// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "include/db.h" #include "db/db_impl.h" #include "db/filename.h" #include "db/version_set.h" #include "db/write_batch_internal.h" #include "include/env.h" #include "include/table.h" #include "util/logging.h" #include "util/testharness.h" #include "util/testutil.h" namespace leveldb { static std::string RandomString(Random* rnd, int len) { std::string r; test::RandomString(rnd, len, &r); return r; } class DBTest { public: std::string dbname_; Env* env_; DB* db_; Options last_options_; DBTest() : env_(Env::Default()) { dbname_ = test::TmpDir() + "/db_test"; DestroyDB(dbname_, Options()); db_ = NULL; Reopen(); } ~DBTest() { delete db_; DestroyDB(dbname_, Options()); } DBImpl* dbfull() { return reinterpret_cast(db_); } void Reopen(Options* options = NULL) { ASSERT_OK(TryReopen(options)); } void DestroyAndReopen(Options* options = NULL) { delete db_; db_ = NULL; DestroyDB(dbname_, Options()); ASSERT_OK(TryReopen(options)); } Status TryReopen(Options* options) { delete db_; db_ = NULL; Options opts; if (options != NULL) { opts = *options; } else { opts.create_if_missing = true; } last_options_ = opts; return DB::Open(opts, dbname_, &db_); } Status Put(const std::string& k, const std::string& v) { WriteOptions options; options.sync = false; WriteBatch batch; batch.Put(k, v); return db_->Write(options, &batch); } Status Delete(const std::string& k) { WriteOptions options; options.sync = false; WriteBatch batch; batch.Delete(k); return db_->Write(options, &batch); } std::string Get(const std::string& k, const Snapshot* snapshot = NULL) { ReadOptions options; options.snapshot = snapshot; std::string result; Status s = db_->Get(options, k, &result); if (s.IsNotFound()) { result = "NOT_FOUND"; } else if (!s.ok()) { result = s.ToString(); } return result; } std::string AllEntriesFor(const Slice& user_key) { Iterator* iter = dbfull()->TEST_NewInternalIterator(); InternalKey target(user_key, kMaxSequenceNumber, kTypeValue); iter->Seek(target.Encode()); std::string result; if (!iter->status().ok()) { result = iter->status().ToString(); } else { result = "[ "; bool first = true; while (iter->Valid()) { ParsedInternalKey ikey; if (!ParseInternalKey(iter->key(), &ikey)) { result += "CORRUPTED"; } else { if (last_options_.comparator->Compare( ikey.user_key, user_key) != 0) { break; } if (!first) { result += ", "; } first = false; switch (ikey.type) { case kTypeValue: result += iter->value().ToString(); break; case kTypeLargeValueRef: result += "LARGEVALUE(" + EscapeString(iter->value()) + ")"; break; case kTypeDeletion: result += "DEL"; break; } } iter->Next(); } if (!first) { result += " "; } result += "]"; } delete iter; return result; } int NumTableFilesAtLevel(int level) { uint64_t val; ASSERT_TRUE( db_->GetProperty("leveldb.num-files-at-level" + NumberToString(level), &val)); return val; } uint64_t Size(const Slice& start, const Slice& limit) { Range r(start, limit); uint64_t size; db_->GetApproximateSizes(&r, 1, &size); return size; } std::set LargeValueFiles() const { // Return the set of large value files that exist in the database std::vector filenames; env_->GetChildren(dbname_, &filenames); // Ignoring errors on purpose uint64_t number; LargeValueRef large_ref; FileType type; std::set live; for (int i = 0; i < filenames.size(); i++) { if (ParseFileName(filenames[i], &number, &large_ref, &type) && type == kLargeValueFile) { fprintf(stderr, " live: %s\n", LargeValueRefToFilenameString(large_ref).c_str()); live.insert(large_ref); } } fprintf(stderr, "Found %d live large value files\n", (int)live.size()); return live; } void Compact(const Slice& start, const Slice& limit) { dbfull()->TEST_CompactMemTable(); int max_level_with_files = 1; for (int level = 1; level < config::kNumLevels; level++) { uint64_t v; char name[100]; snprintf(name, sizeof(name), "leveldb.num-files-at-level%d", level); if (dbfull()->GetProperty(name, &v) && v > 0) { max_level_with_files = level; } } for (int level = 0; level < max_level_with_files; level++) { dbfull()->TEST_CompactRange(level, "", "~"); } } void DumpFileCounts(const char* label) { fprintf(stderr, "---\n%s:\n", label); fprintf(stderr, "maxoverlap: %lld\n", static_cast( dbfull()->TEST_MaxNextLevelOverlappingBytes())); for (int level = 0; level < config::kNumLevels; level++) { int num = NumTableFilesAtLevel(level); if (num > 0) { fprintf(stderr, " level %3d : %d files\n", level, num); } } } }; TEST(DBTest, Empty) { ASSERT_TRUE(db_ != NULL); ASSERT_EQ("NOT_FOUND", Get("foo")); } TEST(DBTest, ReadWrite) { ASSERT_OK(Put("foo", "v1")); ASSERT_EQ("v1", Get("foo")); ASSERT_OK(Put("bar", "v2")); ASSERT_OK(Put("foo", "v3")); ASSERT_EQ("v3", Get("foo")); ASSERT_EQ("v2", Get("bar")); } TEST(DBTest, PutDeleteGet) { ASSERT_OK(db_->Put(WriteOptions(), "foo", "v1")); ASSERT_EQ("v1", Get("foo")); ASSERT_OK(db_->Put(WriteOptions(), "foo", "v2")); ASSERT_EQ("v2", Get("foo")); ASSERT_OK(db_->Delete(WriteOptions(), "foo")); ASSERT_EQ("NOT_FOUND", Get("foo")); } TEST(DBTest, Recover) { ASSERT_OK(Put("foo", "v1")); ASSERT_OK(Put("baz", "v5")); Reopen(); ASSERT_EQ("v1", Get("foo")); ASSERT_EQ("v1", Get("foo")); ASSERT_EQ("v5", Get("baz")); ASSERT_OK(Put("bar", "v2")); ASSERT_OK(Put("foo", "v3")); Reopen(); ASSERT_EQ("v3", Get("foo")); ASSERT_OK(Put("foo", "v4")); ASSERT_EQ("v4", Get("foo")); ASSERT_EQ("v2", Get("bar")); ASSERT_EQ("v5", Get("baz")); } TEST(DBTest, RecoveryWithEmptyLog) { ASSERT_OK(Put("foo", "v1")); ASSERT_OK(Put("foo", "v2")); Reopen(); Reopen(); ASSERT_OK(Put("foo", "v3")); Reopen(); ASSERT_EQ("v3", Get("foo")); } static std::string Key(int i) { char buf[100]; snprintf(buf, sizeof(buf), "key%06d", i); return std::string(buf); } TEST(DBTest, MinorCompactionsHappen) { Options options; options.write_buffer_size = 10000; Reopen(&options); const int N = 100; int starting_num_tables = NumTableFilesAtLevel(0); for (int i = 0; i < N; i++) { ASSERT_OK(Put(Key(i), Key(i) + std::string(1000, 'v'))); } int ending_num_tables = NumTableFilesAtLevel(0); ASSERT_GT(ending_num_tables, starting_num_tables); for (int i = 0; i < N; i++) { ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(Key(i))); } Reopen(); for (int i = 0; i < N; i++) { ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(Key(i))); } } TEST(DBTest, RecoverWithLargeLog) { { Options options; options.large_value_threshold = 1048576; Reopen(&options); ASSERT_OK(Put("big1", std::string(200000, '1'))); ASSERT_OK(Put("big2", std::string(200000, '2'))); ASSERT_OK(Put("small3", std::string(10, '3'))); ASSERT_OK(Put("small4", std::string(10, '4'))); ASSERT_EQ(NumTableFilesAtLevel(0), 0); } // Make sure that if we re-open with a small write buffer size that // we flush table files in the middle of a large log file. Options options; options.write_buffer_size = 100000; options.large_value_threshold = 