// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // An Env is an interface used by the rocksdb implementation to access // operating system functionality like the filesystem etc. Callers // may wish to provide a custom Env object when opening a database to // get fine gain control; e.g., to rate limit file system operations. // // All Env implementations are safe for concurrent access from // multiple threads without any external synchronization. #pragma once #include #include #include #include #include #include #include #include "rocksdb/status.h" #include "rocksdb/thread_status.h" #ifdef _WIN32 // Windows API macro interference #undef DeleteFile #undef GetCurrentTime #endif #if defined(__GNUC__) || defined(__clang__) #define ROCKSDB_PRINTF_FORMAT_ATTR(format_param, dots_param) \ __attribute__((__format__(__printf__, format_param, dots_param))) #else #define ROCKSDB_PRINTF_FORMAT_ATTR(format_param, dots_param) #endif namespace ROCKSDB_NAMESPACE { class DynamicLibrary; class FileLock; class Logger; class RandomAccessFile; class SequentialFile; class Slice; class WritableFile; class RandomRWFile; class MemoryMappedFileBuffer; class Directory; struct DBOptions; struct ImmutableDBOptions; struct MutableDBOptions; class RateLimiter; class ThreadStatusUpdater; struct ThreadStatus; class FileSystem; const size_t kDefaultPageSize = 4 * 1024; enum class CpuPriority { kIdle = 0, kLow = 1, kNormal = 2, kHigh = 3, }; // Options while opening a file to read/write struct EnvOptions { // Construct with default Options EnvOptions(); // Construct from Options explicit EnvOptions(const DBOptions& options); // If true, then use mmap to read data bool use_mmap_reads = false; // If true, then use mmap to write data bool use_mmap_writes = true; // If true, then use O_DIRECT for reading data bool use_direct_reads = false; // If true, then use O_DIRECT for writing data bool use_direct_writes = false; // If false, fallocate() calls are bypassed bool allow_fallocate = true; // If true, set the FD_CLOEXEC on open fd. bool set_fd_cloexec = true; // Allows OS to incrementally sync files to disk while they are being // written, in the background. Issue one request for every bytes_per_sync // written. 0 turns it off. // Default: 0 uint64_t bytes_per_sync = 0; // When true, guarantees the file has at most `bytes_per_sync` bytes submitted // for writeback at any given time. // // - If `sync_file_range` is supported it achieves this by waiting for any // prior `sync_file_range`s to finish before proceeding. In this way, // processing (compression, etc.) can proceed uninhibited in the gap // between `sync_file_range`s, and we block only when I/O falls behind. // - Otherwise the `WritableFile::Sync` method is used. Note this mechanism // always blocks, thus preventing the interleaving of I/O and processing. // // Note: Enabling this option does not provide any additional persistence // guarantees, as it may use `sync_file_range`, which does not write out // metadata. // // Default: false bool strict_bytes_per_sync = false; // If true, we will preallocate the file with FALLOC_FL_KEEP_SIZE flag, which // means that file size won't change as part of preallocation. // If false, preallocation will also change the file size. This option will // improve the performance in workloads where you sync the data on every // write. By default, we set it to true for MANIFEST writes and false for // WAL writes bool fallocate_with_keep_size = true; // See DBOptions doc size_t compaction_readahead_size = 0; // See DBOptions doc size_t random_access_max_buffer_size = 0; // See DBOptions doc size_t writable_file_max_buffer_size = 1024 * 1024; // If not nullptr, write rate limiting is enabled for flush and compaction RateLimiter* rate_limiter = nullptr; }; class Env { public: struct FileAttributes { // File name std::string name; // Size of file in bytes uint64_t size_bytes; }; Env(); // Construct an Env with a separate FileSystem implementation Env(std::shared_ptr fs); // No copying allowed Env(const Env&) = delete; void operator=(const Env&) = delete; virtual ~Env(); static const char* Type() { return "Environment"; } // Loads the environment specified by the input value into the result static Status LoadEnv(const std::string& value, Env** result); // Loads the environment specified by the input value into the result static Status LoadEnv(const std::string& value, Env** result, std::shared_ptr* guard); // Return a default environment suitable for the current operating // system. Sophisticated users may wish to provide their own Env // implementation instead of relying on this default environment. // // The result of Default() belongs to rocksdb and must never be deleted. static Env* Default(); // See FileSystem::RegisterDbPaths. virtual Status RegisterDbPaths(const std::vector& /*paths*/) { return Status::OK(); } // See FileSystem::UnregisterDbPaths. virtual Status UnregisterDbPaths(const std::vector& /*paths*/) { return Status::OK(); } // Create a brand new sequentially-readable file with the specified name. // On success, stores a pointer to the new file in *result and returns OK. // On failure stores nullptr in *result and returns non-OK. If the file does // not exist, returns a non-OK status. // // The returned file will only be accessed by one thread at a time. virtual Status NewSequentialFile(const std::string& fname, std::unique_ptr* result, const EnvOptions& options) = 0; // Create a brand new random access read-only file with the // specified name. On success, stores a pointer to the new file in // *result and returns OK. On failure stores nullptr in *result and // returns non-OK. If the file does not exist, returns a non-OK // status. // // The returned file may be concurrently accessed by multiple threads. virtual Status NewRandomAccessFile(const std::string& fname, std::unique_ptr* result, const EnvOptions& options) = 0; // These values match Linux definition // https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/fcntl.h#n56 enum WriteLifeTimeHint { WLTH_NOT_SET = 0, // No hint information set WLTH_NONE, // No hints about write life time WLTH_SHORT, // Data written has a short life time WLTH_MEDIUM, // Data written has a medium life time WLTH_LONG, // Data written has a long life time WLTH_EXTREME, // Data written has an extremely long life time }; // Create an object that writes to a new file with the specified // name. Deletes any existing file with the same name and creates a // new file. On success, stores a pointer to the new file in // *result and returns OK. On failure stores nullptr in *result and // returns non-OK. // // The returned file will only be accessed by one thread at a time. virtual Status NewWritableFile(const std::string& fname, std::unique_ptr* result, const EnvOptions& options) = 0; // Create an object that writes to a new file with the specified // name. Deletes any existing file with the same name and creates a // new file. On success, stores a pointer to the new file in // *result and returns OK. On failure stores nullptr in *result and // returns non-OK. // // The returned file will only be accessed by one thread at a time. virtual Status ReopenWritableFile(const