old->next_hash); *ptr = h; if (old == nullptr) { ++elems_; if (elems_ > length_) { // Since each cache entry is fairly large, we aim for a small // average linked list length (<= 1). Resize(); } } return old; } LRUHandle* LRUHandleTable::Remove(const Slice& key, uint32_t hash) { LRUHandle** ptr = FindPointer(key, hash); LRUHandle* result = *ptr; if (result != nullptr) { *ptr = result->next_hash; --elems_; } return result; } LRUHandle** LRUHandleTable::FindPointer(const Slice& key, uint32_t hash) { LRUHandle** ptr = &list_[hash & (length_ - 1)]; while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) { ptr = &(*ptr)->next_hash; } return ptr; } void LRUHandleTable::Resize() { uint32_t new_length = 16; while (new_length < elems_ * 1.5) { new_length *= 2; } LRUHandle** new_list = new LRUHandle*[new_length]; memset(new_list, 0, sizeof(new_list[0]) * new_length); uint32_t count = 0; for (uint32_t i = 0; i < length_; i++) { LRUHandle* h = list_[i]; while (h != nullptr) { LRUHandle* next = h->next_hash; uint32_t hash = h->hash; LRUHandle** ptr = &new_list[hash & (new_length - 1)]; h->next_hash = *ptr; *ptr = h; h = next; count++; } } assert(elems_ == count); delete[] list_; list_ = new_list; length_ = new_length; } LRUCacheShard::LRUCacheShard(size_t capacity, bool strict_capacity_limit, double high_pri_pool_ratio, bool use_adaptive_mutex, CacheMetadataChargePolicy metadata_charge_policy) : capacity_(0), high_pri_pool_usage_(0), strict_capacity_limit_(strict_capacity_limit), high_pri_pool_ratio_(high_pri_pool_ratio), high_pri_pool_capacity_(0), usage_(0), lru_usage_(0), mutex_(use_adaptive_mutex) { set_metadata_charge_policy(metadata_charge_policy); // Make empty circular linked list lru_.next = &lru_; lru_.prev = &lru_; lru_low_pri_ = &lru_; SetCapacity(capacity); } void LRUCacheShard::EraseUnRefEntries() { autovector last_reference_list; { MutexLock l(&mutex_); while (lru_.next != &lru_) { LRUHandle* old = lru_.next; // LRU list contains only elements which can be evicted assert(old->InCache() && !old->HasRefs()); LRU_Remove(old); table_.Remove(old->key(), old->hash); old->SetInCache(false); size_t total_charge = old->CalcTotalCharge(metadata_charge_policy_); assert(usage_ >= total_charge); usage_ -= total_charge; last_reference_list.push_back(old); } } for (auto entry : last_reference_list) { entry->Free(); } } void LRUCacheShard::ApplyToAllCacheEntries(void (*callback)(void*, size_t), bool thread_safe) { const auto applyCallback = [&]() { table_.ApplyToAllCacheEntries( [callback](LRUHandle* h) { callback(h->value, h->charge); }); }; if (thread_safe) { MutexLock l(&mutex_); applyCallback(); } else { applyCallback(); } } void LRUCacheShard::TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri) { MutexLock l(&mutex_); *lru = &lru_; *lru_low_pri = lru_low_pri_; } size_t LRUCacheShard::TEST_GetLRUSize() { MutexLock l(&mutex_); LRUHandle* lru_handle = lru_.next; size_t lru_size = 0; while (lru_handle != &lru_) { lru_size++; lru_handle = lru_handle->next; } return lru_size; } double LRUCacheShard::GetHighPriPoolRatio() { MutexLock l(&mutex_); return high_pri_pool_ratio_; } void LRUCacheShard::LRU_Remove(LRUHandle* e) { assert(e->next != nullptr); assert(e->prev != nullptr); if (lru_low_pri_ == e) { lru_low_pri_ = e->prev; } e->next->prev = e->prev; e->prev->next = e->next; e->prev = e->next = nullptr; size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_); assert(lru_usage_ >= total_charge); lru_usage_ -= total_charge; if (e->InHighPriPool()) { assert(high_pri_pool_usage_ >= total_charge); high_pri_pool_usage_ -= total_charge; } } void LRUCacheShard::LRU_Insert(LRUHandle* e) { assert(e->next == nullptr); assert(e->prev == nullptr); size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_); if (high_pri_pool_ratio_ > 0 && (e->IsHighPri() || e->HasHit())) { // Inset "e" to head of LRU list. e->next = &lru_; e->prev = lru_.prev; e->prev->next = e; e->next->prev = e; e->SetInHighPriPool(true); high_pri_pool_usage_ += total_charge; MaintainPoolSize(); } else { // Insert "e" to the head of low-pri pool. Note that when // high_pri_pool_ratio is 0, head of low-pri pool is also head of LRU list. e->next = lru_low_pri_->next; e->prev = lru_low_pri_; e->prev->next = e; e->next->prev = e; e->SetInHighPriPool(false); lru_low_pri_ = e; } lru_usage_ += total_charge; } void LRUCacheShard::MaintainPoolSize() { while (high_pri_pool_usage_ > high_pri_pool_capacity_) { // Overflow last entry in high-pri pool to low-pri pool. lru_low_pri_ = lru_low_pri_->next; assert(lru_low_pri_ != &lru_); lru_low_pri_->SetInHighPriPool(false); size_t