1048576; Reopen(&options); ASSERT_EQ(NumTableFilesAtLevel(0), 3); ASSERT_EQ(std::string(200000, '1'), Get("big1")); ASSERT_EQ(std::string(200000, '2'), Get("big2")); ASSERT_EQ(std::string(10, '3'), Get("small3")); ASSERT_EQ(std::string(10, '4'), Get("small4")); ASSERT_GT(NumTableFilesAtLevel(0), 1); } TEST(DBTest, CompactionsGenerateMultipleFiles) { Options options; options.write_buffer_size = 100000000; // Large write buffer options.large_value_threshold = 1048576; Reopen(&options); Random rnd(301); // Write 8MB (80 values, each 100K) ASSERT_EQ(NumTableFilesAtLevel(0), 0); std::vector values; for (int i = 0; i < 80; i++) { values.push_back(RandomString(&rnd, 100000)); ASSERT_OK(Put(Key(i), values[i])); } // Reopening moves updates to level-0 Reopen(&options); dbfull()->TEST_CompactRange(0, "", Key(100000)); ASSERT_EQ(NumTableFilesAtLevel(0), 0); ASSERT_GT(NumTableFilesAtLevel(1), 1); for (int i = 0; i < 80; i++) { ASSERT_EQ(Get(Key(i)), values[i]); } } TEST(DBTest, SparseMerge) { Options options; options.compression = kNoCompression; Reopen(&options); // Suppose there is: // small amount of data with prefix A // large amount of data with prefix B // small amount of data with prefix C // and that recent updates have made small changes to all three prefixes. // Check that we do not do a compaction that merges all of B in one shot. const std::string value(1000, 'x'); Put("A", "va"); // Write approximately 100MB of "B" values for (int i = 0; i < 100000; i++) { char key[100]; snprintf(key, sizeof(key), "B%010d", i); Put(key, value); } Put("C", "vc"); Compact("", "z"); // Make sparse update Put("A", "va2"); Put("B100", "bvalue2"); Put("C", "vc2"); dbfull()->TEST_CompactMemTable(); // Compactions should not cause us to create a situation where // a file overlaps too much data at the next level. ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576); dbfull()->TEST_CompactRange(0, "", "z"); ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576); dbfull()->TEST_CompactRange(1, "", "z"); ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576); } static bool Between(uint64_t val, uint64_t low, uint64_t high) { bool result = (val >= low) && (val <= high); if (!result) { fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n", (unsigned long long)(val), (unsigned long long)(low), (unsigned long long)(high)); } return result; } TEST(DBTest, ApproximateSizes) { for (int test = 0; test < 2; test++) { // test==0: default large_value_threshold // test==1: 1 MB large_value_threshold Options options; options.large_value_threshold = (test == 0) ? 65536 : 1048576; options.write_buffer_size = 100000000; // Large write buffer options.compression = kNoCompression; DestroyAndReopen(); ASSERT_TRUE(Between(Size("", "xyz"), 0, 0)); Reopen(&options); ASSERT_TRUE(Between(Size("", "xyz"), 0, 0)); // Write 8MB (80 values, each 100K) ASSERT_EQ(NumTableFilesAtLevel(0), 0); const int N = 80; Random rnd(301); for (int i = 0; i < N; i++) { ASSERT_OK(Put(Key(i), RandomString(&rnd, 100000))); } if (test == 1) { // 0 because GetApproximateSizes() does not account for memtable space for // non-large values ASSERT_TRUE(Between(Size("", Key(50)), 0, 0)); } else { ASSERT_TRUE(Between(Size("", Key(50)), 100000*50, 100000*50 + 10000)); ASSERT_TRUE(Between(Size(Key(20), Key(30)), 100000*10, 100000*10 + 10000)); } // Check sizes across recovery by reopening a few times for (int run = 0; run < 3; run++) { Reopen(&options); for (int compact_start = 0; compact_start < N; compact_start += 10) { for (int i = 0; i < N; i += 10) { ASSERT_TRUE(Between(Size("", Key(i)), 100000*i, 100000*i + 10000)); ASSERT_TRUE(Between(Size("", Key(i)+".suffix"), 100000 * (i+1), 100000 * (i+1) + 10000)); ASSERT_TRUE(Between(Size(Key(i), Key(i+10)), 100000 * 10, 100000 * 10 + 10000)); } ASSERT_TRUE(Between(Size("", Key(50)), 5000000, 5010000)); ASSERT_TRUE(Between(Size("", Key(50)+".suffix"), 5100000, 5110000)); dbfull()->TEST_CompactRange(0, Key(compact_start), Key(compact_start + 9)); } ASSERT_EQ(NumTableFilesAtLevel(0), 0); ASSERT_GT(NumTableFilesAtLevel(1), 0); } } } TEST(DBTest, ApproximateSizes_MixOfSmallAndLarge) { Options options; options.large_value_threshold = 65536; options.compression = kNoCompression; Reopen(); Random rnd(301); std::string big1 = RandomString(&rnd, 100000); ASSERT_OK(Put(Key(0), RandomString(&rnd, 10000))); ASSERT_OK(Put(Key(1), RandomString(&rnd, 10000))); ASSERT_OK(Put(Key(2), big1)); ASSERT_OK(Put(Key(3), RandomString(&rnd, 10000))); ASSERT_OK(Put(Key(4), big1)); ASSERT_OK(Put(Key(5), RandomString(&rnd, 10000))); ASSERT_OK(Put(Key(6), RandomString(&rnd, 300000))); ASSERT_OK(Put(Key(7), RandomString(&rnd, 10000))); // Check sizes across recovery by reopening a few times for (int run = 0; run < 3; run++) { Reopen(&options); ASSERT_TRUE(Between(Size("", Key(0)), 0, 0)); ASSERT_TRUE(Between(Size("", Key(1)), 10000, 11000)); ASSERT_TRUE(Between(Size("", Key(2)), 20000, 21000)); ASSERT_TRUE(Between(Size("", Key(3)), 120000, 121000)); ASSERT_TRUE(Between(Size("", Key(4)), 130000, 131000)); ASSERT_TRUE(Between(Size("", Key(5)), 230000, 231000)); ASSERT_TRUE(Between(Size("", Key(6)), 240000, 241000)); ASSERT_TRUE(Between(Size("", Key(7)), 540000, 541000)); ASSERT_TRUE(Between(Size("", Key(8)), 550000, 551000)); ASSERT_TRUE(Between(Size(Key(3), Key(5)), 110000, 111000)); dbfull()->TEST_CompactRange(0, Key(0), Key(100)); } } TEST(DBTest, IteratorPinsRef) { Put("foo", "hello"); // Get iterator that will yield the current contents of the DB. Iterator* iter = db_->NewIterator(ReadOptions()); // Write to force compactions Put("foo", "newvalue1"); for (int i = 0; i < 100; i++) { ASSERT_OK(Put(Key(i), Key(i) + std::string(100000, 'v'))); // 100K values } Put("foo", "newvalue2"); iter->SeekToFirst(); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("foo", iter->key().ToString()); ASSERT_EQ("hello", iter->value().ToString()); iter->Next(); ASSERT_TRUE(!iter->Valid()); delete iter; } TEST(DBTest, Snapshot) { Put("foo", "v1"); const Snapshot* s1 = db_->GetSnapshot(); Put("foo", "v2"); const Snapshot* s2 = db_->GetSnapshot(); Put("foo", "v3"); const Snapshot* s3 = db_->GetSnapshot(); Put("foo", "v4"); ASSERT_EQ("v1", Get("foo", s1)); ASSERT_EQ("v2", Get("foo", s2)); ASSERT_EQ("v3", Get("foo", s3)); ASSERT_EQ("v4", Get("foo")); db_->ReleaseSnapshot(s3); ASSERT_EQ("v1", Get("foo", s1)); ASSERT_EQ("v2", Get("foo", s2)); ASSERT_EQ("v4", Get("foo")); db_->ReleaseSnapshot(s1); ASSERT_EQ("v2", Get("foo", s2)); ASSERT_EQ("v4", Get("foo")); db_->ReleaseSnapshot(s2); ASSERT_EQ("v4", Get("foo")); } TEST(DBTest, HiddenValuesAreRemoved) { Random rnd(301); std::string big = RandomString(&rnd, 50000); Put("foo", big); Put("pastfoo", "v"); const Snapshot* snapshot = db_->GetSnapshot(); Put("foo", "tiny"); Put("pastfoo2", "v2"); // Advance sequence number one more ASSERT_OK(dbfull()->TEST_CompactMemTable()); ASSERT_GT(NumTableFilesAtLevel(0), 