// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include "db/db_impl.h" #include "db/version_set.h" #include "leveldb/cache.h" #include "leveldb/db.h" #include "leveldb/env.h" #include "leveldb/write_batch.h" #include "port/port.h" #include "util/crc32c.h" #include "util/histogram.h" #include "util/mutexlock.h" #include "util/random.h" #include "util/testutil.h" // Comma-separated list of operations to run in the specified order // Actual benchmarks: // fillseq -- write N values in sequential key order in async mode // fillrandom -- write N values in random key order in async mode // overwrite -- overwrite N values in random key order in async mode // fillsync -- write N/100 values in random key order in sync mode // fill100K -- write N/1000 100K values in random order in async mode // deleteseq -- delete N keys in sequential order // deleterandom -- delete N keys in random order // readseq -- read N times sequentially // readreverse -- read N times in reverse order // readrandom -- read N times in random order // readmissing -- read N missing keys in random order // readhot -- read N times in random order from 1% section of DB // seekrandom -- N random seeks // crc32c -- repeated crc32c of 4K of data // acquireload -- load N*1000 times // Meta operations: // compact -- Compact the entire DB // stats -- Print DB stats // sstables -- Print sstable info // heapprofile -- Dump a heap profile (if supported by this port) static const char* FLAGS_benchmarks = "fillseq," "fillsync," "fillrandom," "overwrite," "readrandom," "readrandom," // Extra run to allow previous compactions to quiesce "readseq," "readreverse," "compact," "readrandom," "readseq," "readreverse," "fill100K," "crc32c," "snappycomp," "snappyuncomp," "acquireload," ; // Number of key/values to place in database static int FLAGS_num = 1000000; // Number of read operations to do. If negative, do FLAGS_num reads. static int FLAGS_reads = -1; // Number of concurrent threads to run. static int FLAGS_threads = 1; // Size of each value static int FLAGS_value_size = 100; // Arrange to generate values that shrink to this fraction of // their original size after compression static double FLAGS_compression_ratio = 0.5; // Print histogram of operation timings static bool FLAGS_histogram = false; // Number of bytes to buffer in memtable before compacting // (initialized to default value by "main") static int FLAGS_write_buffer_size = 0; // Number of bytes to use as a cache of uncompressed data. // Negative means use default settings. static long FLAGS_cache_size = -1; // Maximum number of files to keep open at the same time (use default if == 0) static int FLAGS_open_files = 0; // Bloom filter bits per key. // Negative means use default settings. static int FLAGS_bloom_bits = -1; // If true, do not destroy the existing database. If you set this // flag and also specify a benchmark that wants a fresh database, that // benchmark will fail. static bool FLAGS_use_existing_db = false; // Use the db with the following name. static const char* FLAGS_db = "/tmp/dbbench"; namespace leveldb { namespace { // Helper for quickly generating random data. class RandomGenerator { private: std::string data_; int pos_; public: RandomGenerator() { // We use a limited amount of data over and over again and ensure // that it is larger than the compression window (32KB), and also // large enough to serve all typical value sizes we want to write. Random rnd(301); std::string piece; while (data_.size() < 1048576) { // Add a short fragment that is as compressible as specified // by FLAGS_compression_ratio. test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece); data_.append(piece); } pos_ = 0; } Slice Generate(int len) { if (pos_ + len > data_.size()) { pos_ = 0; assert(len < data_.size()); } pos_ += len; return Slice(data_.data() + pos_ - len, len); } }; static Slice TrimSpace(Slice s) { int start = 0; while (start < s.size() && isspace(s[start])) { start++; } int limit = s.size(); while (limit > start && isspace(s[limit-1])) { limit--; } return Slice(s.data() + start, limit - start); } static void AppendWithSpace(std::string* str, Slice msg) { if (msg.empty()) return; if (!str->empty()) { str->push_back(' '); } str->append(msg.data(), msg.size()); } class Stats { private: double start_; double finish_; double seconds_; int done_; int next_report_; int64_t bytes_; double last_op_finish_; Histogram hist_; std::string message_; public: Stats() { Start(); } void Start() { next_report_ = 100; last_op_finish_ = start_; hist_.Clear(); done_ = 0; bytes_ = 0; seconds_ = 0; start_ = Env::Default()->NowMicros(); finish_ = start_; message_.clear(); } void Merge(const Stats& other) { hist_.Merge(other.hist_); done_ += other.done_; bytes_ += other.bytes_; seconds_ += other.seconds_; if (other.start_ < start_) start_ = other.start_; if (other.finish_ > finish_) finish_ = other.finish_; // Just keep the messages from one thread if (message_.empty()) message_ = other.message_; } void Stop() { finish_ = Env::Default()->NowMicros(); seconds_ = (finish_ - start_) * 1e-6; } void AddMessage(Slice msg) { AppendWithSpace(&message_, msg); } void FinishedSingleOp() { if (FLAGS_histogram) { double now = Env::Default()->NowMicros(); double micros = now - last_op_finish_; hist_.Add(micros); if (micros > 20000) { fprintf(stderr, "long op: %.1f micros%30s\r", micros, ""); fflush(stderr); } last_op_finish_ = now; } done_++; if (done_ >= next_report_) { if (next_report_ < 1000) next_report_ += 100; else if (next_report_ < 5000) next_report_ += 500; else if (next_report_ < 10000) next_report_ += 1000; else if (next_report_ < 50000) next_report_ += 5000; else if (next_report_ < 100000) next_report_ += 10000; else if (next_report_ < 500000) next_report_ += 50000; else next_report_ += 100000; fprintf(stderr, "... finished %d ops%30s\r", done_, ""); fflush(stderr); } } void AddBytes(int64_t n) { bytes_ += n; } void Report(const Slice& name) { // Pretend at least one op was done in case we are running a benchmark // that does not call FinishedSingleOp(). if (done_ < 1) done_ = 1; std::string extra; if (bytes_ > 0) { // Rate is computed on actual elapsed time, not the sum of per-thread // elapsed times. double elapsed = (finish_ - start_) * 1e-6; char rate[100]; snprintf(rate, sizeof(rate), "%6.1f MB/s", (bytes_ / 1048576.0) / elapsed); extra = rate; } AppendWithSpace(&extra, message_); double elapsed = (finish_ - start_) * 1e-6; double throughput = (double)done_/elapsed; fprintf(stdout, "%-12s : %11.3f micros/op %ld ops/sec;%s%s\n", name.ToString().c_str(), seconds_ * 1e6 / done_, (long)throughput, (extra.empty() ? "" : " "), extra.c_str()); if (FLAGS_histogram) { fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str()); } fflush(stdout); } }; // State shared by all concurrent executions of the same benchmark. struct SharedState { port::Mutex mu; port::CondVar cv; int total; // Each thread goes through the following states: // (1) initializing // (2) waiting for others to be initialized // (3) running // (4) done int num_initialized; int num_done; bool start; SharedState() : cv(&mu) { } }; // Per-thread state for concurrent executions of the same benchmark. struct ThreadState { int tid; // 0..n-1 when running in n threads Random rand; // Has different seeds for different threads Stats stats; SharedState* shared; ThreadState(int index) : tid(index), rand(1000 + index) { } }; } // namespace class Benchmark { private: Cache* cache_; const FilterPolicy* filter_policy_; DB* db_; int num_; int value_size_; int entries_per_batch_; WriteOptions write_options_; int reads_; int heap_counter_; void PrintHeader() { const int kKeySize = 16; PrintEnvironment(); fprintf(stdout, "Keys: %d bytes each\n", kKeySize); fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n", FLAGS_value_size, static_cast(FLAGS_value_size * FLAGS_compression_ratio + 0.5)); fprintf(stdout, "Entries: %d\n", num_); fprintf(stdout, "RawSize: %.1f MB (estimated)\n", ((static_cast(kKeySize + FLAGS_value_size) * num_) / 1048576.0)); fprintf(stdout, "FileSize: %.1f MB (estimated)\n", (((kKeySize + FLAGS_value_size * FLAGS_compression_ratio) * num_) / 1048576.0)); PrintWarnings(); fprintf(stdout, "------------------------------------------------\n"); } void PrintWarnings() { #if defined(__GNUC__) && !defined(__OPTIMIZE__) fprintf(stdout, "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n" ); #endif #ifndef NDEBUG fprintf(stdout, "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n"); #endif // See if snappy is working by attempting to compress a compressible string const char text[] = "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy"; std::string compressed; if (!port::Snappy_Compress(text, sizeof(text), &compressed)) { fprintf(stdout, "WARNING: Snappy compression is not enabled\n"); } else if (compressed.size() >= sizeof(text)) { fprintf(stdout, "WARNING: Snappy compression is not effective\n"); } } void PrintEnvironment() { fprintf(stderr, "LevelDB: version %d.%d\n", kMajorVersion, kMinorVersion); #if defined(__linux) time_t now = time(NULL); fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline FILE* cpuinfo = fopen("/proc/cpuinfo", "r"); if (cpuinfo != NULL) { char line[1000]; int num_cpus = 0; std::string cpu_type; std::string cache_size; while (fgets(line, sizeof(line), cpuinfo) != NULL) { const char* sep = strchr(line, ':'); if (sep == NULL) { continue; } Slice key = TrimSpace(Slice(line, sep - 1 - line)); Slice val = TrimSpace(Slice(sep + 1)); if (key == "model name") { ++num_cpus; cpu_type = val.ToString(); } else if (key == "cache size") { cache_size = val.ToString(); } } fclose(cpuinfo); fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str()); fprintf(stderr, "CPUCache: %s\n", cache_size.c_str()); } #endif } public: Benchmark() : cache_(FLAGS_cache_size >= 0 ? NewLRUCache(FLAGS_cache_size) : NULL), filter_policy_(FLAGS_bloom_bits >= 0 ? NewBloomFilterPolicy(FLAGS_bloom_bits) : NULL), db_(NULL), num_(FLAGS_num), value_size_(FLAGS_value_size), entries_per_batch_(1), reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads), heap_counter_(0) { std::vector files; Env::Default()->GetChildren(FLAGS_db, &files); for (int i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("heap-")) { Env::Default()->DeleteFile(std::string(FLAGS_db) + "/" + files[i]); } } if (!FLAGS_use_existing_db) { DestroyDB(FLAGS_db, Options()); } } ~Benchmark() { delete db_; delete cache_; delete filter_policy_; } void Run() { PrintHeader(); Open(); const char* benchmarks = FLAGS_benchmarks; while (benchmarks != NULL) { const char* sep = strchr(benchmarks, ','); Slice name; if (sep == NULL) { name = benchmarks; benchmarks = NULL; } else { name = Slice(benchmarks, sep - benchmarks); benchmarks = sep + 1; } // Reset parameters that may be overriddden bwlow num_ = FLAGS_num; reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads); value_size_ = FLAGS_value_size; entries_per_batch_ = 1; write_options_ = WriteOptions(); void (Benchmark::*method)(ThreadState*) = NULL; bool fresh_db = false; int num_threads = FLAGS_threads; if (name == Slice("fillseq")) { fresh_db = true; method = &Benchmark::WriteSeq; } else if (name == Slice("fillbatch")) { fresh_db = true; entries_per_batch_ = 1000; method = &Benchmark::WriteSeq; } else if (name == Slice("fillrandom")) { fresh_db = true; method = &Benchmark::WriteRandom; } else if (name == Slice("overwrite")) { fresh_db = false; method = &Benchmark::WriteRandom; } else if (name == Slice("fillsync")) { fresh_db = true; num_ /= 1000; write_options_.sync = true; method = &Benchmark::WriteRandom; } else if (name == Slice("fill100K")) { fresh_db = true; num_ /= 1000; value_size_ = 100 * 1000; method = &Benchmark::WriteRandom; } else if (name == Slice("readseq")) { method = &Benchmark::ReadSequential; } else if (name == Slice("readreverse")) { method = &Benchmark::ReadReverse; } else if (name == Slice("readrandom")) { method = &Benchmark::ReadRandom; } else if (name == Slice("readmissing")) { method = &Benchmark::ReadMissing; } else if (name == Slice("seekrandom")) { method = &Benchmark::SeekRandom; } else if (name == Slice("readhot")) { method = &Benchmark::ReadHot; } else if (name == Slice("readrandomsmall")) { reads_ /= 1000; method = &Benchmark::ReadRandom; } else if (name == Slice("deleteseq")) { method = &Benchmark::DeleteSeq; } else if (name == Slice("deleterandom")) { method = &Benchmark::DeleteRandom; } else if (name == Slice("readwhilewriting")) { num_threads++; // Add extra thread for writing method = &Benchmark::ReadWhileWriting; } else if (name == Slice("compact")) { method = &Benchmark::Compact; } else if (name == Slice("crc32c")) { method = &Benchmark::Crc32c; } else if (name == Slice("acquireload")) { method = &Benchmark::AcquireLoad; } else if (name == Slice("snappycomp")) { method = &Benchmark::SnappyCompress; } else if (name == Slice("snappyuncomp")) { method = &Benchmark::SnappyUncompress; } else if (name == Slice("heapprofile")) { HeapProfile(); } else if (name == Slice("stats")) { PrintStats("leveldb.stats"); } else if (name == Slice("sstables")) { PrintStats("leveldb.sstables"); } else { if (name != Slice()) { // No error message for empty name fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str()); } } if (fresh_db) { if (FLAGS_use_existing_db) { fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n", name.ToString().c_str()); method = NULL; } else { delete db_; db_ = NULL; DestroyDB(FLAGS_db, Options()); Open(); } } if (method != NULL) { RunBenchmark(num_threads, name, method); } } } private: struct ThreadArg { Benchmark* bm; SharedState* shared; ThreadState* thread; void (Benchmark::*method)(ThreadState*); }; static void ThreadBody(void* v) { ThreadArg* arg = reinterpret_cast(v); SharedState* shared = arg->shared; ThreadState* thread = arg->thread; { MutexLock l(&shared->mu); shared->num_initialized++; if (shared->num_initialized >= shared->total) { shared->cv.SignalAll(); } while (!shared->start) { shared->cv.Wait(); } } thread->stats.Start(); (arg->bm->*(arg->method))(thread); thread->stats.Stop(); { MutexLock l(&shared->mu); shared->num_done++; if (shared->num_done >= shared->total) { shared->cv.SignalAll(); } } } void RunBenchmark(int n, Slice name, void (Benchmark::*method)(ThreadState*)) { SharedState shared; shared.total = n; shared.num_initialized = 0; shared.num_done = 0; shared.start = false; ThreadArg* arg = new ThreadArg[n]; for (int i = 0; i < n; i++) { arg[i].bm = this; arg[i].method = method; arg[i].shared = &shared; arg[i].thread = new ThreadState(i); arg[i].thread->shared = &shared; Env::Default()->StartThread(ThreadBody, &arg[i]); } shared.mu.Lock(); while (shared.num_initialized < n) { shared.cv.Wait(); } shared.start = true; shared.cv.SignalAll(); while (shared.num_done < n) { shared.cv.Wait(); } shared.mu.Unlock(); for (int i = 1; i < n; i++) { arg[0].thread->stats.Merge(arg[i].thread->stats); } arg[0].thread->stats.Report(name); for (int i = 0; i < n; i++) { delete arg[i].thread; } delete[] arg; } void Crc32c(ThreadState* thread) { // Checksum about 500MB of data total const int size = 4096; const char* label = "(4K per op)"; std::string data(size, 'x'); int64_t bytes = 0; uint32_t crc = 0; while (bytes < 500 * 1048576) { crc = crc32c::Value(data.data(), size); thread->stats.FinishedSingleOp(); bytes += size; } // Print so result is not dead fprintf(stderr, "... crc=0x%x\r", static_cast(crc)); thread->stats.AddBytes(bytes); thread->stats.AddMessage(label); } void AcquireLoad(ThreadState* thread) { int dummy; port::AtomicPointer ap(&dummy); int count = 0; void *ptr = NULL; thread->stats.AddMessage("(each op is 1000 loads)"); while (count < 100000) { for (int i = 0; i < 1000; i++) { ptr = ap.Acquire_Load(); } count++; thread->stats.FinishedSingleOp(); } if (ptr == NULL) exit(1); // Disable unused variable warning. } void SnappyCompress(ThreadState* thread) { RandomGenerator gen; Slice input = gen.Generate(Options().block_size); int64_t