// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // #include "rocksdb/perf_context.h" #include #include #include #include #include "monitoring/histogram.h" #include "monitoring/instrumented_mutex.h" #include "monitoring/perf_context_imp.h" #include "monitoring/thread_status_util.h" #include "port/port.h" #include "rocksdb/db.h" #include "rocksdb/memtablerep.h" #include "rocksdb/slice_transform.h" #include "rocksdb/system_clock.h" #include "test_util/testharness.h" #include "util/stop_watch.h" #include "util/string_util.h" #include "utilities/merge_operators.h" bool FLAGS_random_key = false; bool FLAGS_use_set_based_memetable = false; int FLAGS_total_keys = 100; int FLAGS_write_buffer_size = 1000000000; int FLAGS_max_write_buffer_number = 8; int FLAGS_min_write_buffer_number_to_merge = 7; bool FLAGS_verbose = false; // Path to the database on file system const std::string kDbName = ROCKSDB_NAMESPACE::test::PerThreadDBPath("perf_context_test"); namespace ROCKSDB_NAMESPACE { std::shared_ptr OpenDb(bool read_only = false) { DB* db; Options options; options.create_if_missing = true; options.max_open_files = -1; options.write_buffer_size = FLAGS_write_buffer_size; options.max_write_buffer_number = FLAGS_max_write_buffer_number; options.min_write_buffer_number_to_merge = FLAGS_min_write_buffer_number_to_merge; if (FLAGS_use_set_based_memetable) { options.prefix_extractor.reset( ROCKSDB_NAMESPACE::NewFixedPrefixTransform(0)); options.memtable_factory.reset(NewHashSkipListRepFactory()); } Status s; if (!read_only) { s = DB::Open(options, kDbName, &db); } else { s = DB::OpenForReadOnly(options, kDbName, &db); } EXPECT_OK(s); return std::shared_ptr(db); } class PerfContextTest : public testing::Test {}; TEST_F(PerfContextTest, SeekIntoDeletion) { ASSERT_OK(DestroyDB(kDbName, Options())); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; for (int i = 0; i < FLAGS_total_keys; ++i) { std::string key = "k" + std::to_string(i); std::string value = "v" + std::to_string(i); ASSERT_OK(db->Put(write_options, key, value)); } for (int i = 0; i < FLAGS_total_keys - 1; ++i) { std::string key = "k" + std::to_string(i); ASSERT_OK(db->Delete(write_options, key)); } HistogramImpl hist_get; HistogramImpl hist_get_time; for (int i = 0; i < FLAGS_total_keys - 1; ++i) { std::string key = "k" + std::to_string(i); std::string value; get_perf_context()->Reset(); StopWatchNano timer(SystemClock::Default().get()); timer.Start(); auto status = db->Get(read_options, key, &value); auto elapsed_nanos = timer.ElapsedNanos(); ASSERT_TRUE(status.IsNotFound()); hist_get.Add(get_perf_context()->user_key_comparison_count); hist_get_time.Add(elapsed_nanos); } if (FLAGS_verbose) { std::cout << "Get user key comparison: \n" << hist_get.ToString() << "Get time: \n" << hist_get_time.ToString(); } { HistogramImpl hist_seek_to_first; std::unique_ptr iter(db->NewIterator(read_options)); get_perf_context()->Reset(); StopWatchNano timer(SystemClock::Default().get(), true); iter->SeekToFirst(); hist_seek_to_first.Add(get_perf_context()->user_key_comparison_count); auto elapsed_nanos = timer.ElapsedNanos(); if (FLAGS_verbose) { std::cout << "SeekToFirst user key comparison: \n" << hist_seek_to_first.ToString() << "ikey skipped: " << get_perf_context()->internal_key_skipped_count << "\n" << "idelete skipped: " << get_perf_context()->internal_delete_skipped_count << "\n" << "elapsed: " << elapsed_nanos << "\n"; } } HistogramImpl hist_seek; for (int i = 0; i < FLAGS_total_keys; ++i) { std::unique_ptr iter(db->NewIterator(read_options)); std::string key = "k" + std::to_string(i); get_perf_context()->Reset(); StopWatchNano timer(SystemClock::Default().get(), true); iter->Seek(key); auto elapsed_nanos = timer.ElapsedNanos(); hist_seek.Add(get_perf_context()->user_key_comparison_count); if (FLAGS_verbose) { std::cout << "seek cmp: " << get_perf_context()->user_key_comparison_count << " ikey skipped " << get_perf_context()->internal_key_skipped_count << " idelete skipped " << get_perf_context()->internal_delete_skipped_count << " elapsed: " << elapsed_nanos << "ns\n"; } get_perf_context()->Reset(); ASSERT_TRUE(iter->Valid()); StopWatchNano timer2(SystemClock::Default().get(), true); iter->Next(); auto elapsed_nanos2 = timer2.ElapsedNanos(); if (FLAGS_verbose) { std::cout << "next cmp: " << get_perf_context()->user_key_comparison_count << "elapsed: " << elapsed_nanos2 << "ns\n"; } } if (FLAGS_verbose) { std::cout << "Seek user key comparison: \n" << hist_seek.ToString(); } } TEST_F(PerfContextTest, StopWatchNanoOverhead) { // profile the timer cost by itself! const int kTotalIterations = 1000000; std::vector timings(kTotalIterations); StopWatchNano timer(SystemClock::Default().get(), true); for (auto& timing : timings) { timing = timer.ElapsedNanos(true /* reset */); } HistogramImpl histogram; for (const auto timing : timings) { histogram.Add(timing); } if (FLAGS_verbose) { std::cout << histogram.ToString(); } } TEST_F(PerfContextTest, StopWatchOverhead) { // profile the timer cost by itself! const int kTotalIterations = 1000000; uint64_t elapsed = 0; std::vector timings(kTotalIterations); StopWatch timer(SystemClock::Default().get(), nullptr, 0, &elapsed); for (auto& timing : timings) { timing = elapsed; } HistogramImpl histogram; uint64_t prev_timing = 0; for (const auto timing : timings) { histogram.Add(timing - prev_timing); prev_timing = timing; } if (FLAGS_verbose) { std::cout << histogram.ToString(); } } void ProfileQueries(bool enabled_time = false) { ASSERT_OK(DestroyDB(kDbName, Options())); // Start this test with a fresh DB auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; HistogramImpl hist_put; HistogramImpl hist_get; HistogramImpl hist_get_snapshot; HistogramImpl hist_get_memtable; HistogramImpl hist_get_files; HistogramImpl hist_get_post_process; HistogramImpl hist_num_memtable_checked; HistogramImpl hist_mget; HistogramImpl hist_mget_snapshot; HistogramImpl hist_mget_memtable; HistogramImpl hist_mget_files; HistogramImpl hist_mget_post_process; HistogramImpl hist_mget_num_memtable_checked; HistogramImpl hist_write_pre_post; HistogramImpl hist_write_wal_time; HistogramImpl hist_write_memtable_time; HistogramImpl hist_write_delay_time; HistogramImpl hist_write_thread_wait_nanos; HistogramImpl hist_write_scheduling_time; uint64_t total_db_mutex_nanos = 0; if (FLAGS_verbose) { std::cout << "Inserting " << FLAGS_total_keys << " key/value pairs\n...\n"; } std::vector keys; const int kFlushFlag = -1; for (int i = 0; i < FLAGS_total_keys; ++i) { keys.push_back(i); if (i == FLAGS_total_keys / 2) { // Issuing a flush in the middle. keys.push_back(kFlushFlag); } } if (FLAGS_random_key) { RandomShuffle(std::begin(keys), std::end(keys)); } #ifndef NDEBUG ThreadStatusUtil::TEST_SetStateDelay(ThreadStatus::STATE_MUTEX_WAIT, 1U); #endif int num_mutex_waited = 0; for (const int i : keys) { if (i == kFlushFlag) { FlushOptions fo; db->Flush(fo); continue; } std::string key = "k" + std::to_string(i); std::string value = "v" + std::to_string(i); std::vector values; get_perf_context()->Reset(); ASSERT_OK(db->Put(write_options, key, value)); if (++num_mutex_waited > 3) { #ifndef NDEBUG ThreadStatusUtil::TEST_SetStateDelay(ThreadStatus::STATE_MUTEX_WAIT, 0U); #endif } hist_write_pre_post.Add( get_perf_context()->write_pre_and_post_process_time); hist_write_wal_time.Add(get_perf_context()->write_wal_time); hist_write_memtable_time.Add(get_perf_context()->write_memtable_time); hist_write_delay_time.Add(get_perf_context()->write_delay_time); hist_write_thread_wait_nanos.Add( get_perf_context()->write_thread_wait_nanos); hist_write_scheduling_time.Add( get_perf_context()->write_scheduling_flushes_compactions_time); hist_put.Add(get_perf_context()->user_key_comparison_count); total_db_mutex_nanos += get_perf_context()->db_mutex_lock_nanos; } #ifndef NDEBUG ThreadStatusUtil::TEST_SetStateDelay(ThreadStatus::STATE_MUTEX_WAIT, 0U); #endif for (const int i : keys) { if (i == kFlushFlag) { continue; } std::string key = "k" + std::to_string(i); std::string expected_value = "v" + std::to_string(i); std::string value; std::vector multiget_keys = {Slice(key)}; std::vector values; get_perf_context()->Reset(); ASSERT_OK(db->Get(read_options, key, &value)); ASSERT_EQ(expected_value, value); hist_get_snapshot.Add(get_perf_context()->get_snapshot_time); hist_get_memtable.Add(get_perf_context()->get_from_memtable_time); hist_get_files.Add(get_perf_context()->get_from_output_files_time); hist_num_memtable_checked.Add(get_perf_context()->get_from_memtable_count); hist_get_post_process.Add(get_perf_context()->get_post_process_time); hist_get.Add(get_perf_context()->user_key_comparison_count); get_perf_context()->Reset(); auto statuses = db->MultiGet(read_options, multiget_keys, &values); for (const auto& s : statuses) { ASSERT_OK(s); } hist_mget_snapshot.Add(get_perf_context()->get_snapshot_time); hist_mget_memtable.Add(get_perf_context()->get_from_memtable_time); hist_mget_files.Add(get_perf_context()->get_from_output_files_time); hist_mget_num_memtable_checked.Add( get_perf_context()->get_from_memtable_count); hist_mget_post_process.Add(get_perf_context()->get_post_process_time); hist_mget.Add(get_perf_context()->user_key_comparison_count); } if (FLAGS_verbose) { std::cout << "Put user key comparison: \n" << hist_put.ToString() << "Get user key comparison: \n" << hist_get.ToString() << "MultiGet user key comparison: \n" << hist_get.ToString(); std::cout << "Put(): Pre and Post Process Time: \n" << hist_write_pre_post.ToString() << " Writing WAL time: \n" << hist_write_wal_time.ToString() << "\n" << " Writing Mem Table time: \n" << hist_write_memtable_time.ToString() << "\n" << " Write Delay: \n" << hist_write_delay_time.ToString() << "\n" << " Waiting for Batch time: \n" << hist_write_thread_wait_nanos.ToString() << "\n" << " Scheduling Flushes and Compactions Time: \n" << hist_write_scheduling_time.ToString() << "\n" << " Total DB mutex nanos: \n" << total_db_mutex_nanos << "\n"; std::cout << "Get(): Time to get snapshot: \n" << hist_get_snapshot.ToString() << " Time to get value from memtables: \n" << hist_get_memtable.ToString() << "\n" << " Time to get value from output files: \n" << hist_get_files.ToString() << "\n" << " Number of memtables checked: \n" << hist_num_memtable_checked.ToString() << "\n" << " Time to post process: \n" << hist_get_post_process.ToString() << "\n"; std::cout << "MultiGet(): Time to get snapshot: \n" << hist_mget_snapshot.ToString() << " Time to get value from memtables: \n" << hist_mget_memtable.ToString() << "\n" << " Time to get value from output files: \n" << hist_mget_files.ToString() << "\n" << " Number of memtables checked: \n" << hist_mget_num_memtable_checked.ToString() << "\n" << " Time to post process: \n" << hist_mget_post_process.ToString() << "\n"; } if (enabled_time) { ASSERT_GT(hist_get.Average(), 0); ASSERT_GT(hist_get_snapshot.Average(), 0); ASSERT_GT(hist_get_memtable.Average(), 0); ASSERT_GT(hist_get_files.Average(), 0); ASSERT_GT(hist_get_post_process.Average(), 0); ASSERT_GT(hist_num_memtable_checked.Average(), 0); ASSERT_GT(hist_mget.Average(), 0); ASSERT_GT(hist_mget_snapshot.Average(), 0); ASSERT_GT(hist_mget_memtable.Average(), 0); ASSERT_GT(hist_mget_files.Average(), 