0); ASSERT_EQ(big, Get("foo", snapshot)); ASSERT_TRUE(Between(Size("", "pastfoo"), 50000, 60000)); db_->ReleaseSnapshot(snapshot); ASSERT_EQ(AllEntriesFor("foo"), "[ tiny, " + big + " ]"); dbfull()->TEST_CompactRange(0, "", "x"); ASSERT_EQ(AllEntriesFor("foo"), "[ tiny ]"); ASSERT_EQ(NumTableFilesAtLevel(0), 0); ASSERT_GE(NumTableFilesAtLevel(1), 1); dbfull()->TEST_CompactRange(1, "", "x"); ASSERT_EQ(AllEntriesFor("foo"), "[ tiny ]"); ASSERT_TRUE(Between(Size("", "pastfoo"), 0, 1000)); } TEST(DBTest, DeletionMarkers1) { Put("foo", "v1"); ASSERT_OK(dbfull()->TEST_CompactMemTable()); dbfull()->TEST_CompactRange(0, "", "z"); dbfull()->TEST_CompactRange(1, "", "z"); ASSERT_EQ(NumTableFilesAtLevel(2), 1); // foo => v1 is now in level 2 file Delete("foo"); Put("foo", "v2"); ASSERT_EQ(AllEntriesFor("foo"), "[ v2, DEL, v1 ]"); ASSERT_OK(dbfull()->TEST_CompactMemTable()); ASSERT_EQ(AllEntriesFor("foo"), "[ v2, DEL, v1 ]"); dbfull()->TEST_CompactRange(0, "", "z"); // DEL eliminated, but v1 remains because we aren't compacting that level // (DEL can be eliminated because v2 hides v1). ASSERT_EQ(AllEntriesFor("foo"), "[ v2, v1 ]"); dbfull()->TEST_CompactRange(1, "", "z"); // Merging L1 w/ L2, so we are the base level for "foo", so DEL is removed. // (as is v1). ASSERT_EQ(AllEntriesFor("foo"), "[ v2 ]"); } TEST(DBTest, DeletionMarkers2) { Put("foo", "v1"); ASSERT_OK(dbfull()->TEST_CompactMemTable()); dbfull()->TEST_CompactRange(0, "", "z"); dbfull()->TEST_CompactRange(1, "", "z"); ASSERT_EQ(NumTableFilesAtLevel(2), 1); // foo => v1 is now in level 2 file Delete("foo"); ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]"); ASSERT_OK(dbfull()->TEST_CompactMemTable()); ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]"); dbfull()->TEST_CompactRange(0, "", "z"); // DEL kept: L2 file overlaps ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]"); dbfull()->TEST_CompactRange(1, "", "z"); // Merging L1 w/ L2, so we are the base level for "foo", so DEL is removed. // (as is v1). ASSERT_EQ(AllEntriesFor("foo"), "[ ]"); } TEST(DBTest, ComparatorCheck) { class NewComparator : public Comparator { public: virtual const char* Name() const { return "leveldb.NewComparator"; } virtual int Compare(const Slice& a, const Slice& b) const { return BytewiseComparator()->Compare(a, b); } virtual void FindShortestSeparator(std::string* s, const Slice& l) const { BytewiseComparator()->FindShortestSeparator(s, l); } virtual void FindShortSuccessor(std::string* key) const { BytewiseComparator()->FindShortSuccessor(key); } }; NewComparator cmp; Options new_options; new_options.comparator = &cmp; Status s = TryReopen(&new_options); ASSERT_TRUE(!s.ok()); ASSERT_TRUE(s.ToString().find("comparator") != std::string::npos) << s.ToString(); } static bool LargeValuesOK(DBTest* db, const std::set& expected) { std::set actual = db->LargeValueFiles(); if (actual.size() != expected.size()) { fprintf(stderr, "Sets differ in size: %d vs %d\n", (int)actual.size(), (int)expected.size()); return false; } for (std::set::const_iterator it = expected.begin(); it != expected.end(); ++it) { if (actual.count(*it) != 1) { fprintf(stderr, " key '%s' not found in actual set\n", LargeValueRefToFilenameString(*it).c_str()); return false; } } return true; } TEST(DBTest, LargeValues1) { Options options; options.large_value_threshold = 10000; Reopen(&options); Random rnd(301); std::string