// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #ifndef ROCKSDB_LITE #ifndef GFLAGS #include <cstdio> int main() { fprintf(stderr, "Please install gflags to run this test... Skipping...\n"); return 0; } #else #include <algorithm> #include <iostream> #include <vector> #include "db/db_impl/db_impl.h" #include "monitoring/histogram.h" #include "rocksdb/comparator.h" #include "rocksdb/db.h" #include "rocksdb/filter_policy.h" #include "rocksdb/memtablerep.h" #include "rocksdb/perf_context.h" #include "rocksdb/slice_transform.h" #include "rocksdb/system_clock.h" #include "rocksdb/table.h" #include "test_util/testharness.h" #include "util/cast_util.h" #include "util/coding.h" #include "util/gflags_compat.h" #include "util/random.h" #include "util/stop_watch.h" #include "util/string_util.h" #include "utilities/merge_operators.h" using GFLAGS_NAMESPACE::ParseCommandLineFlags; DEFINE_bool(trigger_deadlock, false, "issue delete in range scan to trigger PrefixHashMap deadlock"); DEFINE_int32(bucket_count, 100000, "number of buckets"); DEFINE_uint64(num_locks, 10001, "number of locks"); DEFINE_bool(random_prefix, false, "randomize prefix"); DEFINE_uint64(total_prefixes, 100000, "total number of prefixes"); DEFINE_uint64(items_per_prefix, 1, "total number of values per prefix"); DEFINE_int64(write_buffer_size, 33554432, ""); DEFINE_int32(max_write_buffer_number, 2, ""); DEFINE_int32(min_write_buffer_number_to_merge, 1, ""); DEFINE_int32(skiplist_height, 4, ""); DEFINE_double(memtable_prefix_bloom_size_ratio, 0.1, ""); DEFINE_int32(memtable_huge_page_size, 2 * 1024 * 1024, ""); DEFINE_int32(value_size, 40, ""); DEFINE_bool(enable_print, false, "Print options generated to console."); // Path to the database on file system const std::string kDbName = ROCKSDB_NAMESPACE::test::PerThreadDBPath("prefix_test"); namespace ROCKSDB_NAMESPACE { struct TestKey { uint64_t prefix; uint64_t sorted; TestKey(uint64_t _prefix, uint64_t _sorted) : prefix(_prefix), sorted(_sorted) {} }; // return a slice backed by test_key inline Slice TestKeyToSlice(std::string &s, const TestKey& test_key) { s.clear(); PutFixed64(&s, test_key.prefix); PutFixed64(&s, test_key.sorted); return Slice(s.c_str(), s.size()); } inline const TestKey SliceToTestKey(const Slice& slice) { return TestKey(DecodeFixed64(slice.data()), DecodeFixed64(slice.data() + 8)); } class TestKeyComparator : public Comparator { public: // Compare needs to be aware of the possibility of a and/or b is // prefix only int Compare(const Slice& a, const Slice& b) const override { const TestKey kkey_a = SliceToTestKey(a); const TestKey kkey_b = SliceToTestKey(b); const TestKey *key_a = &kkey_a; const TestKey *key_b = &kkey_b; if (key_a->prefix != key_b->prefix) { if (key_a->prefix < key_b->prefix) return -1; if (key_a->prefix > key_b->prefix) return 1; } else { EXPECT_TRUE(key_a->prefix == key_b->prefix); // note, both a and b could be prefix only if (a.size() != b.size()) { // one of them is prefix EXPECT_TRUE( (a.size() == sizeof(uint64_t) && b.size() == sizeof(TestKey)) || (b.size() == sizeof(uint64_t) && a.size() == sizeof(TestKey))); if (a.size() < b.size()) return -1; if (a.size() > b.size()) return 1; } else { // both a and b are prefix if (a.size() == sizeof(uint64_t)) { return 0; } // both a and b are whole key EXPECT_TRUE(a.size() == sizeof(TestKey) && b.size() == sizeof(TestKey)); if (key_a->sorted < key_b->sorted) return -1; if (key_a->sorted > key_b->sorted) return 1; if (key_a->sorted == key_b->sorted) return 0; } } return 0; } bool operator()(const TestKey& a, const TestKey& b) const { std::string sa, sb; return