0); ASSERT_GT(hist_mget_post_process.Average(), 0); ASSERT_GT(hist_mget_num_memtable_checked.Average(), 0); EXPECT_GT(hist_write_pre_post.Average(), 0); EXPECT_GT(hist_write_wal_time.Average(), 0); EXPECT_GT(hist_write_memtable_time.Average(), 0); EXPECT_EQ(hist_write_delay_time.Average(), 0); EXPECT_EQ(hist_write_thread_wait_nanos.Average(), 0); EXPECT_GT(hist_write_scheduling_time.Average(), 0); #ifndef NDEBUG ASSERT_LT(total_db_mutex_nanos, 100U); #endif } db.reset(); db = OpenDb(true); hist_get.Clear(); hist_get_snapshot.Clear(); hist_get_memtable.Clear(); hist_get_files.Clear(); hist_get_post_process.Clear(); hist_num_memtable_checked.Clear(); hist_mget.Clear(); hist_mget_snapshot.Clear(); hist_mget_memtable.Clear(); hist_mget_files.Clear(); hist_mget_post_process.Clear(); hist_mget_num_memtable_checked.Clear(); for (const int i : keys) { if (i == kFlushFlag) { continue; } std::string key = "k" + std::to_string(i); std::string expected_value = "v" + std::to_string(i); std::string value; std::vector multiget_keys = {Slice(key)}; std::vector values; get_perf_context()->Reset(); ASSERT_OK(db->Get(read_options, key, &value)); ASSERT_EQ(expected_value, value); hist_get_snapshot.Add(get_perf_context()->get_snapshot_time); hist_get_memtable.Add(get_perf_context()->get_from_memtable_time); hist_get_files.Add(get_perf_context()->get_from_output_files_time); hist_num_memtable_checked.Add(get_perf_context()->get_from_memtable_count); hist_get_post_process.Add(get_perf_context()->get_post_process_time); hist_get.Add(get_perf_context()->user_key_comparison_count); get_perf_context()->Reset(); auto statuses = db->MultiGet(read_options, multiget_keys, &values); for (const auto& s : statuses) { ASSERT_OK(s); } hist_mget_snapshot.Add(get_perf_context()->get_snapshot_time); hist_mget_memtable.Add(get_perf_context()->get_from_memtable_time); hist_mget_files.Add(get_perf_context()->get_from_output_files_time); hist_mget_num_memtable_checked.Add( get_perf_context()->get_from_memtable_count); hist_mget_post_process.Add(get_perf_context()->get_post_process_time); hist_mget.Add(get_perf_context()->user_key_comparison_count); } if (FLAGS_verbose) { std::cout << "ReadOnly Get user key comparison: \n" << hist_get.ToString() << "ReadOnly MultiGet user key comparison: \n" << hist_mget.ToString(); std::cout << "ReadOnly Get(): Time to get snapshot: \n" << hist_get_snapshot.ToString() << " Time to get value from memtables: \n" << hist_get_memtable.ToString() << "\n" << " Time to get value from output files: \n" << hist_get_files.ToString() << "\n" << " Number of memtables checked: \n" << hist_num_memtable_checked.ToString() << "\n" << " Time to post process: \n" << hist_get_post_process.ToString() << "\n"; std::cout << "ReadOnly MultiGet(): Time to get snapshot: \n" << hist_mget_snapshot.ToString() << " Time to get value from memtables: \n" << hist_mget_memtable.ToString() << "\n" << " Time to get value from output files: \n" << hist_mget_files.ToString() << "\n" << " Number of memtables checked: \n" << hist_mget_num_memtable_checked.ToString() << "\n" << " Time to post process: \n" << hist_mget_post_process.ToString() << "\n"; } if (enabled_time) { ASSERT_GT(hist_get.Average(), 0); ASSERT_GT(hist_get_memtable.Average(), 0); ASSERT_GT(hist_get_files.Average(), 0); ASSERT_GT(hist_num_memtable_checked.Average(), 0); // In read-only mode Get(), no super version operation is needed ASSERT_EQ(hist_get_post_process.Average(), 0); ASSERT_GT(hist_get_snapshot.Average(), 0); ASSERT_GT(hist_mget.Average(), 0); ASSERT_GT(hist_mget_snapshot.Average(), 0); ASSERT_GT(hist_mget_memtable.Average(), 0); ASSERT_GT(hist_mget_files.Average(), 0); ASSERT_GT(hist_mget_post_process.Average(), 0); ASSERT_GT(hist_mget_num_memtable_checked.Average(), 