// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "cache/clock_cache.h" #include #include #include #include #include "monitoring/perf_context_imp.h" #include "monitoring/statistics.h" #include "port/lang.h" #include "util/distributed_mutex.h" #include "util/hash.h" #include "util/math.h" #include "util/random.h" namespace ROCKSDB_NAMESPACE { namespace clock_cache { ClockHandleTable::ClockHandleTable(int hash_bits) : length_bits_(hash_bits), length_bits_mask_((uint32_t{1} << length_bits_) - 1), occupancy_(0), occupancy_limit_(static_cast((uint32_t{1} << length_bits_) * kStrictLoadFactor)), array_(new ClockHandle[size_t{1} << length_bits_]) { assert(hash_bits <= 32); } ClockHandleTable::~ClockHandleTable() { ApplyToEntriesRange([](ClockHandle* h) { h->FreeData(); }, 0, GetTableSize(), true); } ClockHandle* ClockHandleTable::Lookup(const Slice& key, uint32_t hash) { uint32_t probe = 0; int slot = FindElement(key, hash, probe); return (slot == -1) ? nullptr : &array_[slot]; } ClockHandle* ClockHandleTable::Insert(ClockHandle* h, ClockHandle** old) { uint32_t probe = 0; int slot = FindElementOrAvailableSlot(h->key(), h->hash, probe); *old = nullptr; if (slot == -1) { // The key is not already present, and there's no available slot to place // the new copy. return nullptr; } if (!array_[slot].IsElement()) { // The slot is empty or is a tombstone. ClockHandle* new_entry = &array_[slot]; new_entry->InternalToExclusiveRef(); Assign(new_entry, h); if (new_entry->displacements == 0) { // The slot was empty. return new_entry; } // It used to be a tombstone, so there may already be a copy of the // key in the table. slot = FindElement(h->key(), h->hash, probe); if (slot == -1) { // Nope, no existing copy of the key. return new_entry; } ClockHandle* old_entry = &array_[slot]; old_entry->ReleaseInternalRef(); *old = old_entry; return new_entry; } else { // There is an existing copy of the key. ClockHandle* old_entry = &array_[slot]; old_entry->ReleaseInternalRef(); *old = old_entry; // Find an available slot for the new element. old_entry->displacements++; slot = FindAvailableSlot(h->key(), probe); if (slot == -1) { // No available slots. return nullptr; } ClockHandle* new_entry = &array_[slot]; new_entry->InternalToExclusiveRef(); Assign(new_entry, h); return new_entry; } } void ClockHandleTable::Remove(ClockHandle* h) { assert(!h->IsInClock()); // Already off clock. uint32_t probe = 0; FindSlot( h->key(), [&](ClockHandle* e) { return e == h; }, [&](ClockHandle* /*e*/) { return false; }, [&](ClockHandle* e) { e->displacements--; }, probe); h->SetWillBeDeleted(false); h->SetIsElement(false); occupancy_--; } void ClockHandleTable::Assign(ClockHandle* dst, ClockHandle* src) { // DON'T touch displacements and refs. dst->value = src->value; dst->deleter = src->deleter; dst->hash = src->hash; dst->total_charge = src->total_charge; dst->key_data = src->key_data; dst->flags.store(0); dst->SetIsElement(true); dst->SetClockPriority(ClockHandle::ClockPriority::NONE); dst->SetCachePriority(src->GetCachePriority()); occupancy_++; } int ClockHandleTable::FindElement(const Slice& key, uint32_t hash, uint32_t& probe) { return FindSlot( key, [&](ClockHandle* h) { if (h->TryInternalRef()) { if (h->Matches(key, hash)) { return true; } h->ReleaseInternalRef(); } return false; }, [&](ClockHandle* h) { return h->displacements == 0; }, [&](ClockHandle* /*h*/) {}, probe); } int ClockHandleTable::FindAvailableSlot(const Slice& key, uint32_t& probe) { int slot = FindSlot( key, [&](ClockHandle* h) { if (h->TryInternalRef()) { if (!h->IsElement()) { return true; } h->ReleaseInternalRef(); } return false; }, [&](ClockHandle* /*h*/) { return false; }, [&](ClockHandle* h) { h->displacements++; }, probe); if (slot == -1) { Rollback(key, probe); } return slot; } int ClockHandleTable::FindElementOrAvailableSlot(const Slice& key, uint32_t hash, uint32_t& probe) { int slot = FindSlot( key, [&](ClockHandle* h) { if (h->TryInternalRef()) { if (!h->IsElement() || h->Matches(key, hash)) { return true; } h->ReleaseInternalRef(); } return false; }, [&](ClockHandle* /*h*/) { return false; }, [&](ClockHandle* h) { h->displacements++; }, probe); if (slot == -1) { Rollback(key, probe); } return slot; } int ClockHandleTable::FindSlot(const Slice& key, std::function match, std::function abort, std::function update, uint32_t& probe) { // We use double-hashing probing. Every probe in the sequence is a // pseudorandom integer, computed as a linear function of two random hashes, // which we call base and increment. Specifically, the i-th probe is base + i // * increment modulo the table size. uint32_t base = ModTableSize(Hash(key.data(), key.size(), kProbingSeed1)); // We use an odd increment, which is relatively prime with the power-of-two // table size. This implies that we cycle back to the first probe only // after probing every slot exactly once. uint32_t increment = ModTableSize((Hash(key.data(), key.size(), kProbingSeed2) << 1) | 1); uint32_t current = ModTableSize(base + probe * increment); while (true) { ClockHandle* h = &array_[current]; if (current == base && probe > 0) { // We looped back. return -1; } if (match(h)) { probe++; return current; } if (abort(h)) { return -1; } probe++; update(h); current = ModTableSize(current + increment); } } void ClockHandleTable::Rollback(const Slice& key, uint32_t probe) { uint32_t current = ModTableSize(Hash(key.data(), key.size(), kProbingSeed1)); uint32_t increment = ModTableSize((Hash(key.data(), key.size(), kProbingSeed2) << 1) | 1); for (uint32_t i = 0; i < probe; i++) { array_[current].displacements--; current = ModTableSize(current + increment); } } ClockCacheShard::ClockCacheShard( size_t capacity, size_t estimated_value_size, bool strict_capacity_limit, CacheMetadataChargePolicy metadata_charge_policy) : capacity_(capacity), strict_capacity_limit_(strict_capacity_limit), clock_pointer_(0), table_( CalcHashBits(capacity, estimated_value_size, metadata_charge_policy)), usage_(0) { set_metadata_charge_policy(metadata_charge_policy); } void ClockCacheShard::EraseUnRefEntries() { autovector last_reference_list; { DMutexLock l(mutex_); table_.ApplyToEntriesRange( [this, &last_reference_list](ClockHandle* h) { // Externally unreferenced element. last_reference_list.push_back(*h); Evict(h); }, 0, table_.GetTableSize(), true); } // Free the entry outside of the mutex for performance reasons. for (auto& h : last_reference_list) { h.FreeData(); } } void ClockCacheShard::ApplyToSomeEntries( const std::function& callback, uint32_t average_entries_per_lock, uint32_t* state) { // The state is essentially going to be the starting hash, which works // nicely even if we resize between calls because we use upper-most // hash bits for table indexes. DMutexLock l(mutex_); uint32_t length_bits = table_.GetLengthBits(); uint32_t length = table_.GetTableSize(); assert(average_entries_per_lock > 0); // Assuming we are called with same average_entries_per_lock repeatedly, // this simplifies some logic (index_end will not overflow). assert(average_entries_per_lock < length || *state == 0); uint32_t index_begin = *state >> (32 - length_bits); uint32_t index_end = index_begin + average_entries_per_lock; if (index_end >= length) { // Going to end index_end = length; *state = UINT32_MAX; } else { *state = index_end << (32 - length_bits); } table_.ApplyToEntriesRange( [callback, metadata_charge_policy = metadata_charge_policy_](ClockHandle* h) { callback(h->key(), h->value, h->GetCharge(metadata_charge_policy), h->deleter); }, index_begin, index_end, false); } void ClockCacheShard::ClockOff(ClockHandle* h) { h->SetClockPriority(ClockHandle::ClockPriority::NONE); } void ClockCacheShard::ClockOn(ClockHandle* h) { assert(!h->IsInClock()); bool is_high_priority = h->HasHit() || h->GetCachePriority() == Cache::Priority::HIGH; h->SetClockPriority(static_cast( is_high_priority * ClockHandle::ClockPriority::HIGH + (1 - is_high_priority) * ClockHandle::ClockPriority::MEDIUM)); } void