std::string& /*fname*/, std::unique_ptr* /*result*/, const EnvOptions& /*options*/) { return Status::NotSupported("Env::ReopenWritableFile() not supported."); } // Reuse an existing file by renaming it and opening it as writable. virtual Status ReuseWritableFile(const std::string& fname, const std::string& old_fname, std::unique_ptr* result, const EnvOptions& options); // Open `fname` for random read and write, if file doesn't exist the file // will be created. On success, stores a pointer to the new file in // *result and returns OK. On failure returns non-OK. // // The returned file will only be accessed by one thread at a time. virtual Status NewRandomRWFile(const std::string& /*fname*/, std::unique_ptr* /*result*/, const EnvOptions& /*options*/) { return Status::NotSupported("RandomRWFile is not implemented in this Env"); } // Opens `fname` as a memory-mapped file for read and write (in-place updates // only, i.e., no appends). On success, stores a raw buffer covering the whole // file in `*result`. The file must exist prior to this call. virtual Status NewMemoryMappedFileBuffer( const std::string& /*fname*/, std::unique_ptr* /*result*/) { return Status::NotSupported( "MemoryMappedFileBuffer is not implemented in this Env"); } // Create an object that represents a directory. Will fail if directory // doesn't exist. If the directory exists, it will open the directory // and create a new Directory object. // // On success, stores a pointer to the new Directory in // *result and returns OK. On failure stores nullptr in *result and // returns non-OK. virtual Status NewDirectory(const std::string& name, std::unique_ptr* result) = 0; // Returns OK if the named file exists. // NotFound if the named file does not exist, // the calling process does not have permission to determine // whether this file exists, or if the path is invalid. // IOError if an IO Error was encountered virtual Status FileExists(const std::string& fname) = 0; // Store in *result the names of the children of the specified directory. // The names are relative to "dir". // Original contents of *results are dropped. // Returns OK if "dir" exists and "*result" contains its children. // NotFound if "dir" does not exist, the calling process does not have // permission to access "dir", or if "dir" is invalid. // IOError if an IO Error was encountered virtual Status GetChildren(const std::string& dir, std::vector* result) = 0; // Store in *result the attributes of the children of the specified directory. // In case the implementation lists the directory prior to iterating the files // and files are concurrently deleted, the deleted files will be omitted from // result. // The name attributes are relative to "dir". // Original contents of *results are dropped. // Returns OK if "dir" exists and "*result" contains its children. // NotFound if "dir" does not exist, the calling process does not have // permission to access "dir", or if "dir" is invalid. // IOError if an IO Error was encountered virtual Status GetChildrenFileAttributes(const std::string& dir, std::vector* result); // Delete the named file. virtual Status DeleteFile(const std::string& fname) = 0; // Truncate the named file to the specified size. virtual Status Truncate(const std::string& /*fname*/, size_t /*size*/) { return Status::NotSupported("Truncate is not supported for this Env"); } // Create the specified directory. Returns error if directory exists. virtual Status CreateDir(const std::string& dirname) = 0; // Creates directory if missing. Return Ok if it exists, or successful in // Creating. virtual Status CreateDirIfMissing(const std::string& dirname) = 0; // Delete the specified directory. // Many implementations of this function will only delete a directory if it is // empty. virtual Status DeleteDir(const std::string& dirname) = 0; // Store the size of fname in *file_size. virtual Status GetFileSize(const std::string& fname, uint64_t* file_size) = 0; // Store the last modification time of fname in *file_mtime. virtual Status GetFileModificationTime(const std::string& fname, uint64_t* file_mtime) = 0; // Rename file src to target. virtual Status RenameFile(const std::string& src, const std::string& target) = 0; // Hard Link file src to target. virtual Status LinkFile(const std::string& /*src*/, const std::string& /*target*/) { return Status::NotSupported("LinkFile is not supported for this Env"); } virtual Status NumFileLinks(const std::string& /*fname*/, uint64_t* /*count*/) { return Status::NotSupported( "Getting number of file links is not supported for this Env"); } virtual Status AreFilesSame(const std::string& /*first*/, const std::string& /*second*/, bool* /*res*/) { return Status::NotSupported("AreFilesSame is not supported for this Env"); } // Lock the specified file. Used to prevent concurrent access to // the same db by multiple processes. On failure, stores nullptr in // *lock and returns non-OK. // // On success, stores a pointer to the object that represents the // acquired lock in *lock and returns OK. The caller should call // UnlockFile(*lock) to release the lock. If the process exits, // the lock will be automatically released. // // If somebody else already holds the lock, finishes immediately // with a failure. I.e., this call does not wait for existing locks // to go away. // // May create the named file if it does not already exist. virtual Status LockFile(const std::string& fname, FileLock** lock) = 0; // Release the lock acquired by a previous successful call to LockFile. // REQUIRES: lock was returned by a successful LockFile() call // REQUIRES: lock has not already been unlocked. virtual Status UnlockFile(FileLock* lock) = 0; // Opens `lib_name` as a dynamic library. // If the 'search_path' is specified, breaks the path into its components // based on the appropriate platform separator (";" or ";") and looks for the // library in those directories. If 'search path is not specified, uses the // default library path search mechanism (such as LD_LIBRARY_PATH). On // success, stores a dynamic library in `*result`. virtual Status LoadLibrary(const std::string& /*lib_name*/, const std::string& /*search_path */, std::shared_ptr* /*result*/) { return Status::NotSupported("LoadLibrary is not implemented in this Env"); } // Priority for scheduling job in thread pool enum Priority { BOTTOM, LOW, HIGH, USER, TOTAL }; static std::string PriorityToString(Priority priority); // Priority for requesting bytes in rate limiter scheduler enum IOPriority { IO_LOW = 0, IO_HIGH = 1, IO_TOTAL = 2 }; // Arrange to run "(*function)(arg)" once in a background thread, in // the thread pool specified by pri. By default, jobs go to the 'LOW' // priority thread pool. // "function" may run in an unspecified thread. Multiple functions // added to the same Env may run concurrently in different threads. // I.e., the caller may not assume that background work items are // serialized. // When the UnSchedule function is called, the unschedFunction // registered at the time of Schedule is invoked with arg as a parameter. virtual void Schedule(void (*function)(void* arg), void* arg, Priority pri = LOW, void* tag = nullptr, void (*unschedFunction)(void* arg) = nullptr) = 0; // Arrange to remove jobs for given arg from the queue_ if they are not // already scheduled. Caller is expected to have exclusive lock on arg. virtual int UnSchedule(void* /*arg*/, Priority /*pri*/) { return 0; } // Start a new thread, invoking "function(arg)" within the new thread. // When "function(arg)" returns, the thread will be destroyed. virtual void StartThread(void (*function)(void* arg), void* arg) = 0; // Wait for all threads started by StartThread to terminate. virtual void WaitForJoin() {} // Get thread pool queue length for specific thread pool. virtual unsigned int GetThreadPoolQueueLen(Priority /*pri*/ = LOW) const { return 0; } // *path is set to a temporary directory that can be used for testing. It may // or many not have just been created. The directory may or may not differ // between runs of the same process, but subsequent calls will return the // same directory. virtual Status GetTestDirectory(std::string* path) = 0; // Create and returns a default logger (an instance of EnvLogger) for storing // informational messages. Derived classes can overide to provide custom // logger. virtual Status NewLogger(const std::string& fname, std::shared_ptr* result); // Returns the number of micro-seconds since some fixed point in time. // It is often used as system time such as in GenericRateLimiter // and other places so a port needs to return system time in order to work. virtual uint64_t NowMicros() = 0; // Returns the number of nano-seconds since some fixed point in time. Only // useful for computing deltas of time in one run. // Default implementation simply relies on NowMicros. // In platform-specific implementations, NowNanos() should return time points // that are MONOTONIC. virtual uint64_t NowNanos() { return NowMicros() * 1000; } // 0 indicates not supported. virtual uint64_t NowCPUNanos() { return 0; } // Sleep/delay the thread for the prescribed number of micro-seconds. virtual void SleepForMicroseconds(int micros) = 0; // Get the current host name. virtual Status GetHostName(char* name, uint64_t len) = 0; // Get the number of seconds since the Epoch, 1970-01-01 00:00:00 (UTC). // Only overwrites *unix_time on success. virtual Status GetCurrentTime(int64_t* unix_time) = 0; // Get full directory name for this db. virtual Status GetAbsolutePath(const std::string& db_path, std::string* output_path) = 0; // The number of background worker threads of a specific thread pool // for this environment. 'LOW' is the default pool. // default number: 1 virtual void SetBackgroundThreads(int number, Priority pri = LOW) = 0; virtual int GetBackgroundThreads(Priority pri = LOW) = 0; virtual Status SetAllowNonOwnerAccess(bool /*allow_non_owner_access*/) { return Status::NotSupported("Env::SetAllowNonOwnerAccess() not supported."); } // Enlarge number of background worker threads of a specific thread pool // for this environment if it is smaller than specified. 'LOW' is the default // pool. virtual void IncBackgroundThreadsIfNeeded(int number, Priority pri) = 0; // Lower IO priority for threads from the specified pool. virtual void LowerThreadPoolIOPriority(Priority /*pool*/ = LOW) {} // Lower CPU priority for threads from the specified pool. virtual Status LowerThreadPoolCPUPriority(Priority /*pool*/, CpuPriority /*pri*/) { return Status::NotSupported( "Env::LowerThreadPoolCPUPriority(Priority, CpuPriority) not supported"); } // Lower CPU priority for threads from the specified pool. virtual void LowerThreadPoolCPUPriority(Priority /*pool*/ = LOW) {} // Converts seconds-since-Jan-01-1970 to a printable string virtual std::string TimeToString(uint64_t time) = 0; // Generates a unique id that can be used to identify a db virtual std::string GenerateUniqueId(); // OptimizeForLogWrite will create a new EnvOptions object that is a copy of // the EnvOptions in the parameters, but is optimized for reading log files. virtual EnvOptions OptimizeForLogRead(const EnvOptions& env_options) const; // OptimizeForManifestRead will create a new EnvOptions object that is a copy // of the EnvOptions in the parameters, but is optimized for reading manifest // files. virtual EnvOptions OptimizeForManifestRead( const EnvOptions& env_options) const; // OptimizeForLogWrite will create a new EnvOptions object that is a copy of // the EnvOptions in the parameters, but is optimized for writing log files. // Default implementation returns the copy of the same object. virtual EnvOptions OptimizeForLogWrite(const EnvOptions& env_options, const DBOptions& db_options) const; // OptimizeForManifestWrite will create a new EnvOptions object that is a copy // of the EnvOptions in the parameters, but is optimized for writing manifest // files. Default implementation returns the copy of the same object. virtual EnvOptions OptimizeForManifestWrite( const EnvOptions& env_options) const; // OptimizeForCompactionTableWrite will create a new EnvOptions object that is // a copy of the EnvOptions in the parameters, but is optimized for writing // table files. virtual EnvOptions OptimizeForCompactionTableWrite( const EnvOptions& env_options, const ImmutableDBOptions& immutable_ops) const; // OptimizeForCompactionTableWrite will create a new EnvOptions object that // is a copy of the EnvOptions in the parameters, but is optimized for reading // table files. virtual EnvOptions OptimizeForCompactionTableRead( const EnvOptions& env_options, const ImmutableDBOptions& db_options) const; // Returns the status of all threads that belong to the current Env. virtual Status GetThreadList(std::vector* /*thread_list*/) { return Status::NotSupported("Env::GetThreadList() not supported."); } // Returns the pointer to ThreadStatusUpdater. This function will be // used in RocksDB internally to update thread status and supports // GetThreadList(). virtual ThreadStatusUpdater* GetThreadStatusUpdater() const { return thread_status_updater_; } // Returns the ID of the current thread. virtual uint64_t GetThreadID() const; // This seems to clash with a macro on Windows, so #undef it here #undef GetFreeSpace // Get the amount of free disk space virtual Status GetFreeSpace(const std::string& /*path*/, uint64_t* /*diskfree*/) { return Status::NotSupported("Env::GetFreeSpace() not supported."); } // Check whether the specified path is a directory virtual Status IsDirectory(const std::string& /*path*/, bool* /*is_dir*/) { return Status::NotSupported("Env::IsDirectory() not supported."); } virtual void SanitizeEnvOptions(EnvOptions* /*env_opts*/) const {} // Get the FileSystem implementation this Env was constructed with. It // could be a fully implemented one, or a wrapper class around the Env const std::shared_ptr& GetFileSystem() const; // If you're adding methods here, remember to add them to EnvWrapper too. protected: // The pointer to an internal structure that will update the // status of each thread. ThreadStatusUpdater* thread_status_updater_; // Pointer to the underlying FileSystem implementation std::shared_ptr file_system_; }; // The factory function to construct a ThreadStatusUpdater. Any Env // that supports GetThreadList() feature should call this function