0); } } TEST_F(PerfContextTest, KeyComparisonCount) { SetPerfLevel(kEnableCount); ProfileQueries(); SetPerfLevel(kDisable); ProfileQueries(); SetPerfLevel(kEnableTime); ProfileQueries(true); } // make perf_context_test // export ROCKSDB_TESTS=PerfContextTest.SeekKeyComparison // For one memtable: // ./perf_context_test --write_buffer_size=500000 --total_keys=10000 // For two memtables: // ./perf_context_test --write_buffer_size=250000 --total_keys=10000 // Specify --random_key=1 to shuffle the key before insertion // Results show that, for sequential insertion, worst-case Seek Key comparison // is close to the total number of keys (linear), when there is only one // memtable. When there are two memtables, even the avg Seek Key comparison // starts to become linear to the input size. TEST_F(PerfContextTest, SeekKeyComparison) { ASSERT_OK(DestroyDB(kDbName, Options())); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; if (FLAGS_verbose) { std::cout << "Inserting " << FLAGS_total_keys << " key/value pairs\n...\n"; } std::vector keys; for (int i = 0; i < FLAGS_total_keys; ++i) { keys.push_back(i); } if (FLAGS_random_key) { RandomShuffle(std::begin(keys), std::end(keys)); } HistogramImpl hist_put_time; HistogramImpl hist_wal_time; HistogramImpl hist_time_diff; SetPerfLevel(kEnableTime); StopWatchNano timer(SystemClock::Default().get()); for (const int i : keys) { std::string key = "k" + std::to_string(i); std::string value = "v" + std::to_string(i); get_perf_context()->Reset(); timer.Start(); ASSERT_OK(db->Put(write_options, key, value)); auto put_time = timer.ElapsedNanos(); hist_put_time.Add(put_time); hist_wal_time.Add(get_perf_context()->write_wal_time); hist_time_diff.Add(put_time - get_perf_context()->write_wal_time); } if (FLAGS_verbose) { std::cout << "Put time:\n" << hist_put_time.ToString() << "WAL time:\n" << hist_wal_time.ToString() << "time diff:\n" << hist_time_diff.ToString(); } HistogramImpl hist_seek; HistogramImpl hist_next; for (int i = 0; i < FLAGS_total_keys; ++i) { std::string key = "k" + std::to_string(i); std::string value = "v" + std::to_string(i); std::unique_ptr iter(db->NewIterator(read_options)); get_perf_context()->Reset(); iter->Seek(key); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(iter->value().ToString(), value); hist_seek.Add(get_perf_context()->user_key_comparison_count); } std::unique_ptr iter(db->NewIterator(read_options)); for (iter->SeekToFirst(); iter->Valid();) { get_perf_context()->Reset(); iter->Next(); hist_next.Add(get_perf_context()->user_key_comparison_count); } ASSERT_OK(iter->status()); if (FLAGS_verbose) { std::cout << "Seek:\n" << hist_seek.ToString() << "Next:\n" << hist_next.ToString(); } } TEST_F(PerfContextTest, DBMutexLockCounter) { int stats_code[] = {0, static_cast(DB_MUTEX_WAIT_MICROS)}; for (PerfLevel perf_level_test : {PerfLevel::kEnableTimeExceptForMutex, PerfLevel::kEnableTime}) { for (int c = 0; c < 2; ++c) { InstrumentedMutex mutex(nullptr, SystemClock::Default().get(), stats_code[c]); mutex.Lock(); ROCKSDB_NAMESPACE::port::Thread child_thread([&] { SetPerfLevel(perf_level_test); get_perf_context()->Reset(); ASSERT_EQ(get_perf_context()->db_mutex_lock_nanos, 0); mutex.Lock(); mutex.Unlock(); if (perf_level_test == PerfLevel::kEnableTimeExceptForMutex || stats_code[c] != DB_MUTEX_WAIT_MICROS) { ASSERT_EQ(get_perf_context()->db_mutex_lock_nanos, 0); } else { // increment the counter only when it's a DB Mutex ASSERT_GT(get_perf_context()->db_mutex_lock_nanos, 0); } }); SystemClock::Default()->SleepForMicroseconds(100); mutex.Unlock(); child_thread.join(); } } } TEST_F(PerfContextTest, FalseDBMutexWait) { SetPerfLevel(kEnableTime); int stats_code[] = {0, static_cast(DB_MUTEX_WAIT_MICROS)}; for (int c = 0; c < 