Compare(TestKeyToSlice(sa, a), TestKeyToSlice(sb, b)) < 0; } const char* Name() const override { return "TestKeyComparator"; } void FindShortestSeparator(std::string* /*start*/, const Slice& /*limit*/) const override {} void FindShortSuccessor(std::string* /*key*/) const override {} }; namespace { void PutKey(DB* db, WriteOptions write_options, uint64_t prefix, uint64_t suffix, const Slice& value) { TestKey test_key(prefix, suffix); std::string s; Slice key = TestKeyToSlice(s, test_key); ASSERT_OK(db->Put(write_options, key, value)); } void PutKey(DB* db, WriteOptions write_options, const TestKey& test_key, const Slice& value) { std::string s; Slice key = TestKeyToSlice(s, test_key); ASSERT_OK(db->Put(write_options, key, value)); } void MergeKey(DB* db, WriteOptions write_options, const TestKey& test_key, const Slice& value) { std::string s; Slice key = TestKeyToSlice(s, test_key); ASSERT_OK(db->Merge(write_options, key, value)); } void DeleteKey(DB* db, WriteOptions write_options, const TestKey& test_key) { std::string s; Slice key = TestKeyToSlice(s, test_key); ASSERT_OK(db->Delete(write_options, key)); } void SeekIterator(Iterator* iter, uint64_t prefix, uint64_t suffix) { TestKey test_key(prefix, suffix); std::string s; Slice key = TestKeyToSlice(s, test_key); iter->Seek(key); } const std::string kNotFoundResult = "NOT_FOUND"; std::string Get(DB* db, const ReadOptions& read_options, uint64_t prefix, uint64_t suffix) { TestKey test_key(prefix, suffix); std::string s2; Slice key = TestKeyToSlice(s2, test_key); std::string result; Status s = db->Get(read_options, key, &result); if (s.IsNotFound()) { result = kNotFoundResult; } else if (!s.ok()) { result = s.ToString(); } return result; } class SamePrefixTransform : public SliceTransform { private: const Slice prefix_; std::string name_; public: explicit SamePrefixTransform(const Slice& prefix) : prefix_(prefix), name_("rocksdb.SamePrefix." + prefix.ToString()) {} const char* Name() const override { return name_.c_str(); } Slice Transform(const Slice& src) const override { assert(InDomain(src)); return prefix_; } bool InDomain(const Slice& src) const override { if (src.size() >= prefix_.size()) { return Slice(src.data(), prefix_.size()) == prefix_; } return false; } bool InRange(const Slice& dst) const override { return dst == prefix_; } bool FullLengthEnabled(size_t* /*len*/) const override { return false; } }; } // namespace class PrefixTest : public testing::Test { public: std::shared_ptr<DB> OpenDb() { DB* db; options.create_if_missing = true; options.write_buffer_size = FLAGS_write_buffer_size; options.max_write_buffer_number = FLAGS_max_write_buffer_number; options.min_write_buffer_number_to_merge = FLAGS_min_write_buffer_number_to_merge; options.memtable_prefix_bloom_size_ratio = FLAGS_memtable_prefix_bloom_size_ratio; options.memtable_huge_page_size = FLAGS_memtable_huge_page_size; options.prefix_extractor.reset(NewFixedPrefixTransform(8)); BlockBasedTableOptions bbto; bbto.filter_policy.reset(NewBloomFilterPolicy(10, false)); bbto.whole_key_filtering = false; options.table_factory.reset(NewBlockBasedTableFactory(bbto)); options.allow_concurrent_memtable_write = false; Status s = DB::Open(options, kDbName, &db); EXPECT_OK(s); return std::shared_ptr<DB>(db); } void FirstOption() { option_config_ = kBegin; } bool NextOptions(int bucket_count) { // skip some options option_config_++; if (option_config_ < kEnd) { options.prefix_extractor.reset(NewFixedPrefixTransform(8)); switch(option_config_) { case kHashSkipList: options.memtable_factory.reset( NewHashSkipListRepFactory(bucket_count, FLAGS_skiplist_height)); return true; case