// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "cache/clock_cache.h" #include #include #include #include #include "monitoring/perf_context_imp.h" #include "monitoring/statistics.h" #include "port/lang.h" #include "util/hash.h" #include "util/math.h" #include "util/random.h" namespace ROCKSDB_NAMESPACE { namespace clock_cache { ClockHandleTable::ClockHandleTable(size_t capacity, int hash_bits) : length_bits_(hash_bits), length_bits_mask_((uint32_t{1} << length_bits_) - 1), occupancy_limit_(static_cast((uint32_t{1} << length_bits_) * kStrictLoadFactor)), capacity_(capacity), array_(new ClockHandle[size_t{1} << length_bits_]), clock_pointer_(0), occupancy_(0), usage_(0) { assert(hash_bits <= 32); } ClockHandleTable::~ClockHandleTable() { // Assumes there are no references (of any type) to any slot in the table. for (uint32_t i = 0; i < GetTableSize(); i++) { ClockHandle* h = &array_[i]; if (h->IsElement()) { h->FreeData(); } } } ClockHandle* ClockHandleTable::Lookup(const Slice& key, uint32_t hash) { uint32_t probe = 0; ClockHandle* e = FindSlot( key, [&](ClockHandle* h) { if (h->TryInternalRef()) { if (h->IsElement() && h->Matches(key, hash)) { return true; } h->ReleaseInternalRef(); } return false; }, [&](ClockHandle* h) { return h->displacements == 0; }, [&](ClockHandle* /*h*/) {}, probe); if (e != nullptr) { // TODO(Guido) Comment from #10347: Here it looks like we have three atomic // updates where it would be possible to combine into one CAS (more metadata // under one atomic field) or maybe two atomic updates (one arithmetic, one // bitwise). Something to think about optimizing. e->InternalToExternalRef(); e->SetHit(); // The handle is now referenced, so we take it out of clock. ClockOff(e); } return e; } ClockHandle* ClockHandleTable::Insert(ClockHandle* h, autovector* deleted, bool take_reference) { uint32_t probe = 0; ClockHandle* e = FindAvailableSlot(h->key(), h->hash, probe, deleted); if (e == nullptr) { // No available slot to place the handle. return nullptr; } // The slot is empty or is a tombstone. And we have an exclusive ref. Assign(e, h); // TODO(Guido) The following RemoveAll can probably be run outside of // the exclusive ref. I had a bad case in mind: multiple inserts could // annihilate each. Although I think this is impossible, I'm not sure // my mental proof covers every case. if (e->displacements != 0) { // It used to be a tombstone, so there may already be copies of the // key in the table. RemoveAll(h->key(), h->hash, probe, deleted); } if (take_reference) { // The user wants to take a reference. e->ExclusiveToExternalRef(); } else { // The user doesn't want to immediately take a reference, so we make // it evictable. ClockOn(e); e->ReleaseExclusiveRef(); } return e; } void ClockHandleTable::Assign(ClockHandle* dst, ClockHandle* src) { // DON'T touch displacements and refs. dst->value = src->value; dst->deleter = src->deleter; dst->hash = src->hash; dst->total_charge = src->total_charge; dst->key_data = src->key_data; dst->flags.store(0); dst->SetIsElement(true); dst->SetCachePriority(src->GetCachePriority()); usage_ += dst->total_charge; occupancy_++; } bool ClockHandleTable::TryRemove(ClockHandle* h, autovector* deleted) { if (h->TryExclusiveRef()) { if (h->WillBeDeleted()) { Remove(h, deleted); return true; } h->ReleaseExclusiveRef(); } return false; } bool ClockHandleTable::SpinTryRemove(ClockHandle* h, autovector* deleted) { if (h->SpinTryExclusiveRef()) { if (h->WillBeDeleted()) { Remove(h, deleted); return true; } h->ReleaseExclusiveRef(); } return false; } void ClockHandleTable::ClockOff(ClockHandle* h) { h->SetClockPriority(ClockHandle::ClockPriority::NONE); } void ClockHandleTable::ClockOn(ClockHandle* h) { assert(!h->IsInClock()); bool is_high_priority = h->HasHit() || h->GetCachePriority() == Cache::Priority::HIGH; h->SetClockPriority(static_cast( is_high_priority ? ClockHandle::ClockPriority::HIGH : ClockHandle::ClockPriority::MEDIUM)); } void ClockHandleTable::Remove(ClockHandle* h, autovector* deleted) { deleted->push_back(*h); ClockOff(h); uint32_t probe = 0; FindSlot( h->key(), [&](ClockHandle* e) { return e == h; }, [&](ClockHandle* /*e*/) { return false; }, [&](ClockHandle* e) { e->displacements--; }, probe); h->SetWillBeDeleted(false); h->SetIsElement(false); } void ClockHandleTable::RemoveAll(const Slice& key, uint32_t hash, uint32_t& probe, autovector* deleted) { FindSlot( key, [&](ClockHandle* h) { if (h->TryInternalRef()) { if (h->IsElement() && h->Matches(key, hash)) { h->SetWillBeDeleted(true); h->ReleaseInternalRef(); if (TryRemove(h, deleted)) { h->ReleaseExclusiveRef(); } return false; } h->ReleaseInternalRef(); } return false; }, [&](ClockHandle* h) { return h->displacements == 0; }, [&](ClockHandle* /*h*/) {}, probe); } void ClockHandleTable::Free(autovector* deleted) { if (deleted->size() == 0) { // Avoid unnecessarily reading usage_ and occupancy_. return; } size_t deleted_charge = 0; for (auto& h : *deleted) { deleted_charge += h.total_charge; h.FreeData(); } assert(usage_ >= deleted_charge); usage_ -= deleted_charge; occupancy_ -= static_cast(deleted->size()); } ClockHandle* ClockHandleTable::FindAvailableSlot( const Slice& key, uint32_t hash, uint32_t& probe, autovector* deleted) { ClockHandle* e = FindSlot( key, [&](ClockHandle* h) { // To read the handle, first acquire a shared ref. if (h->TryInternalRef()) { if (h->IsElement()) { // The slot is not available. // TODO(Guido) Is it worth testing h->WillBeDeleted()? if (h->WillBeDeleted() || h->Matches(key, hash)) { // The slot can be freed up, or the key we're inserting is already // in the table, so we try to delete it. When the attempt is // successful, the slot becomes available, so we stop probing. // Notice that in that case TryRemove returns an exclusive ref. h->SetWillBeDeleted(true); h->ReleaseInternalRef(); if (TryRemove(h, deleted)) { return true; } return false; } h->ReleaseInternalRef(); return false; } // Available slot. h->ReleaseInternalRef(); // Try to acquire an exclusive ref. If we fail, continue probing. if (h->SpinTryExclusiveRef()) { // Check that the slot is still available. if (!h->IsElement()) { return true; } h->ReleaseExclusiveRef(); } } return false; }, [&](ClockHandle* /*h*/) { return false; }, [&](ClockHandle* h) { h->displacements++; }, probe); if (e == nullptr) { Rollback(key, probe); } return e; } ClockHandle* ClockHandleTable::FindSlot( const Slice& key, std::function match, std::function abort, std::function update, uint32_t& probe) { // We use double-hashing probing. Every probe in the sequence is a // pseudorandom integer, computed as a linear function of two random hashes, // which we call base and increment. Specifically, the i-th probe is base + i // * increment modulo the table size. uint32_t base = ModTableSize(Hash(key.data(), key.size(), kProbingSeed1)); // We use an odd increment, which is relatively prime with the power-of-two // table size. This implies that we cycle back to the first probe only // after probing every slot exactly once. uint32_t increment = ModTableSize((Hash(key.data(), key.size(), kProbingSeed2) << 1) | 1); uint32_t current = ModTableSize(base + probe * increment); while (true) { ClockHandle* h = &array_[current]; if (current == base && probe > 0) { // We looped back. return nullptr; } if (match(h)) { probe++; return h; } if (abort(h)) { return nullptr; } probe++; update(h); current = ModTableSize(current + increment); } } void ClockHandleTable::Rollback(const Slice& key, uint32_t probe) { uint32_t current = ModTableSize(Hash(key.data(), key.size(), kProbingSeed1)); uint32_t increment = ModTableSize((Hash(key.data(), key.size(), kProbingSeed2) << 1) | 1); for (uint32_t i = 0; i < probe; i++) { array_[current].displacements--; current = ModTableSize(current + increment); } } void ClockHandleTable::ClockRun(size_t charge) { // TODO(Guido) When an element is in the probe sequence of a // hot element, it will be hard to get an exclusive ref. // Do we need a mechanism to prevent an element from sitting // for a long time in cache waiting to be evicted? assert(charge <= capacity_); autovector deleted; uint32_t max_iterations = 1 + static_cast(GetTableSize() * kLoadFactor); size_t usage_local = usage_; while (usage_local + charge > capacity_ && max_iterations--) { uint32_t steps = 1 + static_cast(1 / kLoadFactor); uint32_t clock_pointer_local = (clock_pointer_ += steps) - steps; for (uint32_t i = 0; i < steps; i++) { ClockHandle* h = &array_[ModTableSize(clock_pointer_local + i)]; if (h->TryExclusiveRef()) { if (h->WillBeDeleted()) { Remove(h, &deleted); usage_local -= h->total_charge; } else { if (!h->IsInClock() && h->IsElement()) { // We adjust the clock priority to make the element evictable again. // Why? Elements that are not in clock are either currently // externally referenced or used to be. Because we are holding an // exclusive ref, we know we are in the latter case. This can only // happen when the last external reference to an element was // released, and the element was not immediately removed. ClockOn(h); } ClockHandle::ClockPriority priority = h->GetClockPriority(); if (priority == ClockHandle::ClockPriority::LOW) { Remove(h, &deleted); usage_local -= h->total_charge; } else if (priority > ClockHandle::ClockPriority::LOW) { h->DecreaseClockPriority(); } } h->ReleaseExclusiveRef(); } } } Free(&deleted); } ClockCacheShard::ClockCacheShard( size_t capacity, size_t estimated_value_size, bool strict_capacity_limit, CacheMetadataChargePolicy metadata_charge_policy) : strict_capacity_limit_(strict_capacity_limit), table_(capacity, CalcHashBits(capacity, estimated_value_size, metadata_charge_policy)) { set_metadata_charge_policy(metadata_charge_policy); } void ClockCacheShard::EraseUnRefEntries() { autovector deleted; table_.ApplyToEntriesRange( [this, &deleted](ClockHandle* h) { // Externally unreferenced element. table_.Remove(h, &deleted); }, 0, table_.GetTableSize(), true); table_.Free(&deleted); } void ClockCacheShard::ApplyToSomeEntries( const std::function& callback, uint32_t average_entries_per_lock, uint32_t* state) { // The state is essentially going to be the starting hash, which works // nicely even if we resize between calls because we use upper-most // hash bits for table indexes. uint32_t length_bits = table_.GetLengthBits(); uint32_t length = table_.GetTableSize(); assert(average_entries_per_lock > 0); // Assuming we are called with same average_entries_per_lock repeatedly, // this simplifies some logic (index_end will not overflow). assert(average_entries_per_lock < length || *state == 0); uint32_t index_begin = *state >> (32 - length_bits); uint32_t index_end = index_begin + average_entries_per_lock; if (index_end >= length) { // Going to end. index_end = length; *state = UINT32_MAX; } else { *state = index_end << (32 - length_bits); } table_.ApplyToEntriesRange( [callback, metadata_charge_policy = metadata_charge_policy_](ClockHandle* h) { callback(h->key(), h->value, h->GetCharge(metadata_charge_policy), h->deleter); }, index_begin, index_end, false); } size_t ClockCacheShard::CalcEstimatedHandleCharge( size_t estimated_value_size, CacheMetadataChargePolicy metadata_charge_policy) { ClockHandle h; h.CalcTotalCharge(estimated_value_size, metadata_charge_policy); return h.total_charge; } int ClockCacheShard::CalcHashBits( size_t