2; ++c) { InstrumentedMutex mutex(nullptr, SystemClock::Default().get(), stats_code[c]); InstrumentedCondVar lock(&mutex); get_perf_context()->Reset(); mutex.Lock(); lock.TimedWait(100); mutex.Unlock(); if (stats_code[c] == static_cast(DB_MUTEX_WAIT_MICROS)) { // increment the counter only when it's a DB Mutex ASSERT_GT(get_perf_context()->db_condition_wait_nanos, 0); } else { ASSERT_EQ(get_perf_context()->db_condition_wait_nanos, 0); } } } TEST_F(PerfContextTest, ToString) { get_perf_context()->Reset(); get_perf_context()->block_read_count = 12345; std::string zero_included = get_perf_context()->ToString(); ASSERT_NE(std::string::npos, zero_included.find("= 0")); ASSERT_NE(std::string::npos, zero_included.find("= 12345")); std::string zero_excluded = get_perf_context()->ToString(true); ASSERT_EQ(std::string::npos, zero_excluded.find("= 0")); ASSERT_NE(std::string::npos, zero_excluded.find("= 12345")); } TEST_F(PerfContextTest, MergeOperatorTime) { ASSERT_OK(DestroyDB(kDbName, Options())); DB* db; Options options; options.create_if_missing = true; options.merge_operator = MergeOperators::CreateStringAppendOperator(); Status s = DB::Open(options, kDbName, &db); EXPECT_OK(s); std::string val; ASSERT_OK(db->Merge(WriteOptions(), "k1", "val1")); ASSERT_OK(db->Merge(WriteOptions(), "k1", "val2")); ASSERT_OK(db->Merge(WriteOptions(), "k1", "val3")); ASSERT_OK(db->Merge(WriteOptions(), "k1", "val4")); SetPerfLevel(kEnableTime); get_perf_context()->Reset(); ASSERT_OK(db->Get(ReadOptions(), "k1", &val)); #ifdef OS_SOLARIS for (int i = 0; i < 100; i++) { ASSERT_OK(db->Get(ReadOptions(), "k1", &val)); } #endif EXPECT_GT(get_perf_context()->merge_operator_time_nanos, 0); ASSERT_OK(db->Flush(FlushOptions())); get_perf_context()->Reset(); ASSERT_OK(db->Get(ReadOptions(), "k1", &val)); #ifdef OS_SOLARIS for (int i = 0; i < 100; i++) { ASSERT_OK(db->Get(ReadOptions(), "k1", &val)); } #endif EXPECT_GT(get_perf_context()->merge_operator_time_nanos, 0); ASSERT_OK(db->CompactRange(CompactRangeOptions(), nullptr, nullptr)); get_perf_context()->Reset(); ASSERT_OK(db->Get(ReadOptions(), "k1", &val)); #ifdef OS_SOLARIS for (int i = 0; i < 100; i++) { ASSERT_OK(db->Get(ReadOptions(), "k1", &val)); } #endif EXPECT_GT(get_perf_context()->merge_operator_time_nanos, 0); delete db; } TEST_F(PerfContextTest, CopyAndMove) { // Assignment operator { get_perf_context()->Reset(); get_perf_context()->EnablePerLevelPerfContext(); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 5); ASSERT_EQ( 1, (*(get_perf_context()->level_to_perf_context))[5].bloom_filter_useful); PerfContext perf_context_assign; perf_context_assign = *get_perf_context(); ASSERT_EQ( 1, (*(perf_context_assign.level_to_perf_context))[5].bloom_filter_useful); get_perf_context()->ClearPerLevelPerfContext(); get_perf_context()->Reset(); ASSERT_EQ( 1, (*(perf_context_assign.level_to_perf_context))[5].bloom_filter_useful); perf_context_assign.ClearPerLevelPerfContext(); perf_context_assign.Reset(); } // Copy constructor { get_perf_context()->Reset(); get_perf_context()->EnablePerLevelPerfContext(); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 5); ASSERT_EQ( 1, (*(get_perf_context()->level_to_perf_context))[5].bloom_filter_useful); PerfContext perf_context_copy(*get_perf_context()); ASSERT_EQ( 1, (*(perf_context_copy.level_to_perf_context))[5].bloom_filter_useful); get_perf_context()->ClearPerLevelPerfContext(); get_perf_context()->Reset(); ASSERT_EQ( 1, (*(perf_context_copy.level_to_perf_context))[5].bloom_filter_useful); perf_context_copy.ClearPerLevelPerfContext(); perf_context_copy.Reset(); } // Move constructor { get_perf_context()->Reset(); get_perf_context()->EnablePerLevelPerfContext(); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 5); ASSERT_EQ( 