// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #ifndef ROCKSDB_LITE #ifndef GFLAGS #include int main() { fprintf(stderr, "Please install gflags to run block_cache_trace_analyzer_test\n"); return 0; } #else #include #include #include #include #include "rocksdb/db.h" #include "rocksdb/env.h" #include "rocksdb/status.h" #include "rocksdb/trace_reader_writer.h" #include "rocksdb/trace_record.h" #include "test_util/testharness.h" #include "test_util/testutil.h" #include "tools/block_cache_analyzer/block_cache_trace_analyzer.h" #include "trace_replay/block_cache_tracer.h" namespace ROCKSDB_NAMESPACE { namespace { const uint64_t kBlockSize = 1024; const std::string kBlockKeyPrefix = "test-block-"; const uint32_t kCFId = 0; const uint32_t kLevel = 1; const uint64_t kSSTStoringEvenKeys = 100; const uint64_t kSSTStoringOddKeys = 101; const std::string kRefKeyPrefix = "test-get-"; const uint64_t kNumKeysInBlock = 1024; const int kMaxArgCount = 100; const size_t kArgBufferSize = 100000; } // namespace class BlockCacheTracerTest : public testing::Test { public: BlockCacheTracerTest() { test_path_ = test::PerThreadDBPath("block_cache_trace_analyzer_test"); env_ = ROCKSDB_NAMESPACE::Env::Default(); EXPECT_OK(env_->CreateDir(test_path_)); trace_file_path_ = test_path_ + "/block_cache_trace"; block_cache_sim_config_path_ = test_path_ + "/block_cache_sim_config"; timeline_labels_ = "block,all,cf,sst,level,bt,caller,cf_sst,cf_level,cf_bt,cf_caller"; reuse_distance_labels_ = "block,all,cf,sst,level,bt,caller,cf_sst,cf_level,cf_bt,cf_caller"; reuse_distance_buckets_ = "1,1K,1M,1G"; reuse_interval_labels_ = "block,all,cf,sst,level,bt,cf_sst,cf_level,cf_bt"; reuse_interval_buckets_ = "1,10,100,1000"; reuse_lifetime_labels_ = "block,all,cf,sst,level,bt,cf_sst,cf_level,cf_bt"; reuse_lifetime_buckets_ = "1,10,100,1000"; analyzing_callers_ = "Get,Iterator"; access_count_buckets_ = "2,3,4,5,10"; analyze_get_spatial_locality_labels_ = "all"; analyze_get_spatial_locality_buckets_ = "10,20,30,40,50,60,70,80,90,100"; } ~BlockCacheTracerTest() override { if (getenv("KEEP_DB")) { printf("The trace file is still at %s\n", trace_file_path_.c_str()); return; } EXPECT_OK(env_->DeleteFile(trace_file_path_)); EXPECT_OK(env_->DeleteDir(test_path_)); } TableReaderCaller GetCaller(uint32_t key_id) { uint32_t n = key_id % 5; switch (n) { case 0: return TableReaderCaller::kPrefetch; case 1: return TableReaderCaller::kCompaction; case 2: return TableReaderCaller::kUserGet; case 3: return TableReaderCaller::kUserMultiGet; case 4: return TableReaderCaller::kUserIterator; } // This cannot happend. assert(false); return TableReaderCaller::kMaxBlockCacheLookupCaller; } void WriteBlockAccess(BlockCacheTraceWriter* writer, uint32_t from_key_id, TraceType block_type, uint32_t nblocks, bool is_referenced_key_null = false) { assert(writer); for (uint32_t i = 0; i < nblocks; i++) { uint32_t key_id = from_key_id + i; uint64_t timestamp = (key_id + 1) * kMicrosInSecond; BlockCacheTraceRecord record; record.block_type = block_type; record.block_size = kBlockSize + key_id; record.block_key = kBlockKeyPrefix + std::to_string(key_id); record.access_timestamp = timestamp; record.cf_id = kCFId; record.cf_name = kDefaultColumnFamilyName; record.caller = GetCaller(key_id); record.level = kLevel; if (key_id % 2 == 0) { record.sst_fd_number = kSSTStoringEvenKeys; } else { record.sst_fd_number = kSSTStoringOddKeys; } record.is_cache_hit = false; record.no_insert = false; // Provide these fields for all block types. // The writer should only write these fields for data blocks and the // caller is either GET or MGET. record.referenced_key = kRefKeyPrefix + std::to_string(key_id) + std::string(8, 0); record.referenced_key_exist_in_block = true; if (is_referenced_key_null && record.caller == TableReaderCaller::kUserMultiGet) { record.referenced_key = ""; record.get_from_user_specified_snapshot = true; } record.num_keys_in_block = kNumKeysInBlock; ASSERT_OK(writer->WriteBlockAccess( record, record.block_key, record.cf_name, record.referenced_key)); } } void AssertBlockAccessInfo( uint32_t key_id, TraceType type, const std::map& block_access_info_map) { auto key_id_str = kBlockKeyPrefix + std::to_string(key_id); ASSERT_TRUE(block_access_info_map.find(key_id_str) != block_access_info_map.end()); auto& block_access_info = block_access_info_map.find(key_id_str)->second; ASSERT_EQ(1, block_access_info.num_accesses); ASSERT_EQ(kBlockSize + key_id, block_access_info.block_size); ASSERT_GT(block_access_info.first_access_time, 0); ASSERT_GT(block_access_info.last_access_time, 0); ASSERT_EQ(1, block_access_info.caller_num_access_map.size()); TableReaderCaller expected_caller = GetCaller(key_id); ASSERT_TRUE(block_access_info.caller_num_access_map.find(expected_caller) != block_access_info.caller_num_access_map.end()); ASSERT_EQ( 1, block_access_info.caller_num_access_map.find(expected_caller)->second); if ((expected_caller == TableReaderCaller::kUserGet || expected_caller == TableReaderCaller::kUserMultiGet) && type == TraceType::kBlockTraceDataBlock) { ASSERT_EQ(kNumKeysInBlock, block_access_info.num_keys); ASSERT_EQ(1, block_access_info.key_num_access_map.size()); ASSERT_EQ(0, block_access_info.non_exist_key_num_access_map.size()); ASSERT_EQ(1, block_access_info.num_referenced_key_exist_in_block); } } void RunBlockCacheTraceAnalyzer() { std::vector params = { "./block_cache_trace_analyzer", "-block_cache_trace_path=" + trace_file_path_, "-block_cache_sim_config_path=" + block_cache_sim_config_path_, "-block_cache_analysis_result_dir=" + test_path_, "-print_block_size_stats", "-print_access_count_stats", "-print_data_block_access_count_stats", "-cache_sim_warmup_seconds=0", "-analyze_bottom_k_access_count_blocks=5", "-analyze_top_k_access_count_blocks=5", "-analyze_blocks_reuse_k_reuse_window=5", "-timeline_labels=" + timeline_labels_, "-reuse_distance_labels=" + reuse_distance_labels_, "-reuse_distance_buckets=" + reuse_distance_buckets_, "-reuse_interval_labels=" + reuse_interval_labels_, "-reuse_interval_buckets=" + reuse_interval_buckets_, "-reuse_lifetime_labels=" + reuse_lifetime_labels_, "-reuse_lifetime_buckets=" + reuse_lifetime_buckets_, "-analyze_callers=" + analyzing_callers_, "-access_count_buckets=" + access_count_buckets_, "-analyze_get_spatial_locality_labels=" + analyze_get_spatial_locality_labels_, "-analyze_get_spatial_locality_buckets=" + analyze_get_spatial_locality_buckets_, "-analyze_correlation_coefficients_labels=all", "-skew_labels=all", "-skew_buckets=10,50,100"}; char arg_buffer[kArgBufferSize]; char* argv[kMaxArgCount]; int argc = 0; int cursor = 0; for (const auto& arg : params) { ASSERT_LE(cursor + arg.size() + 1, kArgBufferSize); ASSERT_LE(argc + 1, kMaxArgCount); snprintf(arg_buffer + cursor, arg.size() + 1, "%s", arg.c_str()); argv[argc++] = arg_buffer + cursor; cursor += static_cast(arg.size()) + 1; } ASSERT_EQ(0, ROCKSDB_NAMESPACE::block_cache_trace_analyzer_tool(argc, argv)); } Env* env_; EnvOptions env_options_; std::string block_cache_sim_config_path_; std::string trace_file_path_; std::string test_path_; std::string timeline_labels_; std::string reuse_distance_labels_; std::string reuse_distance_buckets_; std::string reuse_interval_labels_; std::string reuse_interval_buckets_; std::string