in its // constructor to initialize thread_status_updater_. ThreadStatusUpdater* CreateThreadStatusUpdater(); // A file abstraction for reading sequentially through a file class SequentialFile { public: SequentialFile() {} virtual ~SequentialFile(); // Read up to "n" bytes from the file. "scratch[0..n-1]" may be // written by this routine. Sets "*result" to the data that was // read (including if fewer than "n" bytes were successfully read). // May set "*result" to point at data in "scratch[0..n-1]", so // "scratch[0..n-1]" must be live when "*result" is used. // If an error was encountered, returns a non-OK status. // // REQUIRES: External synchronization virtual Status Read(size_t n, Slice* result, char* scratch) = 0; // Skip "n" bytes from the file. This is guaranteed to be no // slower that reading the same data, but may be faster. // // If end of file is reached, skipping will stop at the end of the // file, and Skip will return OK. // // REQUIRES: External synchronization virtual Status Skip(uint64_t n) = 0; // Indicates the upper layers if the current SequentialFile implementation // uses direct IO. virtual bool use_direct_io() const { return false; } // Use the returned alignment value to allocate // aligned buffer for Direct I/O virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; } // Remove any kind of caching of data from the offset to offset+length // of this file. If the length is 0, then it refers to the end of file. // If the system is not caching the file contents, then this is a noop. virtual Status InvalidateCache(size_t /*offset*/, size_t /*length*/) { return Status::NotSupported( "SequentialFile::InvalidateCache not supported."); } // Positioned Read for direct I/O // If Direct I/O enabled, offset, n, and scratch should be properly aligned virtual Status PositionedRead(uint64_t /*offset*/, size_t /*n*/, Slice* /*result*/, char* /*scratch*/) { return Status::NotSupported( "SequentialFile::PositionedRead() not supported."); } // If you're adding methods here, remember to add them to // SequentialFileWrapper too. }; // A read IO request structure for use in MultiRead struct ReadRequest { // File offset in bytes uint64_t offset; // Length to read in bytes size_t len; // A buffer that MultiRead() can optionally place data in. It can // ignore this and allocate its own buffer char* scratch; // Output parameter set by MultiRead() to point to the data buffer, and // the number of valid bytes Slice result; // Status of read Status status; }; // A file abstraction for randomly reading the contents of a file. class RandomAccessFile { public: RandomAccessFile() {} virtual ~RandomAccessFile(); // Read up to "n" bytes from the file starting at "offset". // "scratch[0..n-1]" may be written by this routine. Sets "*result" // to the data that was read (including if fewer than "n" bytes were // successfully read). May set "*result" to point at data in // "scratch[0..n-1]", so "scratch[0..n-1]" must be live when // "*result" is used. If an error was encountered, returns a non-OK // status. // // Safe for concurrent use by multiple threads. // If Direct I/O enabled, offset, n, and scratch should be aligned properly. virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const = 0; // Readahead the file starting from offset by n bytes for caching. virtual Status Prefetch(uint64_t /*offset*/, size_t /*n*/) { return Status::OK(); } // Read a bunch of blocks as described by reqs. The blocks can // optionally be read in parallel. This is a synchronous call, i.e it // should return after all reads have completed. The reads will be // non-overlapping. If the function return Status is not ok, status of // individual requests will be ignored and return status will be assumed // for all read requests. The function return status is only meant for any // any errors that occur before even processing specific read requests virtual Status MultiRead(ReadRequest* reqs, size_t num_reqs) { assert(reqs != nullptr); for (size_t i = 0; i < num_reqs; ++i) { ReadRequest& req = reqs[i]; req.status = Read(req.offset, req.len, &req.result, req.scratch); } return Status::OK(); } // Tries to get an unique ID for this file that will be the same each time // the file is opened (and will stay the same while the file is open). // Furthermore, it tries to make this ID at most "max_size" bytes. If such an // ID can be created this function returns the length of the ID and places it // in "id"; otherwise, this function returns 0, in which case "id" // may not have been modified. // // This function guarantees, for IDs from a given environment, two unique ids // cannot be made equal to each other by adding arbitrary bytes to one of // them. That is, no unique ID is the prefix of another. // // This function guarantees that the returned ID will not be interpretable as // a single varint. // // Note: these IDs are only valid for the duration of the process. virtual size_t GetUniqueId(char* /*id*/, size_t /*max_size*/) const { return 0; // Default implementation to prevent issues with backwards // compatibility. } enum AccessPattern { NORMAL, RANDOM, SEQUENTIAL, WILLNEED, DONTNEED }; virtual void Hint(AccessPattern /*pattern*/) {} // Indicates the upper layers if the current RandomAccessFile implementation // uses direct IO. virtual bool use_direct_io() const { return false; } // Use the returned alignment value to allocate // aligned buffer for Direct I/O virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; } // Remove any kind of caching of data from the offset to offset+length // of this file. If the length is 0, then it refers to the end of file. // If the system is not caching the file contents, then this is a noop. virtual Status InvalidateCache(size_t /*offset*/, size_t /*length*/) { return Status::NotSupported( "RandomAccessFile::InvalidateCache not supported."); } // If you're adding methods here, remember to add them to // RandomAccessFileWrapper too. }; // A file abstraction for sequential writing. The implementation // must provide buffering since callers may append small fragments // at a time to the file. class WritableFile { public: WritableFile() : last_preallocated_block_(0), preallocation_block_size_(0), io_priority_(Env::IO_TOTAL), write_hint_(Env::WLTH_NOT_SET), strict_bytes_per_sync_(false) {} explicit WritableFile(const EnvOptions& options) : last_preallocated_block_(0), preallocation_block_size_(0), io_priority_(Env::IO_TOTAL), write_hint_(Env::WLTH_NOT_SET), strict_bytes_per_sync_(options.strict_bytes_per_sync) {} // No copying allowed WritableFile(const WritableFile&) = delete; void operator=(const WritableFile&) = delete; virtual ~WritableFile(); // Append data to the end of the file // Note: A WriteabelFile object must support either Append or // PositionedAppend, so the users cannot mix the two. virtual Status Append(const Slice& data) = 0; // PositionedAppend data to the specified offset. The new EOF after append // must be larger than the previous EOF. This is to be used when writes are // not backed by OS buffers and hence has to always start from the start of // the sector. The implementation thus needs to also rewrite the last // partial sector. // Note: PositionAppend does not guarantee moving the file offset after the // write. A WritableFile object must support either Append or // PositionedAppend, so the users cannot mix the two. // // PositionedAppend() can only happen on the page/sector boundaries. For that // reason, if the last write was an incomplete sector we still need to rewind // back to the nearest sector/page and rewrite the portion of it with whatever // we need to add. We need to keep where we stop writing. // // PositionedAppend() can only write whole sectors. For that reason we have to // pad with zeros for the last write and trim the file when closing according // to the position we keep in the previous step. // // PositionedAppend() requires aligned buffer to be passed in. The alignment // required is queried via GetRequiredBufferAlignment() virtual Status PositionedAppend(const Slice& /* data */, uint64_t /* offset */) { return Status::NotSupported( "WritableFile::PositionedAppend() not supported."); } // Truncate is necessary to trim the file to the correct size // before closing. It is not always possible to keep track of the file // size due to whole pages writes. The behavior is undefined if called // with other writes to follow. virtual Status Truncate(uint64_t /*size*/) { return Status::OK(); } virtual Status Close() = 0; virtual Status Flush() = 0; virtual Status Sync() = 0; // sync data /* * Sync data and/or metadata as well. * By default, sync only data. * Override this method for environments where we need to sync * metadata as well. */ virtual Status Fsync() { return Sync(); } // true if Sync() and Fsync() are safe to call concurrently with Append() // and Flush(). virtual bool IsSyncThreadSafe() const { return false; } // Indicates the upper layers if the current WritableFile implementation // uses direct IO. virtual bool use_direct_io() const { return false; } // Use the returned alignment value to allocate // aligned buffer for Direct I/O virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; } /* * Change the priority in rate limiter if rate limiting is enabled. * If rate limiting is not enabled, this call has no effect. */ virtual void SetIOPriority(Env::IOPriority pri) { io_priority_ = pri; } virtual Env::IOPriority GetIOPriority() { return io_priority_; } virtual void SetWriteLifeTimeHint(Env::WriteLifeTimeHint hint) { write_hint_ = hint; } virtual Env::WriteLifeTimeHint GetWriteLifeTimeHint() { return write_hint_; } /* * Get the size of valid data in the file. */ virtual uint64_t GetFileSize() { return 0; } /* * Get and set the default pre-allocation block size for writes to * this file. If non-zero, then Allocate will be used to extend the * underlying storage of a file (generally via fallocate) if the Env * instance supports it. */ virtual void SetPreallocationBlockSize(size_t size) { preallocation_block_size_ = size; } virtual void GetPreallocationStatus(size_t* block_size, size_t* last_allocated_block) { *last_allocated_block = last_preallocated_block_; *block_size = preallocation_block_size_; } // For documentation, refer to RandomAccessFile::GetUniqueId() virtual size_t GetUniqueId(char* /*id*/, size_t /*max_size*/) const { return 0; // Default implementation to prevent issues with backwards } // Remove any kind of caching of data from the offset to offset+length // of this file. If the length is 0, then it refers to the end of file. // If the system is not caching the file contents, then this is a noop. // This call has no effect on dirty pages in the cache. virtual Status InvalidateCache(size_t /*offset*/, size_t /*length*/) { return Status::NotSupported("WritableFile::InvalidateCache not supported."); } // Sync a file range with disk. // offset is the starting byte of the file range to be synchronized. // nbytes specifies the length of the range to be synchronized. // This asks the OS to initiate flushing the cached data to disk, // without waiting for completion. // Default implementation does nothing. virtual Status RangeSync(uint64_t /*offset*/, uint64_t /*nbytes*/) { if (strict_bytes_per_sync_) { return Sync(); } return Status::OK(); } // PrepareWrite performs any necessary preparation for a write // before the write actually occurs. This allows for pre-allocation // of space on devices where it can result in less file // fragmentation and/or less waste from over-zealous filesystem // pre-allocation. virtual void PrepareWrite(size_t offset, size_t len) { if (preallocation_block_size_ == 0) { return; } // If this write would cross one or more preallocation blocks, // determine what the last preallocation block necessary to // cover this write would be and Allocate to that point. const auto block_size = preallocation_block_size_; size_t new_last_preallocated_block = (offset + len + block_size - 1) / block_size; if (new_last_preallocated_block > last_preallocated_block_) { size_t num_spanned_blocks = new_last_preallocated_block - last_preallocated_block_; Allocate(block_size * last_preallocated_block_, block_size * num_spanned_blocks); last_preallocated_block_ = new_last_preallocated_block; } } // Pre-allocates space for a file. virtual Status Allocate(uint64_t /*offset*/, uint64_t /*len*/) { return Status::OK(); } // If you're adding methods here, remember to add them to // WritableFileWrapper too. protected: size_t preallocation_block_size() { return preallocation_block_size_; } private: size_t last_preallocated_block_; size_t preallocation_block_size_; protected: Env::IOPriority io_priority_; Env::WriteLifeTimeHint write_hint_; const bool strict_bytes_per_sync_; }; // A file abstraction for random reading and writing. class RandomRWFile { public: RandomRWFile() {} // No copying allowed RandomRWFile(const RandomRWFile&) = delete; RandomRWFile& operator=(const RandomRWFile&) = delete; virtual ~RandomRWFile() {} // Indicates if the class makes use of direct I/O // If false you must pass aligned buffer to Write() virtual bool use_direct_io() const { return false; } // Use the returned alignment value to allocate // aligned buffer for Direct I/O virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; } // Write bytes in `data` at offset `offset`, Returns Status::OK() on success. // Pass aligned buffer when use_direct_io() returns true. virtual Status Write(uint64_t offset, const Slice& data) = 0; // Read up to `n` bytes starting from offset `offset` and store them in // result, provided `scratch` size should be at least `n`. // Returns Status::OK() on success. virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const = 0; virtual Status Flush() = 0; virtual Status Sync() = 0; virtual Status Fsync() { return Sync(); } virtual Status Close() = 0; // If you're adding methods here, remember to add them to // RandomRWFileWrapper too. }; // MemoryMappedFileBuffer object represents a memory-mapped file's raw buffer. // Subclasses should release the mapping upon destruction. class MemoryMappedFileBuffer { public: MemoryMappedFileBuffer(void* _base, size_t _length) : base_(_base), length_(_length) {} virtual ~MemoryMappedFileBuffer() = 0; // We do not want to unmap this twice. We can make this class // movable if desired, however, since