ClockCacheShard::Evict(ClockHandle* h) { ClockOff(h); table_.Remove(h); assert(usage_ >= h->total_charge); usage_ -= h->total_charge; } void ClockCacheShard::EvictFromClock(size_t charge, autovector* deleted) { // TODO(Guido) When an element is in the probe sequence of a // hot element, it will be hard to get an exclusive ref. // We may need a mechanism to avoid that an element sits forever // in cache waiting to be evicted. assert(charge <= capacity_); uint32_t max_iterations = table_.GetTableSize(); while (usage_ + charge > capacity_ && max_iterations--) { ClockHandle* h = &table_.array_[clock_pointer_]; clock_pointer_ = table_.ModTableSize(clock_pointer_ + 1); if (h->TryExclusiveRef()) { if (!h->IsInClock() && h->IsElement()) { // We adjust the clock priority to make the element evictable again. // Why? Elements that are not in clock are either currently // externally referenced or used to be---because we are holding an // exclusive ref, we know we are in the latter case. This can only // happen when the last external reference to an element was released, // and the element was not immediately removed. ClockOn(h); } if (h->GetClockPriority() == ClockHandle::ClockPriority::LOW) { deleted->push_back(*h); Evict(h); } else if (h->GetClockPriority() > ClockHandle::ClockPriority::LOW) { h->DecreaseClockPriority(); } h->ReleaseExclusiveRef(); } } } size_t ClockCacheShard::CalcEstimatedHandleCharge( size_t estimated_value_size, CacheMetadataChargePolicy metadata_charge_policy) { ClockHandle h; h.CalcTotalCharge(estimated_value_size, metadata_charge_policy); return h.total_charge; } int ClockCacheShard::CalcHashBits( size_t capacity, size_t estimated_value_size, CacheMetadataChargePolicy metadata_charge_policy) { size_t handle_charge = CalcEstimatedHandleCharge(estimated_value_size, metadata_charge_policy); assert(handle_charge > 0); uint32_t num_entries = static_cast(capacity / (kLoadFactor * handle_charge)) + 1; assert(num_entries <= uint32_t{1} << 31); return FloorLog2((num_entries << 1) - 1); } void ClockCacheShard::SetCapacity(size_t capacity) { assert(false); // Not supported. TODO(Guido) Support it? autovector last_reference_list; { DMutexLock l(mutex_); capacity_ = capacity; EvictFromClock(0, &last_reference_list); } // Free the entry outside of the mutex for performance reasons. for (auto& h : last_reference_list) { h.FreeData(); } } void ClockCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) { assert(false); // Not supported. TODO(Guido) Support it? DMutexLock l(mutex_); strict_capacity_limit_ = strict_capacity_limit; } Status ClockCacheShard::Insert(const Slice& key, uint32_t hash, void* value, size_t charge, Cache::DeleterFn deleter, Cache::Handle** handle, Cache::Priority priority) { if (key.size() != kCacheKeySize) { return Status::NotSupported("ClockCache only supports key size " + std::to_string(kCacheKeySize) + "B"); } ClockHandle tmp; tmp.value = value; tmp.deleter = deleter; tmp.hash = hash; tmp.CalcTotalCharge(charge, metadata_charge_policy_); tmp.SetCachePriority(priority); for (int i = 0; i < kCacheKeySize; i++) { tmp.key_data[i] = key.data()[i]; } Status s = Status::OK(); autovector last_reference_list; { DMutexLock l(mutex_); assert(table_.GetOccupancy() <= table_.GetOccupancyLimit()); // Free the space following strict clock policy until enough space // is freed or there are no evictable elements. EvictFromClock(tmp.total_charge, &last_reference_list); if ((usage_ + tmp.total_charge > capacity_ && (strict_capacity_limit_ || handle == nullptr)) || table_.GetOccupancy() == table_.GetOccupancyLimit()) { if (handle == nullptr) { // Don't insert the entry but still return ok, as if the entry inserted // into cache and get evicted immediately. last_reference_list.push_back(tmp); } else { if (table_.GetOccupancy() == table_.GetOccupancyLimit()) { // TODO: Consider using a distinct status for this case, but usually // it will be handled the same way as