capacity, size_t estimated_value_size, CacheMetadataChargePolicy metadata_charge_policy) { size_t handle_charge = CalcEstimatedHandleCharge(estimated_value_size, metadata_charge_policy); assert(handle_charge > 0); uint32_t num_entries = static_cast(capacity / (kLoadFactor * handle_charge)) + 1; assert(num_entries <= uint32_t{1} << 31); return FloorLog2((num_entries << 1) - 1); } void ClockCacheShard::SetCapacity(size_t /*capacity*/) { assert(false); // Not supported. } void ClockCacheShard::SetStrictCapacityLimit(bool /*strict_capacity_limit*/) { assert(false); // Not supported. } Status ClockCacheShard::Insert(const Slice& key, uint32_t hash, void* value, size_t charge, Cache::DeleterFn deleter, Cache::Handle** handle, Cache::Priority priority) { if (key.size() != kCacheKeySize) { return Status::NotSupported("ClockCache only supports key size " + std::to_string(kCacheKeySize) + "B"); } ClockHandle tmp; tmp.value = value; tmp.deleter = deleter; tmp.hash = hash; tmp.CalcTotalCharge(charge, metadata_charge_policy_); tmp.SetCachePriority(priority); for (int i = 0; i < kCacheKeySize; i++) { tmp.key_data[i] = key.data()[i]; } Status s = Status::OK(); // Free space with the clock policy until enough space is freed or there are // no evictable elements. table_.ClockRun(tmp.total_charge); // occupancy_ and usage_ are contended members across concurrent updates // on the same shard, so we use a single copy to reduce cache synchronization. uint32_t occupancy_local = table_.GetOccupancy(); size_t usage_local = table_.GetUsage(); assert(occupancy_local <= table_.GetOccupancyLimit()); autovector deleted; if ((usage_local + tmp.total_charge > table_.GetCapacity() && (strict_capacity_limit_ || handle == nullptr)) || occupancy_local > table_.GetOccupancyLimit()) { if (handle == nullptr) { // Don't insert the entry but still return ok, as if the entry inserted // into cache and get evicted immediately. deleted.push_back(tmp); } else { if (occupancy_local > table_.GetOccupancyLimit()) { // TODO: Consider using a distinct status for this case, but usually // it will be handled the same way as reaching charge capacity limit s = Status::MemoryLimit( "Insert failed because all slots in the hash table are full."); } else { s = Status::MemoryLimit( "Insert failed because the total charge has exceeded the " "capacity."); } } } else { // Insert into the cache. Note that the cache might get larger than its // capacity if not enough space was freed up. ClockHandle* h = table_.Insert(&tmp, &deleted, handle != nullptr); assert(h != nullptr); // The occupancy is way below the table size, so this // insertion should never fail. if (handle != nullptr) { *handle = reinterpret_cast(h); } if (deleted.size() > 0) { s = Status::OkOverwritten(); } } table_.Free(&deleted); return s; } Cache::Handle* ClockCacheShard::Lookup(const Slice& key, uint32_t hash) { return reinterpret_cast(table_.Lookup(key, hash)); } bool ClockCacheShard::Ref(Cache::Handle* h) { ClockHandle* e = reinterpret_cast(h); assert(e->HasExternalRefs()); return e->TryExternalRef(); } bool ClockCacheShard::Release(Cache::Handle* handle, bool erase_if_last_ref) { // In contrast with LRUCache's Release, this function won't delete the handle // when the cache is above capacity and the reference is the last one. Space // is only freed up by EvictFromClock (called by Insert when space is needed) // and Erase. We do this to avoid an extra atomic read of the variable usage_. if (handle == nullptr) { return false; } ClockHandle* h = reinterpret_cast(handle); uint32_t refs = h->refs; bool last_reference = ((refs & ClockHandle::EXTERNAL_REFS) == 1); bool will_be_deleted = refs & ClockHandle::WILL_BE_DELETED; if (last_reference && (will_be_deleted || erase_if_last_ref)) { autovector deleted; h->SetWillBeDeleted(true); h->ReleaseExternalRef(); if (table_.SpinTryRemove(h, &deleted)) { h->ReleaseExclusiveRef(); table_.Free(&deleted); return true; } } else { h->ReleaseExternalRef(); } return false; } void ClockCacheShard::Erase(const Slice& key, uint32_t hash) { autovector deleted; uint32_t probe = 0; table_.RemoveAll(key, hash, probe, &deleted); table_.Free(&deleted); } size_t ClockCacheShard::GetUsage() const { return table_.GetUsage(); } size_t ClockCacheShard::GetPinnedUsage() const { // Computes the pinned usage by scanning the whole hash table. This // is slow, but avoids keeping an exact counter on the clock usage, // i.e., the number of not externally referenced elements. // Why avoid this counter? Because Lookup removes elements from the clock // list, so it would need to update the pinned usage every time, // which creates additional synchronization costs. size_t clock_usage = 0; table_.ConstApplyToEntriesRange( [&clock_usage](ClockHandle* h) { if (h->HasExternalRefs()) { clock_usage += h->total_charge; } }, 0, table_.GetTableSize(), true); return clock_usage; } ClockCache::ClockCache(size_t capacity, size_t estimated_value_size, int num_shard_bits, bool strict_capacity_limit, CacheMetadataChargePolicy metadata_charge_policy) : ShardedCache(capacity, num_shard_bits, strict_capacity_limit), num_shards_(1 << num_shard_bits) { assert(estimated_value_size > 0 || metadata_charge_policy != kDontChargeCacheMetadata); shards_ = reinterpret_cast( port::cacheline_aligned_alloc(sizeof(ClockCacheShard) * num_shards_)); size_t per_shard = (capacity + (num_shards_ - 1)) / num_shards_; for (int i = 0; i < num_shards_; i++) { new (&shards_[i]) ClockCacheShard(per_shard, estimated_value_size, strict_capacity_limit, metadata_charge_policy); } } ClockCache::~ClockCache() { if (shards_ != nullptr) { assert(num_shards_ > 0); for (int i = 0; i < num_shards_; i++) { shards_[i].~ClockCacheShard(); } port::cacheline_aligned_free(shards_); } } CacheShard* ClockCache::GetShard(uint32_t shard) { return reinterpret_cast(&shards_[shard]); } const CacheShard* ClockCache::GetShard(uint32_t shard) const { return reinterpret_cast(&shards_[shard]); } void* ClockCache::Value(Handle* handle) { return reinterpret_cast(handle)->value; } size_t ClockCache::GetCharge(Handle* handle) const { CacheMetadataChargePolicy metadata_charge_policy = kDontChargeCacheMetadata; if (num_shards_ > 0) { metadata_charge_policy = shards_[0].metadata_charge_policy_; } return reinterpret_cast(handle)->GetCharge( metadata_charge_policy); } Cache::DeleterFn ClockCache::GetDeleter(Handle* handle) const { auto h = reinterpret_cast(handle); return h->deleter; } uint32_t ClockCache::GetHash(Handle* handle) const { return reinterpret_cast(handle)->hash; } void ClockCache::DisownData() { // Leak data only if that won't generate an ASAN/valgrind warning. if (!kMustFreeHeapAllocations) { shards_ = nullptr; num_shards_ = 0; } } } // namespace clock_cache std::shared_ptr NewClockCache( size_t capacity, int num_shard_bits, bool strict_capacity_limit, CacheMetadataChargePolicy metadata_charge_policy) { return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit, 0.5, nullptr, kDefaultToAdaptiveMutex, metadata_charge_policy); } std::shared_ptr ExperimentalNewClockCache( size_t capacity, size_t estimated_value_size, int num_shard_bits, bool strict_capacity_limit, CacheMetadataChargePolicy metadata_charge_policy) { if (num_shard_bits >= 20) { return nullptr; // The cache cannot be sharded into too many fine pieces. } if (num_shard_bits < 0) { num_shard_bits = GetDefaultCacheShardBits(capacity); } return std::make_shared( capacity, estimated_value_size, num_shard_bits, strict_capacity_limit, metadata_charge_policy); } } // namespace ROCKSDB_NAMESPACE