reuse_lifetime_labels_; std::string reuse_lifetime_buckets_; std::string analyzing_callers_; std::string access_count_buckets_; std::string analyze_get_spatial_locality_labels_; std::string analyze_get_spatial_locality_buckets_; }; TEST_F(BlockCacheTracerTest, BlockCacheAnalyzer) { { // Generate a trace file. BlockCacheTraceWriterOptions trace_writer_opt; std::unique_ptr trace_writer; ASSERT_OK(NewFileTraceWriter(env_, env_options_, trace_file_path_, &trace_writer)); const auto& clock = env_->GetSystemClock(); std::unique_ptr block_cache_trace_writer = NewBlockCacheTraceWriter(clock.get(), trace_writer_opt, std::move(trace_writer)); ASSERT_NE(block_cache_trace_writer, nullptr); ASSERT_OK(block_cache_trace_writer->WriteHeader()); WriteBlockAccess(block_cache_trace_writer.get(), 0, TraceType::kBlockTraceDataBlock, 50); ASSERT_OK(env_->FileExists(trace_file_path_)); } { // Generate a cache sim config. std::string config = "lru,1,0,1K,1M,1G"; std::ofstream out(block_cache_sim_config_path_); ASSERT_TRUE(out.is_open()); out << config << std::endl; out.close(); } RunBlockCacheTraceAnalyzer(); { // Validate the cache miss ratios. std::vector expected_capacities{1024, 1024 * 1024, 1024 * 1024 * 1024}; const std::string mrc_path = test_path_ + "/49_50_mrc"; std::ifstream infile(mrc_path); uint32_t config_index = 0; std::string line; // Read header. ASSERT_TRUE(getline(infile, line)); while (getline(infile, line)) { std::stringstream ss(line); std::vector result_strs; while (ss.good()) { std::string substr; getline(ss, substr, ','); result_strs.push_back(substr); } ASSERT_EQ(6, result_strs.size()); ASSERT_LT(config_index, expected_capacities.size()); ASSERT_EQ("lru", result_strs[0]); // cache_name ASSERT_EQ("1", result_strs[1]); // num_shard_bits ASSERT_EQ("0", result_strs[2]); // ghost_cache_capacity ASSERT_EQ(std::to_string(expected_capacities[config_index]), result_strs[3]); // cache_capacity ASSERT_EQ("100.0000", result_strs[4]); // miss_ratio ASSERT_EQ("50", result_strs[5]); // number of accesses. config_index++; } ASSERT_EQ(expected_capacities.size(), config_index); infile.close(); ASSERT_OK(env_->DeleteFile(mrc_path)); const std::vector time_units{"1", "60", "3600"}; expected_capacities.push_back(std::numeric_limits::max()); for (auto const& expected_capacity : expected_capacities) { for (auto const& time_unit : time_units) { const std::string miss_ratio_timeline_path = test_path_ + "/" + std::to_string(expected_capacity) + "_" + time_unit + "_miss_ratio_timeline"; std::ifstream mrt_file(miss_ratio_timeline_path); // Read header. ASSERT_TRUE(getline(mrt_file, line)); ASSERT_TRUE(getline(mrt_file, line)); std::stringstream ss(line); bool read_header = false; while (ss.good()) { std::string substr; getline(ss, substr, ','); if (!read_header) { if (expected_capacity == std::numeric_limits::max()) { ASSERT_EQ("trace", substr); } else { ASSERT_EQ("lru-1-0", substr); } read_header = true; continue; } ASSERT_DOUBLE_EQ(100.0, ParseDouble(substr)); } ASSERT_FALSE(getline(mrt_file, line)); mrt_file.close(); ASSERT_OK(env_->DeleteFile(miss_ratio_timeline_path)); } for (auto const& time_unit : time_units) { const std::string miss_timeline_path = test_path_ + "/" + std::to_string(expected_capacity) + "_" + time_unit + "_miss_timeline"; std::ifstream mt_file(miss_timeline_path); // Read header. ASSERT_TRUE(getline(mt_file, line)); ASSERT_TRUE(getline(mt_file, line)); std::stringstream ss(line); uint32_t num_misses = 0; while (ss.good()) { std::string substr; getline(ss, substr, ','); if (num_misses == 0) { if (expected_capacity == std::numeric_limits::max()) { ASSERT_EQ("trace", substr); } else { ASSERT_EQ("lru-1-0", substr); } num_misses++; continue; } num_misses += ParseInt(substr); } ASSERT_EQ(51u, num_misses); ASSERT_FALSE(getline(mt_file, line)); mt_file.close(); ASSERT_OK(env_->DeleteFile(miss_timeline_path)); } } } { // Validate the skewness csv file. const std::string skewness_file_path = test_path_ + "/all_skewness"; std::ifstream skew_file(skewness_file_path); // Read header. std::string line; ASSERT_TRUE(getline(skew_file, line)); std::stringstream ss(line); double sum_percent = 0; while (getline(skew_file, line)) { std::stringstream ss_naccess(line); std::string substr; bool read_label = false; while (ss_naccess.good()) { ASSERT_TRUE(getline(ss_naccess, substr, ',')); if (!read_label) { read_label = true; continue; } sum_percent += ParseDouble(substr); } } ASSERT_EQ(100.0, sum_percent); ASSERT_FALSE(getline(skew_file, line)); skew_file.close(); ASSERT_OK(env_->DeleteFile(skewness_file_path)); } { // Validate the timeline csv files. const std::vector time_units{"_60", "_3600"}; const std::vector user_access_only_flags{"user_access_only_", "all_access_"}; for (auto const& user_access_only : user_access_only_flags) { for (auto const& unit : time_units) { std::stringstream ss(timeline_labels_); while (ss.good()) { std::string l; ASSERT_TRUE(getline(ss, l, ',')); if (l.find("block") == std::string::npos) { if (user_access_only != "all_access_") { continue; } } const std::string timeline_file = test_path_ + "/" + user_access_only + l + unit + "_access_timeline"; std::ifstream infile(timeline_file); std::string line; const uint64_t expected_naccesses = 50; const uint64_t expected_user_accesses = 30; ASSERT_TRUE(getline(infile, line)) << timeline_file; uint32_t naccesses = 0; while (getline(infile, line)) { std::stringstream ss_naccess(line); std::string substr; bool read_label = false; while (ss_naccess.good()) { ASSERT_TRUE(getline(ss_naccess, substr, ',')); if (!read_label) { read_label = true; continue; } naccesses += ParseUint32(substr); } } if (user_access_only == "user_access_only_") { ASSERT_EQ(expected_user_accesses, naccesses) << timeline_file; } else { ASSERT_EQ(expected_naccesses, naccesses) << timeline_file; } ASSERT_OK(env_->DeleteFile(timeline_file)); } } } } { // Validate the reuse_interval and reuse_distance csv files. std::map test_reuse_csv_files; test_reuse_csv_files["_access_reuse_interval"] = reuse_interval_labels_; test_reuse_csv_files["_reuse_distance"] = reuse_distance_labels_; test_reuse_csv_files["_reuse_lifetime"] = reuse_lifetime_labels_; test_reuse_csv_files["_avg_reuse_interval"] = reuse_interval_labels_; test_reuse_csv_files["_avg_reuse_interval_naccesses"] = reuse_interval_labels_; for (auto const& test : test_reuse_csv_files) { const std::string& file_suffix = test.first; const std::string& labels = test.second; const uint32_t expected_num_rows = 5; std::stringstream ss(labels); while (ss.good()) { std::string l; ASSERT_TRUE(getline(ss, l, ',')); const std::string reuse_csv_file = test_path_ + "/" + l + file_suffix; std::ifstream infile(reuse_csv_file); std::string line; ASSERT_TRUE(getline(infile, line)); double npercentage = 0; uint32_t nrows = 0; while (getline(infile, line)) { std::stringstream ss_naccess(line); bool label_read = false; nrows++; while (ss_naccess.good()) { std::string substr; ASSERT_TRUE(getline(ss_naccess, substr, ',')); if (!label_read) { label_read = true; continue; } npercentage += ParseDouble(substr); } } ASSERT_EQ(expected_num_rows, nrows); if ("_reuse_lifetime" == test.first || "_avg_reuse_interval" == test.first || "_avg_reuse_interval_naccesses" == test.first) { ASSERT_EQ(100, npercentage) << reuse_csv_file; } else { ASSERT_LT(npercentage, 0); } ASSERT_OK(env_->DeleteFile(reuse_csv_file)); } } } { // Validate the percentage of accesses summary. const std::string percent_access_summary_file = test_path_ + "/percentage_of_accesses_summary"; std::ifstream infile(percent_access_summary_file); std::string line; ASSERT_TRUE(getline(infile, line)); std::set callers; std::set expected_callers{"Get", "MultiGet", "Iterator", "Prefetch", "Compaction"}; while (getline(infile, line)) { std::stringstream caller_percent(line); std::string caller; ASSERT_TRUE(getline(caller_percent, caller, ',')); std::string percent; ASSERT_TRUE(getline(caller_percent, percent, ',')); ASSERT_FALSE(caller_percent.good()); callers.insert(caller); ASSERT_EQ(20, ParseDouble(percent)); } ASSERT_EQ(expected_callers.size(), callers.size()); for (auto caller : callers) { ASSERT_TRUE(expected_callers.find(caller) != expected_callers.end()); } ASSERT_OK(env_->DeleteFile(percent_access_summary_file)); } { // Validate the percentage of accesses summary by analyzing callers. std::stringstream analyzing_callers(analyzing_callers_); while (analyzing_callers.good()) { std::string caller; ASSERT_TRUE(getline(analyzing_callers, caller, ',')); std::vector breakdowns{"level", "bt"}; for (auto breakdown : breakdowns) { const std::string file_name = test_path_ + "/" + caller + "_" + breakdown + "_percentage_of_accesses_summary"; std::ifstream infile(file_name); std::string line; ASSERT_TRUE(getline(infile, line)); double sum = 0; while (getline(infile, line)) { std::stringstream label_percent(line); std::string label; ASSERT_TRUE(getline(label_percent, label, ',')); std::string percent; ASSERT_TRUE(getline(label_percent, percent, ',')); ASSERT_FALSE(label_percent.good()); sum += ParseDouble(percent); } ASSERT_EQ(100, sum); ASSERT_OK(env_->DeleteFile(file_name)); } } } const std::vector access_types{"user_access_only", "all_access"}; const std::vector prefix{"bt", "cf"}; for (auto const& pre : prefix) { for (auto const& access_type : access_types) { { // Validate the access count summary. const std::string bt_access_count_summary = test_path_ + "/" + pre + "_" + access_type + "_access_count_summary"; std::ifstream infile(bt_access_count_summary); std::string line; ASSERT_TRUE(getline(infile, line)); double sum_percent = 0; while (getline(infile, line)) { std::stringstream bt_percent(line); std::string bt; ASSERT_TRUE(getline(bt_percent, bt, ',')); std::string percent; ASSERT_TRUE(getline(bt_percent, percent, ',')); sum_percent += ParseDouble(percent); } ASSERT_EQ(100.0, sum_percent); ASSERT_OK(env_->DeleteFile(bt_access_count_summary)); } } } for (auto const& access_type : access_types) { std::vector block_types{"Index", "Data", "Filter"}; for (auto block_type : block_types) { // Validate reuse block timeline. const std::string reuse_blocks_timeline = test_path_ + "/" + block_type + "_" + access_type + "_5_reuse_blocks_timeline"; std::ifstream infile(reuse_blocks_timeline); std::string line; ASSERT_TRUE(getline(infile, line)) << reuse_blocks_timeline; uint32_t index = 0; while (getline(infile, line)) { std::stringstream timeline(line); bool start_time = false; double sum = 0; while (timeline.good()) { std::string value; ASSERT_TRUE(getline(timeline, value, ',')); if (!start_time) { start_time = true; continue; } sum += ParseDouble(value); } index++; ASSERT_LT(sum, 100.0 * index + 1) << reuse_blocks_timeline; } ASSERT_OK(env_->DeleteFile(reuse_blocks_timeline)); } } std::stringstream ss(analyze_get_spatial_locality_labels_); while (ss.good()) { std::string l; ASSERT_TRUE(getline(ss, l, ',')); const std::vector