MemoryMappedFileBuffer(const MemoryMappedFileBuffer&) = delete; MemoryMappedFileBuffer& operator=(const MemoryMappedFileBuffer&) = delete; void* GetBase() const { return base_; } size_t GetLen() const { return length_; } protected: void* base_; const size_t length_; }; // Directory object represents collection of files and implements // filesystem operations that can be executed on directories. class Directory { public: virtual ~Directory() {} // Fsync directory. Can be called concurrently from multiple threads. virtual Status Fsync() = 0; virtual size_t GetUniqueId(char* /*id*/, size_t /*max_size*/) const { return 0; } // If you're adding methods here, remember to add them to // DirectoryWrapper too. }; enum InfoLogLevel : unsigned char { DEBUG_LEVEL = 0, INFO_LEVEL, WARN_LEVEL, ERROR_LEVEL, FATAL_LEVEL, HEADER_LEVEL, NUM_INFO_LOG_LEVELS, }; // An interface for writing log messages. class Logger { public: size_t kDoNotSupportGetLogFileSize = (std::numeric_limits::max)(); explicit Logger(const InfoLogLevel log_level = InfoLogLevel::INFO_LEVEL) : closed_(false), log_level_(log_level) {} // No copying allowed Logger(const Logger&) = delete; void operator=(const Logger&) = delete; virtual ~Logger(); // Close the log file. Must be called before destructor. If the return // status is NotSupported(), it means the implementation does cleanup in // the destructor virtual Status Close(); // Write a header to the log file with the specified format // It is recommended that you log all header information at the start of the // application. But it is not enforced. virtual void LogHeader(const char* format, va_list ap) { // Default implementation does a simple INFO level log write. // Please override as per the logger class requirement. Logv(format, ap); } // Write an entry to the log file with the specified format. virtual void Logv(const char* format, va_list ap) = 0; // Write an entry to the log file with the specified log level // and format. Any log with level under the internal log level // of *this (see @SetInfoLogLevel and @GetInfoLogLevel) will not be // printed. virtual void Logv(const InfoLogLevel log_level, const char* format, va_list ap); virtual size_t GetLogFileSize() const { return kDoNotSupportGetLogFileSize; } // Flush to the OS buffers virtual void Flush() {} virtual InfoLogLevel GetInfoLogLevel() const { return log_level_; } virtual void SetInfoLogLevel(const InfoLogLevel log_level) { log_level_ = log_level; } // If you're adding methods here, remember to add them to LoggerWrapper too. protected: virtual Status CloseImpl(); bool closed_; private: InfoLogLevel log_level_; }; // Identifies a locked file. class FileLock { public: FileLock() {} virtual ~FileLock(); private: // No copying allowed FileLock(const FileLock&) = delete; void operator=(const FileLock&) = delete; }; class DynamicLibrary { public: virtual ~DynamicLibrary() {} // Returns the name of the dynamic library. virtual const char* Name() const = 0; // Loads the symbol for sym_name from the library and updates the input // function. Returns the loaded symbol. template Status LoadFunction(const std::string& sym_name, std::function* function) { assert(nullptr != function); void* ptr = nullptr; Status s = LoadSymbol(sym_name, &ptr); *function = reinterpret_cast(ptr); return s; } // Loads and returns the symbol for sym_name from the library. virtual Status LoadSymbol(const std::string& sym_name, void** func) = 0; }; extern void LogFlush(const std::shared_ptr& info_log); extern void Log(const InfoLogLevel log_level, const std::shared_ptr& info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(3, 4); // a set of log functions with different log levels. extern void Header(const std::shared_ptr& info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); extern void Debug(const std::shared_ptr& info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); extern void Info(const std::shared_ptr& info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); extern void Warn(const std::shared_ptr& info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); extern void Error(const std::shared_ptr& info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); extern void Fatal(const std::shared_ptr& info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); // Log the specified data to *info_log if info_log is non-nullptr. // The default info log level is InfoLogLevel::INFO_LEVEL. extern void Log(const std::shared_ptr& info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); extern void LogFlush(Logger* info_log); extern void Log(const InfoLogLevel log_level, Logger* info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(3, 4); // The default info log level is InfoLogLevel::INFO_LEVEL. extern void Log(Logger* info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); // a set of log functions with different log levels. extern void Header(Logger* info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); extern void Debug(Logger* info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); extern void Info(Logger* info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); extern void Warn(Logger* info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); extern void Error(Logger* info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); extern void Fatal(Logger* info_log, const char* format, ...) ROCKSDB_PRINTF_FORMAT_ATTR(2, 3); // A utility routine: write "data" to the named file. extern Status WriteStringToFile(Env* env, const Slice& data, const std::string& fname, bool should_sync = false); // A utility routine: read contents of named file into *data extern Status ReadFileToString(Env* env, const std::string& fname, std::string* data); // Below are helpers for wrapping most of the classes in this file. // They forward all calls to another instance of the class. // Useful when wrapping the default implementations. // Typical usage is to inherit your wrapper from *Wrapper, e.g.: // // class MySequentialFileWrapper : public // ROCKSDB_NAMESPACE::SequentialFileWrapper { // public: // MySequentialFileWrapper(ROCKSDB_NAMESPACE::SequentialFile* target): // ROCKSDB_NAMESPACE::SequentialFileWrapper(target) {} // Status Read(size_t n, Slice* result, char* scratch) override { // cout << "Doing a read of size " << n << "!" << endl; // return ROCKSDB_NAMESPACE::SequentialFileWrapper::Read(n, result, // scratch); // } // // All other methods are forwarded to target_ automatically. // }; // // This is often more convenient than inheriting the class directly because // (a) Don't have to override and forward all methods - the Wrapper will // forward everything you're not explicitly overriding. // (b) Don't need to update the wrapper when more methods are added to the // rocksdb class. Unless you actually want to override the behavior. // (And unless rocksdb people forgot to update the *Wrapper class.) // An implementation of Env that forwards all calls to another Env. // May be useful to clients who wish to override just part of the // functionality of another Env. class EnvWrapper : public Env { public: // Initialize an EnvWrapper that delegates all calls to *t explicit EnvWrapper(Env* t) : target_(t) {} ~EnvWrapper() override; // Return