reaching charge capacity limit s = Status::MemoryLimit( "Insert failed because all slots in the hash table are full."); } else { s = Status::MemoryLimit( "Insert failed because the total charge has exceeded the " "capacity."); } } } else { // Insert into the cache. Note that the cache might get larger than its // capacity if not enough space was freed up. ClockHandle* old; ClockHandle* h = table_.Insert(&tmp, &old); assert(h != nullptr); // We're below occupancy, so this insertion should // never fail. usage_ += h->total_charge; if (old != nullptr) { s = Status::OkOverwritten(); assert(!old->WillBeDeleted()); old->SetWillBeDeleted(true); // Try to evict the old copy of the element. if (old->TryExclusiveRef()) { last_reference_list.push_back(*old); Evict(old); old->ReleaseExclusiveRef(); } } if (handle == nullptr) { // If the user didn't provide a handle, no reference is taken, // so we make the element evictable. ClockOn(h); h->ReleaseExclusiveRef(); } else { // The caller already holds a ref. h->ExclusiveToExternalRef(); *handle = reinterpret_cast(h); } } } // Free the entry outside of the mutex for performance reasons. for (auto& h : last_reference_list) { h.FreeData(); } return s; } Cache::Handle* ClockCacheShard::Lookup(const Slice& key, uint32_t hash) { ClockHandle* h = nullptr; h = table_.Lookup(key, hash); if (h != nullptr) { // TODO(Guido) Comment from #10347: Here it looks like we have three atomic // updates where it would be possible to combine into one CAS (more metadata // under one atomic field) or maybe two atomic updates (one arithmetic, one // bitwise). Something to think about optimizing. h->InternalToExternalRef(); h->SetHit(); // The handle is now referenced, so we take it out of clock. ClockOff(h); } return reinterpret_cast(h); } bool ClockCacheShard::Ref(Cache::Handle* h) { ClockHandle* e = reinterpret_cast(h); assert(e->HasExternalRefs()); return e->TryExternalRef(); } bool ClockCacheShard::Release(Cache::Handle* handle, bool erase_if_last_ref) { // In contrast with LRUCache's Release, this function won't delete the handle // when the reference is the last one and the cache is above capacity. Space // is only freed up by EvictFromClock (called by Insert when space is needed) // and Erase. if (handle == nullptr) { return false; } ClockHandle* h = reinterpret_cast(handle); uint32_t hash = h->hash; uint32_t refs = h->ReleaseExternalRef(); bool last_reference = !(refs & ClockHandle::EXTERNAL_REFS); bool will_be_deleted = refs & ClockHandle::WILL_BE_DELETED; if (last_reference && (will_be_deleted || erase_if_last_ref)) { // At this point we want to evict the element, so we need to take // a lock and an exclusive reference. But there's a problem: // as soon as we released the last reference, an Insert or Erase could've // replaced this element, and by the time we take the lock and ref // we could potentially be referencing a different element. // Thus, before evicting the (potentially different) element, we need to // re-check that it's unreferenced and marked as WILL_BE_DELETED, so the // eviction is safe. Additionally, we check that the hash doesn't change, // which will detect, most of the time, whether the element is a different // one. The bottomline is that we only guarantee that the input handle will // be deleted, and occasionally also another handle, but in any case all // deleted handles are safe to delete. // TODO(Guido) With lock-free inserts and deletes we may be able to // "atomically" transition to an exclusive ref, without creating a deadlock. ClockHandle copy; { DMutexLock l(mutex_); if (h->TrySpinExclusiveRef()) { will_be_deleted = h->refs & ClockHandle::WILL_BE_DELETED; // Check that it's still safe to delete. if (h->IsElement() && (will_be_deleted || erase_if_last_ref) && h->hash == hash) { copy = *h; Evict(h); } h->ReleaseExclusiveRef(); } else { // An external ref was detected. return false; } } // Free the entry outside of the mutex for performance reasons. copy.FreeData(); return