kHashLinkList: options.memtable_factory.reset( NewHashLinkListRepFactory(bucket_count)); return true; case kHashLinkListHugePageTlb: options.memtable_factory.reset( NewHashLinkListRepFactory(bucket_count, 2 * 1024 * 1024)); return true; case kHashLinkListTriggerSkipList: options.memtable_factory.reset( NewHashLinkListRepFactory(bucket_count, 0, 3)); return true; default: return false; } } return false; } PrefixTest() : option_config_(kBegin) { options.comparator = new TestKeyComparator(); } ~PrefixTest() override { delete options.comparator; } protected: enum OptionConfig { kBegin, kHashSkipList, kHashLinkList, kHashLinkListHugePageTlb, kHashLinkListTriggerSkipList, kEnd }; int option_config_; Options options; }; TEST(SamePrefixTest, InDomainTest) { DB* db; Options options; options.create_if_missing = true; options.prefix_extractor.reset(new SamePrefixTransform("HHKB")); BlockBasedTableOptions bbto; bbto.filter_policy.reset(NewBloomFilterPolicy(10, false)); bbto.whole_key_filtering = false; options.table_factory.reset(NewBlockBasedTableFactory(bbto)); WriteOptions write_options; ReadOptions read_options; { ASSERT_OK(DestroyDB(kDbName, Options())); ASSERT_OK(DB::Open(options, kDbName, &db)); ASSERT_OK(db->Put(write_options, "HHKB pro2", "Mar 24, 2006")); ASSERT_OK(db->Put(write_options, "HHKB pro2 Type-S", "June 29, 2011")); ASSERT_OK(db->Put(write_options, "Realforce 87u", "idk")); ASSERT_OK(db->Flush(FlushOptions())); std::string result; auto db_iter = db->NewIterator(ReadOptions()); db_iter->Seek("Realforce 87u"); ASSERT_TRUE(db_iter->Valid()); ASSERT_OK(db_iter->status()); ASSERT_EQ(db_iter->key(), "Realforce 87u"); ASSERT_EQ(db_iter->value(), "idk"); delete db_iter; delete db; ASSERT_OK(DestroyDB(kDbName, Options())); } { ASSERT_OK(DB::Open(options, kDbName, &db)); ASSERT_OK(db->Put(write_options, "pikachu", "1")); ASSERT_OK(db->Put(write_options, "Meowth", "1")); ASSERT_OK(db->Put(write_options, "Mewtwo", "idk")); ASSERT_OK(db->Flush(FlushOptions())); std::string result; auto db_iter = db->NewIterator(ReadOptions()); db_iter->Seek("Mewtwo"); ASSERT_TRUE(db_iter->Valid()); ASSERT_OK(db_iter->status()); delete db_iter; delete db; ASSERT_OK(DestroyDB(kDbName, Options())); } } TEST_F(PrefixTest, TestResult) { for (int num_buckets = 1; num_buckets <= 2; num_buckets++) { FirstOption(); while (NextOptions(num_buckets)) { std::cout << "*** Mem table: " << options.memtable_factory->Name() << " number of buckets: " << num_buckets << std::endl; ASSERT_OK(DestroyDB(kDbName, Options())); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; // 1. Insert one row. Slice v16("v16"); PutKey(db.get(), write_options, 1, 6, v16); std::unique_ptr<Iterator> iter(db->NewIterator(read_options)); SeekIterator(iter.get(), 1, 6); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); iter->Next(); ASSERT_TRUE(!iter->Valid()); ASSERT_OK(iter->status()); SeekIterator(iter.get(), 2, 0); ASSERT_TRUE(!iter->Valid()); ASSERT_OK(iter->status()); ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6)); ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 1, 5)); ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 1, 7)); ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 0, 6)); ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 2, 6)); // 2. Insert an entry for the same prefix as the last entry in the bucket. Slice v17("v17"); PutKey(db.get(), write_options, 1, 7, v17); iter.reset(db->NewIterator(read_options)); SeekIterator(iter.get(), 1, 7); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); SeekIterator(iter.get(), 1, 6); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); iter->Next(); ASSERT_TRUE(!iter->Valid()); ASSERT_OK(iter->status()); SeekIterator(iter.get(), 2, 0); ASSERT_TRUE(!iter->Valid()); ASSERT_OK(iter->status()); // 3. Insert an entry for the same prefix as the head of the bucket. Slice v15("v15"); PutKey(db.get(), write_options, 1, 5, v15); iter.reset(db->NewIterator(read_options)); SeekIterator(iter.get(), 1, 7); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v15 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v15 == iter->value()); ASSERT_EQ(v15.ToString(), Get(db.get(), read_options, 1, 5)); ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6)); ASSERT_EQ(v17.ToString(), Get(db.get(), read_options, 1, 7)); // 4. Insert an entry with a larger prefix Slice v22("v22"); PutKey(db.get(), write_options, 2, 2, v22); iter.reset(db->NewIterator(read_options)); SeekIterator(iter.get(), 2, 2); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v22 == iter->value()); SeekIterator(iter.get(), 2, 0); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v22 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v15 == iter->value()); SeekIterator(iter.get(), 1, 7); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); // 5. Insert an entry with a smaller prefix Slice v02("v02"); PutKey(db.get(), write_options, 0, 2, v02); iter.reset(db->NewIterator(read_options)); SeekIterator(iter.get(), 0, 2); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v02 == iter->value()); SeekIterator(iter.get(), 0, 0); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v02 == iter->value()); SeekIterator(iter.get(), 2, 0); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v22 == iter->value()); SeekIterator(iter.get(), 1, 5); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v15 == iter->value()); SeekIterator(iter.get(), 1, 7); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); // 6. Insert to the beginning and the end of the first prefix Slice v13("v13"); Slice v18("v18"); PutKey(db.get(), write_options, 1, 3, v13); PutKey(db.get(), write_options, 1, 8, v18); iter.reset(db->NewIterator(read_options)); SeekIterator(iter.get(), 1, 7); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); SeekIterator(iter.get(), 1, 3); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v13 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v15 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v18 == iter->value()); SeekIterator(iter.get(), 0, 0); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v02 == iter->value()); SeekIterator(iter.get(), 2, 0); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v22 == iter->value()); ASSERT_EQ(v22.ToString(), Get(db.get(), read_options, 2, 2)); ASSERT_EQ(v02.ToString(), Get(db.get(), read_options, 0, 2)); ASSERT_EQ(v13.ToString(), Get(db.get(), read_options, 1, 3)); ASSERT_EQ(v15.ToString(), Get(db.get(), read_options, 1, 5)); ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6)); ASSERT_EQ(v17.ToString(), Get(db.get(), read_options, 1, 7)); ASSERT_EQ(v18.ToString(), Get(db.get(), read_options, 1, 8)); } } } // Show results in prefix TEST_F(PrefixTest, PrefixValid) { for (int num_buckets = 1; num_buckets <= 2; num_buckets++) { FirstOption(); while (NextOptions(num_buckets)) { std::cout << "*** Mem table: " << options.memtable_factory->Name() << " number of buckets: " << num_buckets << std::endl; ASSERT_OK(DestroyDB(kDbName, Options())); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; // Insert keys with common prefix and one key with different Slice v16("v16"); Slice v17("v17"); Slice v18("v18"); Slice v19("v19"); PutKey(db.get(), write_options, 12345, 6, v16); PutKey(db.get(), write_options, 12345, 