the target to which this Env forwards all calls Env* target() const { return target_; } // The following text is boilerplate that forwards all methods to target() Status RegisterDbPaths(const std::vector& paths) override { return target_->RegisterDbPaths(paths); } Status UnregisterDbPaths(const std::vector& paths) override { return target_->UnregisterDbPaths(paths); } Status NewSequentialFile(const std::string& f, std::unique_ptr* r, const EnvOptions& options) override { return target_->NewSequentialFile(f, r, options); } Status NewRandomAccessFile(const std::string& f, std::unique_ptr* r, const EnvOptions& options) override { return target_->NewRandomAccessFile(f, r, options); } Status NewWritableFile(const std::string& f, std::unique_ptr* r, const EnvOptions& options) override { return target_->NewWritableFile(f, r, options); } Status ReopenWritableFile(const std::string& fname, std::unique_ptr* result, const EnvOptions& options) override { return target_->ReopenWritableFile(fname, result, options); } Status ReuseWritableFile(const std::string& fname, const std::string& old_fname, std::unique_ptr* r, const EnvOptions& options) override { return target_->ReuseWritableFile(fname, old_fname, r, options); } Status NewRandomRWFile(const std::string& fname, std::unique_ptr* result, const EnvOptions& options) override { return target_->NewRandomRWFile(fname, result, options); } Status NewMemoryMappedFileBuffer( const std::string& fname, std::unique_ptr* result) override { return target_->NewMemoryMappedFileBuffer(fname, result); } Status NewDirectory(const std::string& name, std::unique_ptr* result) override { return target_->NewDirectory(name, result); } Status FileExists(const std::string& f) override { return target_->FileExists(f); } Status GetChildren(const std::string& dir, std::vector* r) override { return target_->GetChildren(dir, r); } Status GetChildrenFileAttributes( const std::string& dir, std::vector* result) override { return target_->GetChildrenFileAttributes(dir, result); } Status DeleteFile(const std::string& f) override { return target_->DeleteFile(f); } Status Truncate(const std::string& fname, size_t size) override { return target_->Truncate(fname, size); } Status CreateDir(const std::string& d) override { return target_->CreateDir(d); } Status CreateDirIfMissing(const std::string& d) override { return target_->CreateDirIfMissing(d); } Status DeleteDir(const std::string& d) override { return target_->DeleteDir(d); } Status GetFileSize(const std::string& f, uint64_t* s) override { return target_->GetFileSize(f, s); } Status GetFileModificationTime(const std::string& fname, uint64_t* file_mtime) override { return target_->GetFileModificationTime(fname, file_mtime); } Status RenameFile(const std::string& s, const std::string& t) override { return target_->RenameFile(s, t); } Status LinkFile(const std::string& s, const std::string& t) override { return target_->LinkFile(s, t); } Status NumFileLinks(const std::string& fname, uint64_t* count) override { return target_->NumFileLinks(fname, count); } Status AreFilesSame(const std::string& first, const std::string& second, bool* res) override { return target_->AreFilesSame(first, second, res); } Status LockFile(const std::string& f, FileLock** l) override { return target_->LockFile(f, l); } Status UnlockFile(FileLock* l) override { return target_->UnlockFile(l); } Status IsDirectory(const std::string& path, bool* is_dir) override { return target_->IsDirectory(path, is_dir); } Status LoadLibrary(const std::string& lib_name, const std::string& search_path, std::shared_ptr* result) override { return target_->LoadLibrary(lib_name, search_path, result); } void Schedule(void (*f)(void* arg), void* a, Priority pri, void* tag = nullptr, void (*u)(void* arg) = nullptr) override { return target_->Schedule(f, a, pri, tag, u); } int UnSchedule(void* tag, Priority pri) override { return target_->UnSchedule(tag, pri); } void StartThread(void (*f)(void*), void* a) override { return target_->StartThread(f, a); } void WaitForJoin() override { return target_->WaitForJoin(); } unsigned int GetThreadPoolQueueLen(Priority pri = LOW) const override { return target_->GetThreadPoolQueueLen(pri); } Status GetTestDirectory(std::string* path) override { return target_->GetTestDirectory(path); } Status NewLogger(const std::string& fname, std::shared_ptr* result) override { return target_->NewLogger(fname, result); } uint64_t NowMicros() override { return target_->NowMicros(); } uint64_t NowNanos() override { return target_->NowNanos(); } uint64_t NowCPUNanos() override { return target_->NowCPUNanos(); } void SleepForMicroseconds(int micros) override { target_->SleepForMicroseconds(micros); } Status GetHostName(char* name, uint64_t len) override { return target_->GetHostName(name, len); } Status GetCurrentTime(int64_t* unix_time) override { return target_->GetCurrentTime(unix_time); } Status GetAbsolutePath(const std::string& db_path, std::string* output_path) override { return target_->GetAbsolutePath(db_path, output_path); } void SetBackgroundThreads(int num, Priority pri) override { return target_->SetBackgroundThreads(num, pri); } int GetBackgroundThreads(Priority pri) override { return target_->GetBackgroundThreads(pri); } Status SetAllowNonOwnerAccess(bool allow_non_owner_access) override { return target_->SetAllowNonOwnerAccess(allow_non_owner_access); } void IncBackgroundThreadsIfNeeded(int num, Priority pri) override { return target_->IncBackgroundThreadsIfNeeded(num, pri); } void LowerThreadPoolIOPriority(Priority pool) override { target_->LowerThreadPoolIOPriority(pool); } void LowerThreadPoolCPUPriority(Priority pool) override { target_->LowerThreadPoolCPUPriority(pool); } Status LowerThreadPoolCPUPriority(Priority pool, CpuPriority pri) override { return target_->LowerThreadPoolCPUPriority(pool, pri); } std::string TimeToString(uint64_t time) override { return target_->TimeToString(time); } Status GetThreadList(std::vector* thread_list) override { return target_->GetThreadList(thread_list); } ThreadStatusUpdater* GetThreadStatusUpdater() const override { return target_->GetThreadStatusUpdater(); } uint64_t GetThreadID() const override { return target_->GetThreadID(); } std::string GenerateUniqueId() override { return target_->GenerateUniqueId(); } EnvOptions OptimizeForLogRead(const EnvOptions& env_options) const override { return target_->OptimizeForLogRead(env_options); } EnvOptions OptimizeForManifestRead( const EnvOptions& env_options) const override { return target_->OptimizeForManifestRead(env_options); } EnvOptions OptimizeForLogWrite(const EnvOptions& env_options, const DBOptions& db_options) const override { return target_->OptimizeForLogWrite(env_options, db_options); } EnvOptions OptimizeForManifestWrite( const EnvOptions& env_options) const override { return target_->OptimizeForManifestWrite(env_options); } EnvOptions OptimizeForCompactionTableWrite( const EnvOptions& env_options, const ImmutableDBOptions& immutable_ops) const override { return target_->OptimizeForCompactionTableWrite(env_options, immutable_ops); } EnvOptions OptimizeForCompactionTableRead( const