true; } return false; } void ClockCacheShard::Erase(const Slice& key, uint32_t hash) { ClockHandle copy; bool last_reference = false; { DMutexLock l(mutex_); ClockHandle* h = table_.Lookup(key, hash); if (h != nullptr) { h->SetWillBeDeleted(true); h->ReleaseInternalRef(); if (h->TryExclusiveRef()) { copy = *h; Evict(h); last_reference = true; h->ReleaseExclusiveRef(); } } } // Free the entry outside of the mutex for performance reasons. if (last_reference) { copy.FreeData(); } } size_t ClockCacheShard::GetUsage() const { DMutexLock l(mutex_); return usage_; } size_t ClockCacheShard::GetPinnedUsage() const { // Computes the pinned usage scanning the whole hash table. This // is slow, but avoid keeping an exact counter on the clock usage, // i.e., the number of not externally referenced elements. // Why avoid this? Because Lookup removes elements from the clock // list, so it would need to update the pinned usage every time, // which creates additional synchronization costs. DMutexLock l(mutex_); size_t clock_usage = 0; table_.ConstApplyToEntriesRange( [&clock_usage](ClockHandle* h) { if (h->HasExternalRefs()) { clock_usage += h->total_charge; } }, 0, table_.GetTableSize(), true); return clock_usage; } std::string ClockCacheShard::GetPrintableOptions() const { return std::string{}; } ClockCache::ClockCache(size_t capacity, size_t estimated_value_size, int num_shard_bits, bool strict_capacity_limit, CacheMetadataChargePolicy metadata_charge_policy) : ShardedCache(capacity, num_shard_bits, strict_capacity_limit) { assert(estimated_value_size > 0 || metadata_charge_policy != kDontChargeCacheMetadata); num_shards_ = 1 << num_shard_bits; shards_ = reinterpret_cast( port::cacheline_aligned_alloc(sizeof(ClockCacheShard) * num_shards_)); size_t per_shard = (capacity + (num_shards_ - 1)) / num_shards_; for (int i = 0; i < num_shards_; i++) { new (&shards_[i]) ClockCacheShard(per_shard, estimated_value_size, strict_capacity_limit, metadata_charge_policy); } } ClockCache::~ClockCache() { if (shards_ != nullptr) { assert(num_shards_ > 0); for (int i = 0; i < num_shards_; i++) { shards_[i].~ClockCacheShard(); } port::cacheline_aligned_free(shards_); } } CacheShard* ClockCache::GetShard(uint32_t shard) { return reinterpret_cast(&shards_[shard]); } const CacheShard* ClockCache::GetShard(uint32_t shard) const { return reinterpret_cast(&shards_[shard]); } void* ClockCache::Value(Handle* handle) { return reinterpret_cast(handle)->value; } size_t ClockCache::GetCharge(Handle* handle) const { CacheMetadataChargePolicy metadata_charge_policy = kDontChargeCacheMetadata; if (num_shards_ > 0) { metadata_charge_policy = shards_[0].metadata_charge_policy_; } return reinterpret_cast(handle)->GetCharge( metadata_charge_policy); } Cache::DeleterFn ClockCache::GetDeleter(Handle* handle) const { auto h = reinterpret_cast(handle); return h->deleter; } uint32_t ClockCache::GetHash(Handle* handle) const { return reinterpret_cast(handle)->hash; } void ClockCache::DisownData() { // Leak data only if that won't generate an ASAN/valgrind warning. if (!kMustFreeHeapAllocations) { shards_ = nullptr; num_shards_ = 0; } } } // namespace clock_cache std::shared_ptr NewClockCache( size_t capacity, int num_shard_bits, bool strict_capacity_limit, CacheMetadataChargePolicy metadata_charge_policy) { return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit, 0.5, nullptr, kDefaultToAdaptiveMutex, metadata_charge_policy); } std::shared_ptr ExperimentalNewClockCache( size_t capacity, size_t estimated_value_size, int num_shard_bits, bool strict_capacity_limit, CacheMetadataChargePolicy metadata_charge_policy) { if (num_shard_bits >= 20) { return nullptr; // The cache cannot be sharded into too many fine pieces. } if (num_shard_bits < 0) { num_shard_bits = GetDefaultCacheShardBits(capacity); } return std::make_shared( capacity, estimated_value_size, num_shard_bits, strict_capacity_limit, metadata_charge_policy); } } // namespace ROCKSDB_NAMESPACE