7, v17); PutKey(db.get(), write_options, 12345, 8, v18); PutKey(db.get(), write_options, 12345, 9, v19); PutKey(db.get(), write_options, 12346, 8, v16); ASSERT_OK(db->Flush(FlushOptions())); TestKey test_key(12346, 8); std::string s; ASSERT_OK(db->Delete(write_options, TestKeyToSlice(s, test_key))); ASSERT_OK(db->Flush(FlushOptions())); read_options.prefix_same_as_start = true; std::unique_ptr<Iterator> iter(db->NewIterator(read_options)); SeekIterator(iter.get(), 12345, 6); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v16 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v17 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v18 == iter->value()); iter->Next(); ASSERT_TRUE(iter->Valid()); ASSERT_TRUE(v19 == iter->value()); iter->Next(); ASSERT_FALSE(iter->Valid()); ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 12346, 8)); // Verify seeking past the prefix won't return a result. SeekIterator(iter.get(), 12345, 10); ASSERT_TRUE(!iter->Valid()); ASSERT_OK(iter->status()); } } } TEST_F(PrefixTest, DynamicPrefixIterator) { while (NextOptions(FLAGS_bucket_count)) { std::cout << "*** Mem table: " << options.memtable_factory->Name() << std::endl; ASSERT_OK(DestroyDB(kDbName, Options())); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; std::vector<uint64_t> prefixes; for (uint64_t i = 0; i < FLAGS_total_prefixes; ++i) { prefixes.push_back(i); } if (FLAGS_random_prefix) { RandomShuffle(prefixes.begin(), prefixes.end()); } HistogramImpl hist_put_time; HistogramImpl hist_put_comparison; // insert x random prefix, each with y continuous element. for (auto prefix : prefixes) { for (uint64_t sorted = 0; sorted < FLAGS_items_per_prefix; sorted++) { TestKey test_key(prefix, sorted); std::string s; Slice key = TestKeyToSlice(s, test_key); std::string value(FLAGS_value_size, 0); get_perf_context()->Reset(); StopWatchNano timer(SystemClock::Default().get(), true); ASSERT_OK(db->Put(write_options, key, value)); hist_put_time.Add(timer.ElapsedNanos()); hist_put_comparison.Add(get_perf_context()->user_key_comparison_count); } } std::cout << "Put key comparison: \n" << hist_put_comparison.ToString() << "Put time: \n" << hist_put_time.ToString(); // test seek existing keys HistogramImpl hist_seek_time; HistogramImpl hist_seek_comparison; std::unique_ptr<Iterator> iter(db->NewIterator(read_options)); for (auto prefix : prefixes) { TestKey test_key(prefix, FLAGS_items_per_prefix / 2); std::string s; Slice key = TestKeyToSlice(s, test_key); std::string value = "v" + ToString(0); get_perf_context()->Reset(); StopWatchNano timer(SystemClock::Default().get(), true); auto key_prefix = options.prefix_extractor->Transform(key); uint64_t total_keys = 0; for (iter->Seek(key); iter->Valid() && iter->key().starts_with(key_prefix); iter->Next()) { if (FLAGS_trigger_deadlock) { std::cout << "Behold the deadlock!\n"; db->Delete(write_options, iter->key()); } total_keys++; } hist_seek_time.Add(timer.ElapsedNanos()); hist_seek_comparison.Add(get_perf_context()->user_key_comparison_count); ASSERT_EQ(total_keys, FLAGS_items_per_prefix - FLAGS_items_per_prefix/2); } std::cout << "Seek key comparison: \n" << hist_seek_comparison.ToString() << "Seek time: \n" << hist_seek_time.ToString(); // test non-existing keys HistogramImpl hist_no_seek_time; HistogramImpl hist_no_seek_comparison; for (auto prefix = FLAGS_total_prefixes; prefix < FLAGS_total_prefixes + 10000; prefix++) { TestKey test_key(prefix, 0); std::string s; Slice key = TestKeyToSlice(s, test_key); get_perf_context()->Reset(); StopWatchNano timer(SystemClock::Default().get(), true); iter->Seek(key); hist_no_seek_time.Add(timer.ElapsedNanos()); hist_no_seek_comparison.Add(get_perf_context()->user_key_comparison_count); ASSERT_TRUE(!iter->Valid()); ASSERT_OK(iter->status()); } std::cout << "non-existing Seek key comparison: \n" << hist_no_seek_comparison.ToString() << "non-existing Seek time: \n" << hist_no_seek_time.ToString(); } } TEST_F(PrefixTest, PrefixSeekModePrev) { // Only for SkipListFactory options.memtable_factory.reset(new SkipListFactory); options.merge_operator = MergeOperators::CreatePutOperator(); options.write_buffer_size = 1024 * 1024; Random rnd(1); for (size_t m = 1; m < 100; m++) { std::cout << "[" + std::to_string(m) + "]" + "*** Mem table: " << options.memtable_factory->Name() << std::endl; ASSERT_OK(DestroyDB(kDbName, Options())); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; std::map<TestKey, std::string, TestKeyComparator> entry_maps[3], whole_map; for (uint64_t i = 0; i < 10; i++) { int div = i % 3 + 1; for (uint64_t j = 0; j < 10; j++) { whole_map[TestKey(i, j)] = entry_maps[rnd.Uniform(div)][TestKey(i, j)] = 'v' + std::to_string(i) + std::to_string(j); } } std::map<TestKey, std::string, TestKeyComparator> type_map; for (size_t i = 0; i < 3; i++) { for (auto& kv : entry_maps[i]) { if (rnd.OneIn(3)) { PutKey(db.get(), write_options, kv.first, kv.second); type_map[kv.first] = "value"; } else { MergeKey(db.get(), write_options, kv.first, kv.second); type_map[kv.first] = "merge"; } } if (i < 2) { ASSERT_OK(db->Flush(FlushOptions())); } } for (size_t i = 0; i < 2; i++) { for (auto& kv : entry_maps[i]) { if (rnd.OneIn(10)) { whole_map.erase(kv.first); DeleteKey(db.get(), write_options, kv.first); entry_maps[2][kv.first] = "delete"; } } } if (FLAGS_enable_print) { for (size_t i = 0; i < 3; i++) { for (auto& kv : entry_maps[i]) { std::cout << "[" << i << "]" << kv.first.prefix << kv.first.sorted << " " << kv.second + " " + type_map[kv.first] << std::endl; } } } std::unique_ptr<Iterator> iter(db->NewIterator(read_options)); for (uint64_t prefix = 0; prefix < 10; prefix++) { uint64_t start_suffix = rnd.Uniform(9); SeekIterator(iter.get(), prefix, start_suffix); auto it = whole_map.find(TestKey(prefix, start_suffix)); if (it == whole_map.end()) { continue; } ASSERT_NE(it, whole_map.end()); ASSERT_TRUE(iter->Valid()); if (FLAGS_enable_print) { std::cout << "round " << prefix << " iter: " << SliceToTestKey(iter->key()).prefix << SliceToTestKey(iter->key()).sorted << " | map: " << it->first.prefix << it->first.sorted << " | " << iter->value().ToString() << " " << it->second << std::endl; } ASSERT_EQ(iter->value(), it->second); uint64_t stored_prefix = prefix; for (size_t k = 0; k < 9; k++) { if (rnd.OneIn(2) || it == whole_map.begin()) { iter->Next(); ++it; if (FLAGS_enable_print) { std::cout << "Next >> "; } } else { iter->Prev(); it--; if (FLAGS_enable_print) { std::cout << "Prev >> "; } } if (!iter->Valid() || SliceToTestKey(iter->key()).prefix != stored_prefix) { break; } ASSERT_OK(iter->status()); stored_prefix = SliceToTestKey(iter->key()).prefix; ASSERT_TRUE(iter->Valid()); ASSERT_NE(it, whole_map.end()); ASSERT_EQ(iter->value(), it->second); if (FLAGS_enable_print) { std::cout << "iter: " << SliceToTestKey(iter->key()).prefix << SliceToTestKey(iter->key()).sorted << " | map: " << it->first.prefix << it->first.sorted << " | " << iter->value().ToString() << " " << it->second << std::endl; } } } } } TEST_F(PrefixTest, PrefixSeekModePrev2) { // Only for SkipListFactory // test the case // iter1 iter2 // | prefix | suffix | | prefix | suffix | // | 1 | 1 | | 1 | 2 | // | 1 | 3 | | 1 | 4 | // | 2 | 1 | | 3 | 3 | // | 2 | 2 | | 3 | 4 | // after seek(15), iter1 will be at 21 and