1, (*(get_perf_context()->level_to_perf_context))[5].bloom_filter_useful); PerfContext perf_context_move = std::move(*get_perf_context()); ASSERT_EQ( 1, (*(perf_context_move.level_to_perf_context))[5].bloom_filter_useful); get_perf_context()->ClearPerLevelPerfContext(); get_perf_context()->Reset(); ASSERT_EQ( 1, (*(perf_context_move.level_to_perf_context))[5].bloom_filter_useful); perf_context_move.ClearPerLevelPerfContext(); perf_context_move.Reset(); } } TEST_F(PerfContextTest, PerfContextDisableEnable) { get_perf_context()->Reset(); get_perf_context()->EnablePerLevelPerfContext(); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, 1, 0); get_perf_context()->DisablePerLevelPerfContext(); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 5); get_perf_context()->EnablePerLevelPerfContext(); PERF_COUNTER_BY_LEVEL_ADD(block_cache_hit_count, 1, 0); get_perf_context()->DisablePerLevelPerfContext(); PerfContext perf_context_copy(*get_perf_context()); ASSERT_EQ(1, (*(perf_context_copy.level_to_perf_context))[0] .bloom_filter_full_positive); // this was set when per level perf context is disabled, should not be copied ASSERT_NE( 1, (*(perf_context_copy.level_to_perf_context))[5].bloom_filter_useful); ASSERT_EQ( 1, (*(perf_context_copy.level_to_perf_context))[0].block_cache_hit_count); perf_context_copy.ClearPerLevelPerfContext(); perf_context_copy.Reset(); get_perf_context()->ClearPerLevelPerfContext(); get_perf_context()->Reset(); } TEST_F(PerfContextTest, PerfContextByLevelGetSet) { get_perf_context()->Reset(); get_perf_context()->EnablePerLevelPerfContext(); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, 1, 0); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 5); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 7); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 7); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_true_positive, 1, 2); PERF_COUNTER_BY_LEVEL_ADD(block_cache_hit_count, 1, 0); PERF_COUNTER_BY_LEVEL_ADD(block_cache_hit_count, 5, 2); PERF_COUNTER_BY_LEVEL_ADD(block_cache_miss_count, 2, 3); PERF_COUNTER_BY_LEVEL_ADD(block_cache_miss_count, 4, 1); ASSERT_EQ( 0, (*(get_perf_context()->level_to_perf_context))[0].bloom_filter_useful); ASSERT_EQ( 1, (*(get_perf_context()->level_to_perf_context))[5].bloom_filter_useful); ASSERT_EQ( 2, (*(get_perf_context()->level_to_perf_context))[7].bloom_filter_useful); ASSERT_EQ(1, (*(get_perf_context()->level_to_perf_context))[0] .bloom_filter_full_positive); ASSERT_EQ(1, (*(get_perf_context()->level_to_perf_context))[2] .bloom_filter_full_true_positive); ASSERT_EQ( 1, (*(get_perf_context()->level_to_perf_context))[0].block_cache_hit_count); ASSERT_EQ( 5, (*(get_perf_context()->level_to_perf_context))[2].block_cache_hit_count); ASSERT_EQ( 2, (*(get_perf_context()->level_to_perf_context))[3].block_cache_miss_count); ASSERT_EQ( 4, (*(get_perf_context()->level_to_perf_context))[1].block_cache_miss_count); std::string zero_excluded = get_perf_context()->ToString(true); ASSERT_NE(std::string::npos, zero_excluded.find("bloom_filter_useful = 1@level5, 2@level7")); ASSERT_NE(std::string::npos, zero_excluded.find("bloom_filter_full_positive = 1@level0")); ASSERT_NE(std::string::npos, zero_excluded.find("bloom_filter_full_true_positive = 1@level2")); ASSERT_NE(std::string::npos, zero_excluded.find("block_cache_hit_count = 1@level0, 5@level2")); ASSERT_NE(std::string::npos, zero_excluded.find("block_cache_miss_count = 4@level1, 2@level3")); } TEST_F(PerfContextTest, CPUTimer) { if (SystemClock::Default()->CPUNanos() == 0) { ROCKSDB_GTEST_SKIP("Target without CPUNanos support"); return; } ASSERT_OK(DestroyDB(kDbName, Options())); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; SetPerfLevel(PerfLevel::kEnableTimeAndCPUTimeExceptForMutex); std::string