spatial_locality_files{ "_percent_ref_keys", "_percent_accesses_on_ref_keys", "_percent_data_size_on_ref_keys"}; for (auto const& spatial_locality_file : spatial_locality_files) { const std::string filename = test_path_ + "/" + l + spatial_locality_file; std::ifstream infile(filename); std::string line; ASSERT_TRUE(getline(infile, line)); double sum_percent = 0; uint32_t nrows = 0; while (getline(infile, line)) { std::stringstream bt_percent(line); std::string bt; ASSERT_TRUE(getline(bt_percent, bt, ',')); std::string percent; ASSERT_TRUE(getline(bt_percent, percent, ',')); sum_percent += ParseDouble(percent); nrows++; } ASSERT_EQ(11u, nrows); ASSERT_EQ(100.0, sum_percent); ASSERT_OK(env_->DeleteFile(filename)); } } ASSERT_OK(env_->DeleteFile(block_cache_sim_config_path_)); } TEST_F(BlockCacheTracerTest, MixedBlocks) { { // Generate a trace file containing a mix of blocks. // It contains two SST files with 25 blocks of odd numbered block_key in // kSSTStoringOddKeys and 25 blocks of even numbered blocks_key in // kSSTStoringEvenKeys. BlockCacheTraceWriterOptions trace_writer_opt; std::unique_ptr trace_writer; const auto& clock = env_->GetSystemClock(); ASSERT_OK(NewFileTraceWriter(env_, env_options_, trace_file_path_, &trace_writer)); std::unique_ptr block_cache_trace_writer = NewBlockCacheTraceWriter(clock.get(), trace_writer_opt, std::move(trace_writer)); ASSERT_NE(block_cache_trace_writer, nullptr); ASSERT_OK(block_cache_trace_writer->WriteHeader()); // Write blocks of different types. WriteBlockAccess(block_cache_trace_writer.get(), 0, TraceType::kBlockTraceUncompressionDictBlock, 10); WriteBlockAccess(block_cache_trace_writer.get(), 10, TraceType::kBlockTraceDataBlock, 10); WriteBlockAccess(block_cache_trace_writer.get(), 20, TraceType::kBlockTraceFilterBlock, 10); WriteBlockAccess(block_cache_trace_writer.get(), 30, TraceType::kBlockTraceIndexBlock, 10); WriteBlockAccess(block_cache_trace_writer.get(), 40, TraceType::kBlockTraceRangeDeletionBlock, 10); ASSERT_OK(env_->FileExists(trace_file_path_)); } { // Verify trace file is generated correctly. std::unique_ptr trace_reader; ASSERT_OK(NewFileTraceReader(env_, env_options_, trace_file_path_, &trace_reader)); BlockCacheTraceReader reader(std::move(trace_reader)); BlockCacheTraceHeader header; ASSERT_OK(reader.ReadHeader(&header)); ASSERT_EQ(static_cast(kMajorVersion), header.rocksdb_major_version); ASSERT_EQ(static_cast(kMinorVersion), header.rocksdb_minor_version); // Read blocks. BlockCacheTraceAnalyzer analyzer( trace_file_path_, /*output_miss_ratio_curve_path=*/"", /*human_readable_trace_file_path=*/"", /*compute_reuse_distance=*/true, /*mrc_only=*/false, /*is_block_cache_human_readable_trace=*/false, /*simulator=*/nullptr); // The analyzer ends when it detects an incomplete access record. ASSERT_EQ(Status::Incomplete(""), analyzer.Analyze()); const uint64_t expected_num_cfs = 1; std::vector expected_fds{kSSTStoringOddKeys, kSSTStoringEvenKeys}; const std::vector expected_types{ TraceType::kBlockTraceUncompressionDictBlock, TraceType::kBlockTraceDataBlock, TraceType::kBlockTraceFilterBlock, TraceType::kBlockTraceIndexBlock, TraceType::kBlockTraceRangeDeletionBlock}; const uint64_t expected_num_keys_per_type = 5; auto& stats = analyzer.TEST_cf_aggregates_map(); ASSERT_EQ(expected_num_cfs, stats.size()); ASSERT_TRUE(stats.find(kDefaultColumnFamilyName) != stats.end()); auto& cf_stats = stats.find(kDefaultColumnFamilyName)->second; ASSERT_EQ(expected_fds.size(), cf_stats.fd_aggregates_map.size()); for (auto fd_id : expected_fds) { ASSERT_TRUE(cf_stats.fd_aggregates_map.find(fd_id) != cf_stats.fd_aggregates_map.end()); ASSERT_EQ(kLevel, cf_stats.fd_aggregates_map.find(fd_id)->second.level); auto& block_type_aggregates_map = cf_stats.fd_aggregates_map.find(fd_id) ->second.block_type_aggregates_map; ASSERT_EQ(expected_types.size(), block_type_aggregates_map.size()); uint32_t key_id = 0; for (auto type : expected_types) { ASSERT_TRUE(block_type_aggregates_map.find(type) != block_type_aggregates_map.end()); auto& block_access_info_map = block_type_aggregates_map.find(type)->second.block_access_info_map; // Each block type has 5 blocks. ASSERT_EQ(expected_num_keys_per_type, block_access_info_map.size()); for (uint32_t i = 0; i < 10; i++) { // Verify that odd numbered blocks are stored in kSSTStoringOddKeys // and even numbered blocks are stored in kSSTStoringEvenKeys. auto key_id_str = kBlockKeyPrefix + std::to_string(key_id); if (fd_id == kSSTStoringOddKeys) { if (key_id % 2 == 1) { AssertBlockAccessInfo(key_id, type, block_access_info_map); } else { ASSERT_TRUE(block_access_info_map.find(key_id_str) == block_access_info_map.end()); } } else { if (key_id % 2 == 1) { ASSERT_TRUE(block_access_info_map.find(key_id_str) == block_access_info_map.end()); } else { AssertBlockAccessInfo(key_id, type, block_access_info_map); } } key_id++; } } } } } TEST_F(BlockCacheTracerTest, MultiGetWithNullReferenceKey) { { // Generate a trace file containing MultiGet records with reference key // being 0. BlockCacheTraceWriterOptions trace_writer_opt; std::unique_ptr trace_writer; const auto& clock = env_->GetSystemClock(); ASSERT_OK(NewFileTraceWriter(env_, env_options_, trace_file_path_, &trace_writer)); std::unique_ptr block_cache_trace_writer = NewBlockCacheTraceWriter(clock.get(), trace_writer_opt, std::move(trace_writer)); ASSERT_NE(block_cache_trace_writer, nullptr); ASSERT_OK(block_cache_trace_writer->WriteHeader()); // Write blocks of different types. WriteBlockAccess(block_cache_trace_writer.get(), 0, TraceType::kBlockTraceUncompressionDictBlock, 10, true); WriteBlockAccess(block_cache_trace_writer.get(), 10, TraceType::kBlockTraceDataBlock, 10, true); WriteBlockAccess(block_cache_trace_writer.get(), 20, TraceType::kBlockTraceFilterBlock, 10, true); WriteBlockAccess(block_cache_trace_writer.get(), 30, TraceType::kBlockTraceIndexBlock, 10, true); WriteBlockAccess(block_cache_trace_writer.get(), 40, TraceType::kBlockTraceRangeDeletionBlock, 10, true); ASSERT_OK(env_->FileExists(trace_file_path_)); } { // Verify trace file is generated correctly. std::unique_ptr trace_reader; ASSERT_OK(NewFileTraceReader(env_, env_options_, trace_file_path_, &trace_reader)); BlockCacheTraceReader reader(std::move(trace_reader)); BlockCacheTraceHeader header; ASSERT_OK(reader.ReadHeader(&header)); ASSERT_EQ(static_cast(kMajorVersion), header.rocksdb_major_version); ASSERT_EQ(static_cast(kMinorVersion), header.rocksdb_minor_version); std::string human_readable_trace_file_path = test_path_ + "/readable_block_cache_trace"; // Read blocks. BlockCacheTraceAnalyzer analyzer( trace_file_path_, /*output_dir=*/"", /*human_readable_trace_file_path=*/human_readable_trace_file_path, /*compute_reuse_distance=*/true, /*mrc_only=*/false, /*is_human_readable_trace_file=*/false, /*cache_simulator=*/nullptr); // The analyzer ends when it detects an incomplete access record. ASSERT_EQ(Status::Incomplete(""), analyzer.Analyze()); ASSERT_OK(env_->DeleteFile(human_readable_trace_file_path)); } } } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } #endif // GFLAG #else #include int main(int /*argc*/, char** /*argv*/) { fprintf(stderr, "block_cache_trace_analyzer_test is not supported in ROCKSDB_LITE\n"); return 0; } #endif // ROCKSDB_LITE