total_charge = lru_low_pri_->CalcTotalCharge(metadata_charge_policy_); assert(high_pri_pool_usage_ >= total_charge); high_pri_pool_usage_ -= total_charge; } } void LRUCacheShard::EvictFromLRU(size_t charge, autovector* deleted) { while ((usage_ + charge) > capacity_ && lru_.next != &lru_) { LRUHandle* old = lru_.next; // LRU list contains only elements which can be evicted assert(old->InCache() && !old->HasRefs()); LRU_Remove(old); table_.Remove(old->key(), old->hash); old->SetInCache(false); size_t old_total_charge = old->CalcTotalCharge(metadata_charge_policy_); assert(usage_ >= old_total_charge); usage_ -= old_total_charge; deleted->push_back(old); } } void LRUCacheShard::SetCapacity(size_t capacity) { autovector last_reference_list; { MutexLock l(&mutex_); capacity_ = capacity; high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_; EvictFromLRU(0, &last_reference_list); } // Free the entries outside of mutex for performance reasons for (auto entry : last_reference_list) { entry->Free(); } } void LRUCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) { MutexLock l(&mutex_); strict_capacity_limit_ = strict_capacity_limit; } Cache::Handle* LRUCacheShard::Lookup(const Slice& key, uint32_t hash) { MutexLock l(&mutex_); LRUHandle* e = table_.Lookup(key, hash); if (e != nullptr) { assert(e->InCache()); if (!e->HasRefs()) { // The entry is in LRU since it's in hash and has no external references LRU_Remove(e); } e->Ref(); e->SetHit(); } return reinterpret_cast(e); } bool LRUCacheShard::Ref(Cache::Handle* h) { LRUHandle* e = reinterpret_cast(h); MutexLock l(&mutex_); // To create another reference - entry must be already externally referenced assert(e->HasRefs()); e->Ref(); return true; } void LRUCacheShard::SetHighPriorityPoolRatio(double high_pri_pool_ratio) { MutexLock l(&mutex_); high_pri_pool_ratio_ = high_pri_pool_ratio; high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_; MaintainPoolSize(); } bool LRUCacheShard::Release(Cache::Handle* handle, bool force_erase) { if (handle == nullptr) { return false; } LRUHandle* e = reinterpret_cast(handle); bool last_reference = false; { MutexLock l(&mutex_); last_reference = e->Unref(); if (last_reference && e->InCache()) { // The item is still in cache, and nobody else holds a reference to it if (usage_ > capacity_ || force_erase) { // The LRU list must be empty since the cache is full assert(lru_.next == &lru_ || force_erase); // Take this opportunity and remove the item table_.Remove(e->key(), e->hash); e->SetInCache(false); } else { // Put the item back on the LRU list, and don't free it LRU_Insert(e); last_reference = false; } } if (last_reference) { size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_); assert(usage_ >= total_charge); usage_ -= total_charge; } } // Free the entry here outside of mutex for performance reasons if (last_reference) { e->Free(); } return last_reference; } Status LRUCacheShard::Insert(const Slice& key, uint32_t hash, void* value, size_t charge, Deleter* deleter, Cache::Handle** handle, Cache::Priority priority) { // Allocate the memory here outside of the mutex // If the cache is full, we'll have to release it // It shouldn't happen very often though. LRUHandle* e = reinterpret_cast( new char[sizeof(LRUHandle) - 1 + key.size()]); Status s = Status::OK(); autovector last_reference_list; e->value = value; e->deleter = deleter; e->charge = charge; e->key_length = key.size(); e->flags = 0; e->hash = hash; e->refs = 0; e->next = e->prev = nullptr; e->SetInCache(true); e->SetPriority(priority); memcpy(e->key_data, key.data(), key.size()); size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_); { MutexLock l(&mutex_); // Free the space following strict LRU policy until enough space // is freed or the lru list is empty EvictFromLRU(total_charge, &last_reference_list); if ((usage_ + total_charge) > capacity_ && (strict_capacity_limit_ || handle == nullptr)) { if (handle == nullptr) { // Don't insert the entry but still return ok, as if the entry inserted // into cache and get evicted immediately. e->SetInCache(false); last_reference_list.push_back(e); } else { delete[] reinterpret_cast(e); *handle = nullptr; s = Status::Incomplete("Insert failed due to LRU cache being full."); } } else { // Insert into the cache. Note that the cache might get larger than its // capacity if not enough space was freed up. LRUHandle* old = table_.Insert(e); usage_ += total_charge; if (old != nullptr) { assert(old->InCache()); old->SetInCache(false); if (!old->HasRefs()) { // old is on LRU because it's in cache and its reference