iter2 will be 33. // Then if call Prev() in prefix mode where SeekForPrev(21) gets called, // iter2 should turn to invalid state because of bloom filter. options.memtable_factory.reset(new SkipListFactory); options.write_buffer_size = 1024 * 1024; std::string v13("v13"); ASSERT_OK(DestroyDB(kDbName, Options())); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; PutKey(db.get(), write_options, TestKey(1, 2), "v12"); PutKey(db.get(), write_options, TestKey(1, 4), "v14"); PutKey(db.get(), write_options, TestKey(3, 3), "v33"); PutKey(db.get(), write_options, TestKey(3, 4), "v34"); ASSERT_OK(db->Flush(FlushOptions())); ASSERT_OK( static_cast_with_check<DBImpl>(db.get())->TEST_WaitForFlushMemTable()); PutKey(db.get(), write_options, TestKey(1, 1), "v11"); PutKey(db.get(), write_options, TestKey(1, 3), "v13"); PutKey(db.get(), write_options, TestKey(2, 1), "v21"); PutKey(db.get(), write_options, TestKey(2, 2), "v22"); ASSERT_OK(db->Flush(FlushOptions())); ASSERT_OK( static_cast_with_check<DBImpl>(db.get())->TEST_WaitForFlushMemTable()); std::unique_ptr<Iterator> iter(db->NewIterator(read_options)); SeekIterator(iter.get(), 1, 5); iter->Prev(); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(iter->value(), v13); } TEST_F(PrefixTest, PrefixSeekModePrev3) { // Only for SkipListFactory // test SeekToLast() with iterate_upper_bound_ in prefix_seek_mode options.memtable_factory.reset(new SkipListFactory); options.write_buffer_size = 1024 * 1024; std::string v14("v14"); TestKey upper_bound_key = TestKey(1, 5); std::string s; Slice upper_bound = TestKeyToSlice(s, upper_bound_key); { ASSERT_OK(DestroyDB(kDbName, Options())); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; read_options.iterate_upper_bound = &upper_bound; PutKey(db.get(), write_options, TestKey(1, 2), "v12"); PutKey(db.get(), write_options, TestKey(1, 4), "v14"); ASSERT_OK(db->Flush(FlushOptions())); ASSERT_OK( static_cast_with_check<DBImpl>(db.get())->TEST_WaitForFlushMemTable()); PutKey(db.get(), write_options, TestKey(1, 1), "v11"); PutKey(db.get(), write_options, TestKey(1, 3), "v13"); PutKey(db.get(), write_options, TestKey(2, 1), "v21"); PutKey(db.get(), write_options, TestKey(2, 2), "v22"); ASSERT_OK(db->Flush(FlushOptions())); ASSERT_OK( static_cast_with_check<DBImpl>(db.get())->TEST_WaitForFlushMemTable()); std::unique_ptr<Iterator> iter(db->NewIterator(read_options)); iter->SeekToLast(); ASSERT_EQ(iter->value(), v14); } { ASSERT_OK(DestroyDB(kDbName, Options())); auto db = OpenDb(); WriteOptions write_options; ReadOptions read_options; read_options.iterate_upper_bound = &upper_bound; PutKey(db.get(), write_options, TestKey(1, 2), "v12"); PutKey(db.get(), write_options, TestKey(1, 4), "v14"); PutKey(db.get(), write_options, TestKey(3, 3), "v33"); PutKey(db.get(), write_options, TestKey(3, 4), "v34"); ASSERT_OK(db->Flush(FlushOptions())); ASSERT_OK( static_cast_with_check<DBImpl>(db.get())->TEST_WaitForFlushMemTable()); PutKey(db.get(), write_options, TestKey(1, 1), "v11"); PutKey(db.get(), write_options, TestKey(1, 3), "v13"); ASSERT_OK(db->Flush(FlushOptions())); ASSERT_OK( static_cast_with_check<DBImpl>(db.get())->TEST_WaitForFlushMemTable()); std::unique_ptr<Iterator> iter(db->NewIterator(read_options)); iter->SeekToLast(); ASSERT_EQ(iter->value(), v14); } } } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); ParseCommandLineFlags(&argc, &argv, true); return RUN_ALL_TESTS(); } #endif // GFLAGS #else #include <stdio.h> int main(int /*argc*/, char** /*argv*/) { fprintf(stderr, "SKIPPED as HashSkipList and HashLinkList are not supported in " "ROCKSDB_LITE\n"); return 0; } #endif // !ROCKSDB_LITE