bytes = 0; int64_t produced = 0; bool ok = true; std::string compressed; while (ok && bytes < 1024 * 1048576) { // Compress 1G ok = port::Snappy_Compress(input.data(), input.size(), &compressed); produced += compressed.size(); bytes += input.size(); thread->stats.FinishedSingleOp(); } if (!ok) { thread->stats.AddMessage("(snappy failure)"); } else { char buf[100]; snprintf(buf, sizeof(buf), "(output: %.1f%%)", (produced * 100.0) / bytes); thread->stats.AddMessage(buf); thread->stats.AddBytes(bytes); } } void SnappyUncompress(ThreadState* thread) { RandomGenerator gen; Slice input = gen.Generate(Options().block_size); std::string compressed; bool ok = port::Snappy_Compress(input.data(), input.size(), &compressed); int64_t bytes = 0; char* uncompressed = new char[input.size()]; while (ok && bytes < 1024 * 1048576) { // Compress 1G ok = port::Snappy_Uncompress(compressed.data(), compressed.size(), uncompressed); bytes += input.size(); thread->stats.FinishedSingleOp(); } delete[] uncompressed; if (!ok) { thread->stats.AddMessage("(snappy failure)"); } else { thread->stats.AddBytes(bytes); } } void Open() { assert(db_ == NULL); Options options; options.create_if_missing = !FLAGS_use_existing_db; options.block_cache = cache_; options.write_buffer_size = FLAGS_write_buffer_size; options.filter_policy = filter_policy_; Status s = DB::Open(options, FLAGS_db, &db_); if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } } void WriteSeq(ThreadState* thread) { DoWrite(thread, true); } void WriteRandom(ThreadState* thread) { DoWrite(thread, false); } void DoWrite(ThreadState* thread, bool seq) { if (num_ != FLAGS_num) { char msg[100]; snprintf(msg, sizeof(msg), "(%d ops)", num_); thread->stats.AddMessage(msg); } RandomGenerator gen; WriteBatch batch; Status s; int64_t bytes = 0; for (int i = 0; i < num_; i += entries_per_batch_) { batch.Clear(); for (int j = 0; j < entries_per_batch_; j++) { const int k = seq ? i+j : (thread->rand.Next() % FLAGS_num); char key[100]; snprintf(key, sizeof(key), "%016d", k); batch.Put(key, gen.Generate(value_size_)); bytes += value_size_ + strlen(key); thread->stats.FinishedSingleOp(); } s = db_->Write(write_options_, &batch); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } } thread->stats.AddBytes(bytes); } void ReadSequential(ThreadState* thread) { Iterator* iter = db_->NewIterator(ReadOptions()); int i = 0; int64_t bytes = 0; for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedSingleOp(); ++i; } delete iter; thread->stats.AddBytes(bytes); } void ReadReverse(ThreadState* thread) { Iterator* iter = db_->NewIterator(ReadOptions()); int i = 0; int64_t bytes = 0; for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) { bytes += iter->key().size() + iter->value().size(); thread->stats.FinishedSingleOp(); ++i; } delete iter; thread->stats.AddBytes(bytes); } void ReadRandom(ThreadState* thread) { ReadOptions options; std::string value; int found = 0; for (int i = 0; i < reads_; i++) { char key[100]; const int k = thread->rand.Next() % FLAGS_num; snprintf(key, sizeof(key), "%016d", k); if (db_->Get(options, key, &value).ok()) { found++; } thread->stats.FinishedSingleOp(); } char msg[100]; snprintf(msg, sizeof(msg), "(%d of %d found)", found, num_); thread->stats.AddMessage(msg); } void ReadMissing(ThreadState* thread) { ReadOptions options; std::string value; for (int i = 0; i < reads_; i++) { char key[100]; const int k = thread->rand.Next() % FLAGS_num; snprintf(key, sizeof(key), "%016d.", k); db_->Get(options, key, &value); thread->stats.FinishedSingleOp(); } } void ReadHot(ThreadState* thread) { ReadOptions options; std::string value; const int range = (FLAGS_num + 99) / 100; for (int i = 0; i < reads_; i++) { char key[100]; const int k = thread->rand.Next() % range; snprintf(key, sizeof(key), "%016d", k); db_->Get(options, key, &value); thread->stats.FinishedSingleOp(); } } void SeekRandom(ThreadState* thread) { ReadOptions options; std::string value; int found = 0; for (int i = 0; i < reads_; i++) { Iterator* iter = db_->NewIterator(options); char key[100]; const int k = thread->rand.Next() % FLAGS_num; snprintf(key, sizeof(key), "%016d", k); iter->Seek(key); if (iter->Valid() && iter->key() == key) found++; delete iter; thread->stats.FinishedSingleOp(); } char msg[100]; snprintf(msg, sizeof(msg), "(%d of %d found)", found, num_); thread->stats.AddMessage(msg); } void DoDelete(ThreadState* thread, bool seq) { RandomGenerator gen; WriteBatch batch; Status s; for (int i = 0; i < num_; i += entries_per_batch_) { batch.Clear(); for (int j = 0; j < entries_per_batch_; j++) { const int k = seq ? i+j : (thread->rand.Next() % FLAGS_num); char key[100]; snprintf(key, sizeof(key), "%016d", k); batch.Delete(key); thread->stats.FinishedSingleOp(); } s = db_->Write(write_options_, &batch); if (!s.ok()) { fprintf(stderr, "del error: %s\n", s.ToString().c_str()); exit(1); } } } void DeleteSeq(ThreadState* thread) { DoDelete(thread, true); } void DeleteRandom(ThreadState* thread) { DoDelete(thread, false); } void ReadWhileWriting(ThreadState* thread) { if (thread->tid > 0) { ReadRandom(thread); } else { // Special thread that keeps writing until other threads are done. RandomGenerator gen; while (true) { { MutexLock l(&thread->shared->mu); if (thread->shared->num_done + 1 >= thread->shared->num_initialized) { // Other threads have finished break; } } const int k = thread->rand.Next() % FLAGS_num; char key[100]; snprintf(key, sizeof(key), "%016d", k); Status s = db_->Put(write_options_, key, gen.Generate(value_size_)); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } } // Do not count any of the preceding work/delay in stats. thread->stats.Start(); } } void Compact(ThreadState* thread) { db_->CompactRange(NULL, NULL); } void PrintStats(const char* key) { std::string stats; if (!db_->GetProperty(key, &stats)) { stats = "(failed)"; } fprintf(stdout, "\n%s\n", stats.c_str()); } static void WriteToFile(void* arg, const char* buf, int n) { reinterpret_cast(arg)->Append(Slice(buf, n)); } void HeapProfile() { char fname[100]; snprintf(fname, sizeof(fname), "%s/heap-%04d", FLAGS_db, ++heap_counter_); WritableFile* file; Status s = Env::Default()->NewWritableFile(fname, &file); if (!s.ok()) { fprintf(stderr, "%s\n", s.ToString().c_str()); return; } bool ok = port::GetHeapProfile(WriteToFile, file); delete file; if (!ok) { fprintf(stderr, "heap profiling not supported\n"); Env::Default()->DeleteFile(fname); } } }; } // namespace leveldb int main(int argc, char** argv) { FLAGS_write_buffer_size = leveldb::Options().write_buffer_size; FLAGS_open_files = leveldb::Options().max_open_files; for (int i = 1; i < argc; i++) { double d; int n; char junk; if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) { FLAGS_benchmarks = argv[i] + strlen("--benchmarks="); } else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) { FLAGS_compression_ratio = d; } else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_histogram = n; } else if (sscanf(argv[i], "--use_existing_db=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_existing_db = n; } else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) { FLAGS_num = n; } else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) { FLAGS_reads = n; } else if (sscanf(argv[i], "--threads=%d%c", &n, &junk) == 1) { FLAGS_threads = n; } else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) { FLAGS_value_size = n; } else if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) { FLAGS_write_buffer_size = n; } else if (sscanf(argv[i], "--cache_size=%ld%c", &n, &junk) == 1) { FLAGS_cache_size = n; } else if (sscanf(argv[i], "--bloom_bits=%d%c", &n, &junk) == 1) { FLAGS_bloom_bits = n; } else if (sscanf(argv[i], "--open_files=%d%c", &n, &junk) == 1) { FLAGS_open_files = n; } else if (strncmp(argv[i], "--db=", 5) == 0) { FLAGS_db = argv[i] + 5; } else { fprintf(stderr, "Invalid flag '%s'\n", argv[i]); exit(1); } } leveldb::Benchmark benchmark; benchmark.Run(); return 0; }