count is 0 LRU_Remove(old); size_t old_total_charge = old->CalcTotalCharge(metadata_charge_policy_); assert(usage_ >= old_total_charge); usage_ -= old_total_charge; last_reference_list.push_back(old); } } if (handle == nullptr) { LRU_Insert(e); } else { e->Ref(); *handle = reinterpret_cast(e); } } } // Free the entries here outside of mutex for performance reasons for (auto entry : last_reference_list) { entry->Free(); } return s; } void LRUCacheShard::Erase(const Slice& key, uint32_t hash) { LRUHandle* e; bool last_reference = false; { MutexLock l(&mutex_); e = table_.Remove(key, hash); if (e != nullptr) { assert(e->InCache()); e->SetInCache(false); if (!e->HasRefs()) { // The entry is in LRU since it's in hash and has no external references LRU_Remove(e); size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_); assert(usage_ >= total_charge); usage_ -= total_charge; last_reference = true; } } } // Free the entry here outside of mutex for performance reasons // last_reference will only be true if e != nullptr if (last_reference) { e->Free(); } } size_t LRUCacheShard::GetUsage() const { MutexLock l(&mutex_); return usage_; } size_t LRUCacheShard::GetPinnedUsage() const { MutexLock l(&mutex_); assert(usage_ >= lru_usage_); return usage_ - lru_usage_; } std::string LRUCacheShard::GetPrintableOptions() const { const int kBufferSize = 200; char buffer[kBufferSize]; { MutexLock l(&mutex_); snprintf(buffer, kBufferSize, " high_pri_pool_ratio: %.3lf\n", high_pri_pool_ratio_); } return std::string(buffer); } LRUCache::LRUCache(size_t capacity, int num_shard_bits, bool strict_capacity_limit, double high_pri_pool_ratio, std::shared_ptr allocator, bool use_adaptive_mutex, CacheMetadataChargePolicy metadata_charge_policy) : ShardedCache(capacity, num_shard_bits, strict_capacity_limit, std::move(allocator)) { num_shards_ = 1 << num_shard_bits; shards_ = reinterpret_cast( port::cacheline_aligned_alloc(sizeof(LRUCacheShard) * num_shards_)); size_t per_shard = (capacity + (num_shards_ - 1)) / num_shards_; for (int i = 0; i < num_shards_; i++) { new (&shards_[i]) LRUCacheShard(per_shard, strict_capacity_limit, high_pri_pool_ratio, use_adaptive_mutex, metadata_charge_policy); } } LRUCache::~LRUCache() { if (shards_ != nullptr) { assert(num_shards_ > 0); for (int i = 0; i < num_shards_; i++) { shards_[i].~LRUCacheShard(); } port::cacheline_aligned_free(shards_); } } CacheShard* LRUCache::GetShard(int shard) { return reinterpret_cast(&shards_[shard]); } const CacheShard* LRUCache::GetShard(int shard) const { return reinterpret_cast(&shards_[shard]); } void* LRUCache::Value(Handle* handle) { return reinterpret_cast(handle)->value; } size_t LRUCache::GetCharge(Handle* handle) const { return reinterpret_cast(handle)->charge; } uint32_t LRUCache::GetHash(Handle* handle) const { return reinterpret_cast(handle)->hash; } void LRUCache::DisownData() { // Do not drop data if compile with ASAN to suppress leak warning. #if defined(__clang__) #if !defined(__has_feature) || !__has_feature(address_sanitizer) shards_ = nullptr; num_shards_ = 0; #endif #else // __clang__ #ifndef __SANITIZE_ADDRESS__ shards_ = nullptr; num_shards_ = 0; #endif // !__SANITIZE_ADDRESS__ #endif // __clang__ } size_t LRUCache::TEST_GetLRUSize() { size_t lru_size_of_all_shards = 0; for (int i = 0; i < num_shards_; i++) { lru_size_of_all_shards += shards_[i].TEST_GetLRUSize(); } return lru_size_of_all_shards; } double LRUCache::GetHighPriPoolRatio() { double result = 0.0; if (num_shards_ > 0) { result = shards_[0].GetHighPriPoolRatio(); } return result; } std::shared_ptr NewLRUCache(const LRUCacheOptions& cache_opts) { return NewLRUCache(cache_opts.capacity, cache_opts.num_shard_bits, cache_opts.strict_capacity_limit, cache_opts.high_pri_pool_ratio, cache_opts.memory_allocator, cache_opts.use_adaptive_mutex, cache_opts.metadata_charge_policy); } std::shared_ptr NewLRUCache( size_t capacity, int num_shard_bits, bool strict_capacity_limit, double high_pri_pool_ratio, std::shared_ptr memory_allocator, bool use_adaptive_mutex, CacheMetadataChargePolicy metadata_charge_policy) { if (num_shard_bits >= 20) { return nullptr; // the cache cannot be sharded into too many fine pieces } if (high_pri_pool_ratio < 0.0 || high_pri_pool_ratio > 1.0) { // invalid high_pri_pool_ratio return nullptr; } if (num_shard_bits < 0) { num_shard_bits = GetDefaultCacheShardBits(capacity); } return std::make_shared( capacity, num_shard_bits, strict_capacity_limit, high_pri_pool_ratio, std::move(memory_allocator), use_adaptive_mutex, metadata_charge_policy); } } // namespace ROCKSDB_NAMESPACE