EnvOptions& env_options, const ImmutableDBOptions& db_options) const override { return target_->OptimizeForCompactionTableRead(env_options, db_options); } Status GetFreeSpace(const std::string& path, uint64_t* diskfree) override { return target_->GetFreeSpace(path, diskfree); } void SanitizeEnvOptions(EnvOptions* env_opts) const override { target_->SanitizeEnvOptions(env_opts); } private: Env* target_; }; class SequentialFileWrapper : public SequentialFile { public: explicit SequentialFileWrapper(SequentialFile* target) : target_(target) {} Status Read(size_t n, Slice* result, char* scratch) override { return target_->Read(n, result, scratch); } Status Skip(uint64_t n) override { return target_->Skip(n); } bool use_direct_io() const override { return target_->use_direct_io(); } size_t GetRequiredBufferAlignment() const override { return target_->GetRequiredBufferAlignment(); } Status InvalidateCache(size_t offset, size_t length) override { return target_->InvalidateCache(offset, length); } Status PositionedRead(uint64_t offset, size_t n, Slice* result, char* scratch) override { return target_->PositionedRead(offset, n, result, scratch); } private: SequentialFile* target_; }; class RandomAccessFileWrapper : public RandomAccessFile { public: explicit RandomAccessFileWrapper(RandomAccessFile* target) : target_(target) {} Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { return target_->Read(offset, n, result, scratch); } Status MultiRead(ReadRequest* reqs, size_t num_reqs) override { return target_->MultiRead(reqs, num_reqs); } Status Prefetch(uint64_t offset, size_t n) override { return target_->Prefetch(offset, n); } size_t GetUniqueId(char* id, size_t max_size) const override { return target_->GetUniqueId(id, max_size); } void Hint(AccessPattern pattern) override { target_->Hint(pattern); } bool use_direct_io() const override { return target_->use_direct_io(); } size_t GetRequiredBufferAlignment() const override { return target_->GetRequiredBufferAlignment(); } Status InvalidateCache(size_t offset, size_t length) override { return target_->InvalidateCache(offset, length); } private: RandomAccessFile* target_; }; class WritableFileWrapper : public WritableFile { public: explicit WritableFileWrapper(WritableFile* t) : target_(t) {} Status Append(const Slice& data) override { return target_->Append(data); } Status PositionedAppend(const Slice& data, uint64_t offset) override { return target_->PositionedAppend(data, offset); } Status Truncate(uint64_t size) override { return target_->Truncate(size); } Status Close() override { return target_->Close(); } Status Flush() override { return target_->Flush(); } Status Sync() override { return target_->Sync(); } Status Fsync() override { return target_->Fsync(); } bool IsSyncThreadSafe() const override { return target_->IsSyncThreadSafe(); } bool use_direct_io() const override { return target_->use_direct_io(); } size_t GetRequiredBufferAlignment() const override { return target_->GetRequiredBufferAlignment(); } void SetIOPriority(Env::IOPriority pri) override { target_->SetIOPriority(pri); } Env::IOPriority GetIOPriority() override { return target_->GetIOPriority(); } void SetWriteLifeTimeHint(Env::WriteLifeTimeHint hint) override { target_->SetWriteLifeTimeHint(hint); } Env::WriteLifeTimeHint GetWriteLifeTimeHint() override { return target_->GetWriteLifeTimeHint(); } uint64_t GetFileSize() override { return target_->GetFileSize(); } void SetPreallocationBlockSize(size_t size) override { target_->SetPreallocationBlockSize(size); } void GetPreallocationStatus(size_t* block_size, size_t* last_allocated_block) override { target_->GetPreallocationStatus(block_size, last_allocated_block); } size_t GetUniqueId(char* id, size_t max_size) const override { return target_->GetUniqueId(id, max_size); } Status InvalidateCache(size_t offset, size_t length) override { return target_->InvalidateCache(offset, length); } Status RangeSync(uint64_t offset, uint64_t nbytes) override { return target_->RangeSync(offset, nbytes); } void PrepareWrite(size_t offset, size_t len) override { target_->PrepareWrite(offset, len); } Status Allocate(uint64_t offset, uint64_t len) override { return target_->Allocate(offset, len); } private: WritableFile* target_; }; class RandomRWFileWrapper : public RandomRWFile { public: explicit RandomRWFileWrapper(RandomRWFile* target) : target_(target) {} bool use_direct_io() const override { return target_->use_direct_io(); } size_t GetRequiredBufferAlignment() const override { return target_->GetRequiredBufferAlignment(); } Status Write(uint64_t offset, const Slice& data) override { return target_->Write(offset, data); } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { return target_->Read(offset, n, result, scratch); } Status Flush() override { return target_->Flush(); } Status Sync() override { return target_->Sync(); } Status Fsync() override { return target_->Fsync(); } Status Close() override { return target_->Close(); } private: RandomRWFile* target_; }; class DirectoryWrapper : public Directory { public: explicit DirectoryWrapper(Directory* target) : target_(target) {} Status Fsync() override { return target_->Fsync(); } size_t GetUniqueId(char* id, size_t max_size) const override { return target_->GetUniqueId(id, max_size); } private: Directory* target_; }; class LoggerWrapper : public Logger { public: explicit LoggerWrapper(Logger* target) : target_(target) {} Status Close() override { return target_->Close(); } void LogHeader(const char* format, va_list ap) override { return target_->LogHeader(format, ap); } void Logv(const char* format, va_list ap) override { return target_->Logv(format, ap); } void Logv(const InfoLogLevel log_level, const char* format, va_list ap) override { return target_->Logv(log_level, format, ap); } size_t GetLogFileSize() const override { return target_->GetLogFileSize(); } void Flush() override { return target_->Flush(); } InfoLogLevel GetInfoLogLevel() const override { return target_->GetInfoLogLevel(); } void SetInfoLogLevel(const InfoLogLevel log_level) override { return target_->SetInfoLogLevel(log_level); } private: Logger* target_; }; // Returns a new environment that stores its data in memory and delegates // all non-file-storage tasks to base_env. The caller must delete the result // when it is no longer needed. // *base_env must remain live while the result is in use. Env* NewMemEnv(Env* base_env); // Returns a new environment that is used for HDFS environment. // This is a factory method for HdfsEnv declared in hdfs/env_hdfs.h Status NewHdfsEnv(Env** hdfs_env, const std::string& fsname); // Returns a new environment that measures function call times for filesystem // operations, reporting results to variables in PerfContext. // This is a factory method for TimedEnv defined in utilities/env_timed.cc. Env* NewTimedEnv(Env* base_env); // Returns an instance of logger that can be used for storing informational // messages. // This is a factory method for EnvLogger declared in logging/env_logging.h Status NewEnvLogger(const std::string& fname, Env* env, std::shared_ptr* result); std::unique_ptr NewCompositeEnv(std::shared_ptr fs); } // namespace ROCKSDB_NAMESPACE