big1; test::CompressibleString(&rnd, 1.0, 100000, &big1); // Not compressible std::set expected; ASSERT_OK(Put("big1", big1)); expected.insert(LargeValueRef::Make(big1, kNoCompression)); ASSERT_TRUE(LargeValuesOK(this, expected)); ASSERT_OK(Delete("big1")); ASSERT_TRUE(LargeValuesOK(this, expected)); ASSERT_OK(dbfull()->TEST_CompactMemTable()); // No handling of deletion markers on memtable compactions, so big1 remains ASSERT_TRUE(LargeValuesOK(this, expected)); dbfull()->TEST_CompactRange(0, "", "z"); expected.erase(LargeValueRef::Make(big1, kNoCompression)); ASSERT_TRUE(LargeValuesOK(this, expected)); } static bool SnappyCompressionSupported() { std::string out; Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"; return port::Snappy_Compress(in.data(), in.size(), &out); } TEST(DBTest, LargeValues2) { Options options; options.large_value_threshold = 10000; Reopen(&options); Random rnd(301); std::string big1, big2; test::CompressibleString(&rnd, 1.0, 20000, &big1); // Not compressible test::CompressibleString(&rnd, 0.6, 40000, &big2); // Compressible std::set expected; ASSERT_TRUE(LargeValuesOK(this, expected)); ASSERT_OK(Put("big1", big1)); expected.insert(LargeValueRef::Make(big1, kNoCompression)); ASSERT_EQ(big1, Get("big1")); ASSERT_TRUE(LargeValuesOK(this, expected)); ASSERT_OK(Put("big2", big2)); ASSERT_EQ(big2, Get("big2")); if (SnappyCompressionSupported()) { expected.insert(LargeValueRef::Make(big2, kSnappyCompression)); } else { expected.insert(LargeValueRef::Make(big2, kNoCompression)); } ASSERT_TRUE(LargeValuesOK(this, expected)); ASSERT_OK(dbfull()->TEST_CompactMemTable()); ASSERT_TRUE(LargeValuesOK(this, expected)); dbfull()->TEST_CompactRange(0, "", "z"); ASSERT_TRUE(LargeValuesOK(this, expected)); ASSERT_OK(Put("big2", big2)); ASSERT_OK(Put("big2_b", big2)); ASSERT_EQ(big1, Get("big1")); ASSERT_EQ(big2, Get("big2")); ASSERT_EQ(big2, Get("big2_b")); ASSERT_TRUE(LargeValuesOK(this, expected)); ASSERT_OK(Delete("big1")); ASSERT_EQ("NOT_FOUND", Get("big1")); ASSERT_TRUE(LargeValuesOK(this, expected)); ASSERT_OK(dbfull()->TEST_CompactMemTable()); ASSERT_TRUE(LargeValuesOK(this, expected)); dbfull()->TEST_CompactRange(0, "", "z"); expected.erase(LargeValueRef::Make(big1, kNoCompression)); ASSERT_TRUE(LargeValuesOK(this, expected)); dbfull()->TEST_CompactRange(1, "", "z"); ASSERT_OK(Delete("big2")); ASSERT_EQ("NOT_FOUND", Get("big2")); ASSERT_EQ(big2, Get("big2_b")); ASSERT_OK(dbfull()->TEST_CompactMemTable()); ASSERT_TRUE(LargeValuesOK(this, expected)); dbfull()->TEST_CompactRange(0, "", "z"); ASSERT_TRUE(LargeValuesOK(this, expected)); // Make sure the large value refs survive a reload and compactions after // the reload. Reopen(); ASSERT_TRUE(LargeValuesOK(this, expected)); ASSERT_OK(Put("foo", "bar")); ASSERT_OK(dbfull()->TEST_CompactMemTable()); dbfull()->TEST_CompactRange(0, "", "z"); ASSERT_TRUE(LargeValuesOK(this, expected)); } TEST(DBTest, LargeValues3) { // Make sure we don't compress values if Options options; options.large_value_threshold = 10000; options.compression = kNoCompression; Reopen(&options); Random rnd(301); std::string big1 = std::string(100000, 'x'); // Very compressible std::set expected; ASSERT_OK(Put("big1", big1)); ASSERT_EQ(big1, Get("big1")); expected.insert(LargeValueRef::Make(big1, kNoCompression)); ASSERT_TRUE(LargeValuesOK(this, expected)); } TEST(DBTest, DBOpen_Options) { std::string dbname = test::TmpDir() + "/db_options_test"; DestroyDB(dbname, Options()); // Does not exist, and create_if_missing == false: error DB* db = NULL; Options opts; opts.create_if_missing = false; Status s = DB::Open(opts, dbname, &db); ASSERT_TRUE(strstr(s.ToString().c_str(), "does not exist") != NULL); ASSERT_TRUE(db == NULL); // Does not exist, and create_if_missing == true: OK opts.create_if_missing = true; s = DB::Open(opts, dbname, &db); ASSERT_OK(s); ASSERT_TRUE(db != NULL); delete db; db = NULL; // Does exist, and error_if_exists == true: error opts.create_if_missing = false; opts.error_if_exists = true; s = DB::Open(opts, dbname, &db); ASSERT_TRUE(strstr(s.ToString().c_str(), "exists") != NULL); ASSERT_TRUE(db == NULL); // Does exist, and error_if_exists == false: OK opts.create_if_missing = true; opts.error_if_exists = false; s = DB::Open(opts, dbname, &db); ASSERT_OK(s); ASSERT_TRUE(db != NULL); delete db; db = NULL; } class ModelDB: public DB { public: explicit ModelDB(const Options& options): options_(options) { } ~ModelDB() { } virtual Status Put(const WriteOptions& o, const Slice& k, const Slice& v) { return DB::Put(o, k, v); } virtual Status Delete(const WriteOptions& o, const Slice& key) { return DB::Delete(o, key); } virtual Status Get(const ReadOptions& options, const Slice& key, std::string* value) { assert(false); // Not implemented return Status::NotFound(key); } virtual Iterator* NewIterator(const ReadOptions& options) { if (options.snapshot == NULL) { KVMap* saved = new KVMap; *saved = map_; return new ModelIter(saved, true); } else { const KVMap* snapshot_state = reinterpret_cast(options.snapshot->number_); return new ModelIter(snapshot_state, false); } } virtual const Snapshot* GetSnapshot() { KVMap* saved = new KVMap; *saved = map_; return snapshots_.New( reinterpret_cast(saved)); } virtual void ReleaseSnapshot(const Snapshot* snapshot) { const KVMap* saved = reinterpret_cast(snapshot->number_); delete saved; snapshots_.Delete(snapshot); } virtual Status Write(const WriteOptions& options, WriteBatch* batch) { assert(options.post_write_snapshot == NULL); // Not supported for (WriteBatchInternal::Iterator it(*batch); !it.Done(); it.Next()) { switch (it.op()) { case kTypeValue: map_[it.key().ToString()] = it.value().ToString(); break; case kTypeLargeValueRef: assert(false); // Should not occur break; case kTypeDeletion: map_.erase(it.key().ToString()); break; } } return Status::OK(); } virtual bool GetProperty(const Slice& property, uint64_t* value) { return false; } virtual void GetApproximateSizes(const Range* r, int n, uint64_t* sizes) { for (int i = 0; i < n; i++) { sizes[i] = 0; } } private: typedef std::map KVMap; class ModelIter: public Iterator { public: ModelIter(const KVMap* map, bool owned) : map_(map), owned_(owned), iter_(map_->end()) { } ~ModelIter() { if (owned_) delete map_; } virtual bool Valid() const { return iter_ != map_->end(); } virtual void SeekToFirst() { iter_ = map_->begin(); } virtual void SeekToLast() { if (map_->empty()) { iter_ = map_->end(); } else { iter_ = map_->find(map_->rbegin()->first); } } virtual void Seek(const Slice& k) { iter_ = map_->lower_bound(k.ToString()); } virtual void Next() { ++iter_; } virtual void Prev() { --iter_; } virtual Slice key() const { return iter_->first; } virtual Slice value() const { return iter_->second; } virtual Status status() const { return Status::OK(); } private: const KVMap* const map_; const bool owned_; // Do we own map_ KVMap::const_iterator iter_; }; const Options options_; KVMap map_; SnapshotList snapshots_; }; static std::string RandomKey(Random* rnd) { int len = (rnd->OneIn(3) ? 