max_str = "0"; for (int i = 0; i < FLAGS_total_keys; ++i) { std::string i_str = std::to_string(i); std::string key = "k" + i_str; std::string value = "v" + i_str; max_str = max_str > i_str ? max_str : i_str; ASSERT_OK(db->Put(write_options, key, value)); } std::string last_key = "k" + max_str; std::string last_value = "v" + max_str; { // Get get_perf_context()->Reset(); std::string value; ASSERT_OK(db->Get(read_options, "k0", &value)); ASSERT_EQ(value, "v0"); if (FLAGS_verbose) { std::cout << "Get CPU time nanos: " << get_perf_context()->get_cpu_nanos << "ns\n"; } // Iter std::unique_ptr iter(db->NewIterator(read_options)); // Seek get_perf_context()->Reset(); iter->Seek(last_key); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(last_value, iter->value().ToString()); if (FLAGS_verbose) { std::cout << "Iter Seek CPU time nanos: " << get_perf_context()->iter_seek_cpu_nanos << "ns\n"; } // SeekForPrev get_perf_context()->Reset(); iter->SeekForPrev(last_key); ASSERT_TRUE(iter->Valid()); if (FLAGS_verbose) { std::cout << "Iter SeekForPrev CPU time nanos: " << get_perf_context()->iter_seek_cpu_nanos << "ns\n"; } // SeekToLast get_perf_context()->Reset(); iter->SeekToLast(); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(last_value, iter->value().ToString()); if (FLAGS_verbose) { std::cout << "Iter SeekToLast CPU time nanos: " << get_perf_context()->iter_seek_cpu_nanos << "ns\n"; } // SeekToFirst get_perf_context()->Reset(); iter->SeekToFirst(); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("v0", iter->value().ToString()); if (FLAGS_verbose) { std::cout << "Iter SeekToFirst CPU time nanos: " << get_perf_context()->iter_seek_cpu_nanos << "ns\n"; } // Next get_perf_context()->Reset(); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("v1", iter->value().ToString()); if (FLAGS_verbose) { std::cout << "Iter Next CPU time nanos: " << get_perf_context()->iter_next_cpu_nanos << "ns\n"; } // Prev get_perf_context()->Reset(); iter->Prev(); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("v0", iter->value().ToString()); if (FLAGS_verbose) { std::cout << "Iter Prev CPU time nanos: " << get_perf_context()->iter_prev_cpu_nanos << "ns\n"; } // monotonically increasing get_perf_context()->Reset(); auto count = get_perf_context()->iter_seek_cpu_nanos; for (int i = 0; i < FLAGS_total_keys; ++i) { iter->Seek("k" + std::to_string(i)); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("v" + std::to_string(i), iter->value().ToString()); auto next_count = get_perf_context()->iter_seek_cpu_nanos; ASSERT_GT(next_count, count); count = next_count; } // iterator creation/destruction; multiple iterators { std::unique_ptr iter2(db->NewIterator(read_options)); ASSERT_EQ(count, get_perf_context()->iter_seek_cpu_nanos); iter2->Seek(last_key); ASSERT_TRUE(iter2->Valid()); ASSERT_EQ(last_value, iter2->value().ToString()); ASSERT_GT(get_perf_context()->iter_seek_cpu_nanos, count); count = get_perf_context()->iter_seek_cpu_nanos; } ASSERT_EQ(count, get_perf_context()->iter_seek_cpu_nanos); } } } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); for (int i = 1; i < argc; i++) { int n; char junk; if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) { FLAGS_write_buffer_size = n; } if (sscanf(argv[i], "--total_keys=%d%c", &n, &junk) == 1) { FLAGS_total_keys = n; } if (sscanf(argv[i], "--random_key=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_random_key = n; } if (sscanf(argv[i], "--use_set_based_memetable=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_use_set_based_memetable = n; } if (sscanf(argv[i], "--verbose=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_verbose = n; } } if (FLAGS_verbose) { std::cout << kDbName << "\n"; } return RUN_ALL_TESTS(); }