// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include "db/column_family.h" #include "db/compaction/compaction.h" #include "rocksdb/compaction_filter.h" #include "test_util/sync_point.h" #include "util/string_util.h" namespace ROCKSDB_NAMESPACE { const uint64_t kRangeTombstoneSentinel = PackSequenceAndType(kMaxSequenceNumber, kTypeRangeDeletion); int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a, const InternalKey& b) { auto c = user_cmp->CompareWithoutTimestamp(a.user_key(), b.user_key()); if (c != 0) { return c; } auto a_footer = ExtractInternalKeyFooter(a.Encode()); auto b_footer = ExtractInternalKeyFooter(b.Encode()); if (a_footer == kRangeTombstoneSentinel) { if (b_footer != kRangeTombstoneSentinel) { return -1; } } else if (b_footer == kRangeTombstoneSentinel) { return 1; } return 0; } int sstableKeyCompare(const Comparator* user_cmp, const InternalKey* a, const InternalKey& b) { if (a == nullptr) { return -1; } return sstableKeyCompare(user_cmp, *a, b); } int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a, const InternalKey* b) { if (b == nullptr) { return -1; } return sstableKeyCompare(user_cmp, a, *b); } uint64_t TotalFileSize(const std::vector& files) { uint64_t sum = 0; for (size_t i = 0; i < files.size() && files[i]; i++) { sum += files[i]->fd.GetFileSize(); } return sum; } void Compaction::SetInputVersion(Version* _input_version) { input_version_ = _input_version; cfd_ = input_version_->cfd(); cfd_->Ref(); input_version_->Ref(); edit_.SetColumnFamily(cfd_->GetID()); } void Compaction::GetBoundaryKeys( VersionStorageInfo* vstorage, const std::vector& inputs, Slice* smallest_user_key, Slice* largest_user_key) { bool initialized = false; const Comparator* ucmp = vstorage->InternalComparator()->user_comparator(); for (size_t i = 0; i < inputs.size(); ++i) { if (inputs[i].files.empty()) { continue; } if (inputs[i].level == 0) { // we need to consider all files on level 0 for (const auto* f : inputs[i].files) { const Slice& start_user_key = f->smallest.user_key(); if (!initialized || ucmp->Compare(start_user_key, *smallest_user_key) < 0) { *smallest_user_key = start_user_key; } const Slice& end_user_key = f->largest.user_key(); if (!initialized || ucmp->Compare(end_user_key, *largest_user_key) > 0) { *largest_user_key = end_user_key; } initialized = true; } } else { // we only need to consider the first and last file const Slice& start_user_key = inputs[i].files[0]->smallest.user_key(); if (!initialized || ucmp->Compare(start_user_key, *smallest_user_key) < 0) { *smallest_user_key = start_user_key; } const Slice& end_user_key = inputs[i].files.back()->largest.user_key(); if (!initialized || ucmp->Compare(end_user_key, *largest_user_key) > 0) { *largest_user_key = end_user_key; } initialized = true; } } } std::vector Compaction::PopulateWithAtomicBoundaries( VersionStorageInfo* vstorage, std::vector inputs) { const Comparator* ucmp = vstorage->InternalComparator()->user_comparator(); for (size_t i = 0; i < inputs.size(); i++) { if (inputs[i].level == 0 || inputs[i].files.empty()) { continue; } inputs[i].atomic_compaction_unit_boundaries.reserve(inputs[i].files.size()); AtomicCompactionUnitBoundary cur_boundary; size_t first_atomic_idx = 0; auto add_unit_boundary = [&](size_t to) { if (first_atomic_idx == to) return; for (size_t k = first_atomic_idx; k < to; k++) { inputs[i].atomic_compaction_unit_boundaries.push_back(cur_boundary); } first_atomic_idx = to; }; for (size_t j = 0; j < inputs[i].files.size(); j++) { const auto* f = inputs[i].files[j]; if (j == 0) { // First file in a level. cur_boundary.smallest = &f->smallest; cur_boundary.largest = &f->largest; } else if (sstableKeyCompare(ucmp, *cur_boundary.largest, f->smallest) == 0) { // SSTs overlap but the end key of the previous file was not // artificially extended by a range tombstone. Extend the current // boundary. cur_boundary.largest = &f->largest; } else { // Atomic compaction unit has ended. add_unit_boundary(j); cur_boundary.smallest = &f->smallest; cur_boundary.largest = &f->largest; } } add_unit_boundary(inputs[i].files.size()); assert(inputs[i].files.size() == inputs[i].atomic_compaction_unit_boundaries.size()); } return inputs; } // helper function to determine if compaction is creating files at the // bottommost level bool Compaction::IsBottommostLevel( int output_level, VersionStorageInfo* vstorage, const std::vector& inputs) { int output_l0_idx; if (output_level == 0) { output_l0_idx = 0; for (const auto* file : vstorage->LevelFiles(0)) { if (inputs[0].files.back() == file) { break; } ++output_l0_idx; } assert(static_cast(output_l0_idx) < vstorage->LevelFiles(0).size()); } else { output_l0_idx = -1; } Slice smallest_key, largest_key; GetBoundaryKeys(vstorage, inputs, &smallest_key, &largest_key); return !vstorage->RangeMightExistAfterSortedRun(smallest_key, largest_key, output_level, output_l0_idx); } // test function to validate the functionality of IsBottommostLevel() // function -- determines if compaction with inputs and storage is bottommost bool Compaction::TEST_IsBottommostLevel( int output_level, VersionStorageInfo* vstorage, const std::vector& inputs) { return IsBottommostLevel(output_level, vstorage, inputs); } bool Compaction::IsFullCompaction( VersionStorageInfo* vstorage, const std::vector& inputs) { size_t num_files_in_compaction = 0; size_t total_num_files = 0; for (int l = 0; l < vstorage->num_levels(); l++) { total_num_files += vstorage->NumLevelFiles(l); } for (size_t i = 0; i < inputs.size(); i++) { num_files_in_compaction += inputs[i].size(); } return num_files_in_compaction == total_num_files; } Compaction::Compaction(VersionStorageInfo* vstorage, const ImmutableCFOptions& _immutable_cf_options, const MutableCFOptions& _mutable_cf_options, const MutableDBOptions& _mutable_db_options, std::vector _inputs, int _output_level, uint64_t _target_file_size, uint64_t _max_compaction_bytes, uint32_t _output_path_id, CompressionType _compression, CompressionOptions _compression_opts, uint32_t _max_subcompactions, std::vector _grandparents, bool _manual_compaction, double _score, bool _deletion_compaction, CompactionReason _compaction_reason) : input_vstorage_(vstorage), start_level_(_inputs[0].level), output_level_(_output_level), max_output_file_size_(_target_file_size), max_compaction_bytes_(_max_compaction_bytes), max_subcompactions_(_max_subcompactions), immutable_cf_options_(_immutable_cf_options), mutable_cf_options_(_mutable_cf_options), input_version_(nullptr), number_levels_(vstorage->num_levels()), cfd_(nullptr), output_path_id_(_output_path_id), output_compression_(_compression), output_compression_opts_(_compression_opts), deletion_compaction_(_deletion_compaction), inputs_(PopulateWithAtomicBoundaries(vstorage, std::move(_inputs))), grandparents_(std::move(_grandparents)), score_(_score), bottommost_level_(IsBottommostLevel(output_level_, vstorage, inputs_)), is_full_compaction_(IsFullCompaction(vstorage, inputs_)), is_manual_compaction_(_manual_compaction), is_trivial_move_(false), compaction_reason_(_compaction_reason) { MarkFilesBeingCompacted(true); if (is_manual_compaction_) { compaction_reason_ = CompactionReason::kManualCompaction; } if (max_subcompactions_ == 0) { max_subcompactions_ = _mutable_db_options.max_subcompactions; } if (!bottommost_level_) { // Currently we only enable dictionary compression during compaction to the // bottommost level. output_compression_opts_.max_dict_bytes = 0; output_compression_opts_.zstd_max_train_bytes = 0; } #ifndef NDEBUG for (size_t i = 1; i < inputs_.size(); ++i) { assert(inputs_[i].level > inputs_[i - 1].level); } #endif // setup input_levels_ { input_levels_.resize(num_input_levels()); for (size_t which = 0; which < num_input_levels(); which++) { DoGenerateLevelFilesBrief(&input_levels_[which], inputs_[which].files, &arena_); } } GetBoundaryKeys(vstorage, inputs_, &smallest_user_key_, &largest_user_key_); } Compaction::~Compaction() { if (input_version_ != nullptr) { input_version_->Unref(); } if (cfd_ != nullptr) { cfd_->UnrefAndTryDelete(); } } bool Compaction::InputCompressionMatchesOutput() const { int base_level = input_vstorage_->base_level(); bool matches = (GetCompressionType(immutable_cf_options_, input_vstorage_, mutable_cf_options_, start_level_, base_level) == output_compression_); if (matches) { TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:Matches"); return true; } TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:DidntMatch"); return matches; } bool Compaction::IsTrivialMove() const { // Avoid a move if there is lots of overlapping grandparent data. // Otherwise, the move could create a parent file that will require // a very expensive merge later on. // If start_level_== output_level_, the purpose is to force compaction // filter to be applied to that level, and thus cannot be a trivial move. // Check if start level have files with overlapping ranges if (start_level_ == 0 && input_vstorage_->level0_non_overlapping() == false) { // We cannot move files from L0 to L1 if the files are overlapping return false; } if (is_manual_compaction_ && (immutable_cf_options_.compaction_filter != nullptr || immutable_cf_options_.compaction_filter_factory != nullptr)) { // This is a manual compaction and we have a compaction filter that should // be executed, we cannot do a trivial move return false; } // Used in universal compaction, where trivial move can be done if the // input files are non overlapping if ((mutable_cf_options_.compaction_options_universal.allow_trivial_move) && (output_level_ != 0)) { return is_trivial_move_; } if (!(start_level_ != output_level_ && num_input_levels() == 1 && input(0, 0)->fd.GetPathId() == output_path_id() && InputCompressionMatchesOutput())) { return false; } // assert inputs_.size() == 1 for (const auto& file : inputs_.front().files) { std::vector file_grand_parents; if (output_level_ + 1 >= number_levels_) { continue; } input_vstorage_->GetOverlappingInputs(output_level_ + 1, &file->smallest, &file->largest, &file_grand_parents); const auto compaction_size = file->fd.GetFileSize() + TotalFileSize(file_grand_parents); if (compaction_size > max_compaction_bytes_) { return false; } } return true; } void Compaction::AddInputDeletions(VersionEdit* out_edit) { for (size_t which = 0; which < num_input_levels(); which++) { for (size_t i = 0; i < inputs_[which].size(); i++) { out_edit->DeleteFile(level(which), inputs_[which][i]->fd.GetNumber()); } } } bool Compaction::KeyNotExistsBeyondOutputLevel( const Slice& user_key, std::vector* level_ptrs) const { assert(input_version_ != nullptr); assert(level_ptrs != nullptr); assert(level_ptrs->size() == static_cast(number_levels_)); if (bottommost_level_) { return true; } else if (output_level_ != 0 && cfd_->ioptions()->compaction_style == kCompactionStyleLevel) { // Maybe use binary search to find right entry instead of linear search? const Comparator* user_cmp = cfd_->user_comparator(); for (int lvl = output_level_ + 1; lvl < number_levels_; lvl++) { const std::vector& files = input_vstorage_->LevelFiles(lvl); for (; level_ptrs->at(lvl) < files.size(); level_ptrs->at(lvl)++) { auto* f = files[level_ptrs->at(lvl)]; if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) { // We've advanced far enough if (user_cmp->Compare(user_key, f->smallest.user_key()) >= 0) { // Key falls in this file's range, so it may // exist beyond output level return false; } break; } } } return true; } return false; } // Mark (or clear) each file that is being compacted void Compaction::MarkFilesBeingCompacted(bool mark_as_compacted) { for (size_t i = 0; i < num_input_levels(); i++) { for (size_t j = 0; j < inputs_[i].size(); j++) { assert(mark_as_compacted ? !inputs_[i][j]->being_compacted : inputs_[i][j]->being_compacted); inputs_[i][j]->being_compacted = mark_as_compacted; } } } // Sample output: // If compacting 3 L0 files, 2 L3 files and 1 L4 file, and outputting to L5, // print: "3@0 + 2@3 + 1@4 files to L5" const char* Compaction::InputLevelSummary( InputLevelSummaryBuffer* scratch) const { int len = 0; bool is_first = true; for (auto& input_level : inputs_) { if (input_level.empty()) { continue; } if (!is_first) { len += snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, " + "); len = std::min(len, static_cast(sizeof(scratch->buffer))); } else { is_first = false; } len += snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "%" ROCKSDB_PRIszt "@%d", input_level.size(), input_level.level); len = std::min(len, static_cast(sizeof(scratch->buffer))); } snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, " files to L%d", output_level()); return scratch->buffer; } uint64_t Compaction::CalculateTotalInputSize() const { uint64_t size = 0; for (auto& input_level : inputs_) { for (auto f : input_level.files) { size += f->fd.GetFileSize(); } } return size; } void Compaction::ReleaseCompactionFiles(Status status) { MarkFilesBeingCompacted(false); cfd_->compaction_picker()->ReleaseCompactionFiles(this, status); } void Compaction::ResetNextCompactionIndex() { assert(input_version_ != nullptr); input_vstorage_->ResetNextCompactionIndex(start_level_); } namespace { int InputSummary(const std::vector& files, char* output, int len) { *output = '\0'; int write = 0; for (size_t i = 0; i < files.size(); i++) { int sz = len - write; int ret; char sztxt[16]; AppendHumanBytes(files.at(i)->fd.GetFileSize(), sztxt, 16); ret = snprintf(output + write, sz, "%" PRIu64 "(%s) ", files.at(i)->fd.GetNumber(), sztxt); if (ret < 0 || ret >= sz) break; write += ret; } // if files.size() is non-zero, overwrite the last space return write - !!files.size(); } } // namespace void Compaction::Summary(char* output, int len) { int write = snprintf(output, len, "Base version %" PRIu64 " Base level %d, inputs: [", input_version_->GetVersionNumber(), start_level_); if (write < 0 || write >= len) { return; } for (size_t level_iter = 0; level_iter < num_input_levels(); ++level_iter) { if (level_iter > 0) { write += snprintf(output + write, len - write, "], ["); if (write < 0 || write >= len) { return; } } write += InputSummary(inputs_[level_iter].files, output + write, len - write); if (write < 0 || write >= len) { return; } } snprintf(output + write, len - write, "]"); } uint64_t Compaction::OutputFilePreallocationSize() const { uint64_t preallocation_size = 0; for (const auto& level_files : inputs_) { for (const auto& file : level_files.files) { preallocation_size += file->fd.GetFileSize(); } } if (max_output_file_size_ != port::kMaxUint64 && (immutable_cf_options_.compaction_style == kCompactionStyleLevel || output_level() > 0)) { preallocation_size = std::min(max_output_file_size_, preallocation_size); } // Over-estimate slightly so we don't end up just barely crossing // the threshold // No point to prellocate more than 1GB. return std::min(uint64_t{1073741824}, preallocation_size + (preallocation_size / 10)); } std::unique_ptr Compaction::CreateCompactionFilter() const { if (!cfd_->ioptions()->compaction_filter_factory) { return nullptr; } CompactionFilter::Context context; context.is_full_compaction = is_full_compaction_; context.is_manual_compaction = is_manual_compaction_; context.column_family_id = cfd_->GetID(); return cfd_->ioptions()->compaction_filter_factory->CreateCompactionFilter( context); } bool Compaction::IsOutputLevelEmpty() const { return inputs_.back().level != output_level_ || inputs_.back().empty(); } bool Compaction::ShouldFormSubcompactions() const { if (max_subcompactions_ <= 1 || cfd_ == nullptr) { return false; } if (cfd_->ioptions()->compaction_style == kCompactionStyleLevel) { return (start_level_ == 0 || is_manual_compaction_) && output_level_ > 0 && !IsOutputLevelEmpty(); } else if (cfd_->ioptions()->compaction_style == kCompactionStyleUniversal) { return number_levels_ > 1 && output_level_ > 0; } else { return false; } } uint64_t Compaction::MinInputFileOldestAncesterTime() const { uint64_t min_oldest_ancester_time = port::kMaxUint64; for (const auto& level_files : inputs_) { for (const auto& file : level_files.files) { uint64_t oldest_ancester_time = file->TryGetOldestAncesterTime(); if (oldest_ancester_time != 0) { min_oldest_ancester_time = std::min(min_oldest_ancester_time, oldest_ancester_time); } } } return min_oldest_ancester_time; } int Compaction::GetInputBaseLevel() const { return input_vstorage_->base_level(); } } // namespace ROCKSDB_NAMESPACE