1 // Short sometimes to encourage collisions : (rnd->OneIn(100) ? rnd->Skewed(10) : rnd->Uniform(10))); return test::RandomKey(rnd, len); } static bool CompareIterators(int step, DB* model, DB* db, const Snapshot* model_snap, const Snapshot* db_snap) { ReadOptions options; options.snapshot = model_snap; Iterator* miter = model->NewIterator(options); options.snapshot = db_snap; Iterator* dbiter = db->NewIterator(options); bool ok = true; int count = 0; for (miter->SeekToFirst(), dbiter->SeekToFirst(); ok && miter->Valid() && dbiter->Valid(); miter->Next(), dbiter->Next()) { count++; if (miter->key().compare(dbiter->key()) != 0) { fprintf(stderr, "step %d: Key mismatch: '%s' vs. '%s'\n", step, EscapeString(miter->key()).c_str(), EscapeString(dbiter->key()).c_str()); ok = false; break; } if (miter->value().compare(dbiter->value()) != 0) { fprintf(stderr, "step %d: Value mismatch for key '%s': '%s' vs. '%s'\n", step, EscapeString(miter->key()).c_str(), EscapeString(miter->value()).c_str(), EscapeString(miter->value()).c_str()); ok = false; } } if (ok) { if (miter->Valid() != dbiter->Valid()) { fprintf(stderr, "step %d: Mismatch at end of iterators: %d vs. %d\n", step, miter->Valid(), dbiter->Valid()); ok = false; } } fprintf(stderr, "%d entries compared: ok=%d\n", count, ok); delete miter; delete dbiter; return ok; } TEST(DBTest, Randomized) { Random rnd(test::RandomSeed()); ModelDB model(last_options_); const int N = 10000; const Snapshot* model_snap = NULL; const Snapshot* db_snap = NULL; std::string k, v; for (int step = 0; step < N; step++) { if (step % 100 == 0) { fprintf(stderr, "Step %d of %d\n", step, N); } int p = rnd.Uniform(100); if (p < 45) { // Put k = RandomKey(&rnd); v = RandomString(&rnd, rnd.OneIn(20) ? 100 + rnd.Uniform(100) : rnd.Uniform(8)); ASSERT_OK(model.Put(WriteOptions(), k, v)); ASSERT_OK(db_->Put(WriteOptions(), k, v)); } else if (p < 90) { // Delete k = RandomKey(&rnd); ASSERT_OK(model.Delete(WriteOptions(), k)); ASSERT_OK(db_->Delete(WriteOptions(), k)); } else { // Multi-element batch WriteBatch b; const int num = rnd.Uniform(8); for (int i = 0; i < num; i++) { if (i == 0 || !rnd.OneIn(10)) { k = RandomKey(&rnd); } else { // Periodically re-use the same key from the previous iter, so // we have multiple entries in the write batch for the same key } if (rnd.OneIn(2)) { v = RandomString(&rnd, rnd.Uniform(10)); b.Put(k, v); } else { b.Delete(k); } } ASSERT_OK(model.Write(WriteOptions(), &b)); ASSERT_OK(db_->Write(WriteOptions(), &b)); } if ((step % 100) == 0) { ASSERT_TRUE(CompareIterators(step, &model, db_, NULL, NULL)); ASSERT_TRUE(CompareIterators(step, &model, db_, model_snap, db_snap)); // Save a snapshot from each DB this time that we'll use next // time we compare things, to make sure the current state is // preserved with the snapshot if (model_snap != NULL) model.ReleaseSnapshot(model_snap); if (db_snap != NULL) db_->ReleaseSnapshot(db_snap); Reopen(); ASSERT_TRUE(CompareIterators(step, &model, db_, NULL, NULL)); model_snap = model.GetSnapshot(); db_snap = db_->GetSnapshot(); } } if (model_snap != NULL) model.ReleaseSnapshot(model_snap); if (db_snap != NULL) db_->ReleaseSnapshot(db_snap); } } int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }