// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/db_impl.h" #include #include #include #include #include #include #include "db/builder.h" #include "db/db_iter.h" #include "db/dbformat.h" #include "db/filename.h" #include "db/log_reader.h" #include "db/log_writer.h" #include "db/memtable.h" #include "db/table_cache.h" #include "db/version_set.h" #include "db/write_batch_internal.h" #include "leveldb/db.h" #include "leveldb/env.h" #include "leveldb/status.h" #include "leveldb/table.h" #include "leveldb/table_builder.h" #include "port/port.h" #include "table/block.h" #include "table/merger.h" #include "table/two_level_iterator.h" #include "util/coding.h" #include "util/logging.h" #include "util/mutexlock.h" namespace leveldb { struct DBImpl::CompactionState { Compaction* const compaction; // Sequence numbers < smallest_snapshot are not significant since we // will never have to service a snapshot below smallest_snapshot. // Therefore if we have seen a sequence number S <= smallest_snapshot, // we can drop all entries for the same key with sequence numbers < S. SequenceNumber smallest_snapshot; // Files produced by compaction struct Output { uint64_t number; uint64_t file_size; InternalKey smallest, largest; }; std::vector outputs; // State kept for output being generated WritableFile* outfile; TableBuilder* builder; uint64_t total_bytes; Output* current_output() { return &outputs[outputs.size()-1]; } explicit CompactionState(Compaction* c) : compaction(c), outfile(NULL), builder(NULL), total_bytes(0) { } }; namespace { class NullWritableFile : public WritableFile { public: virtual Status Append(const Slice& data) { return Status::OK(); } virtual Status Close() { return Status::OK(); } virtual Status Flush() { return Status::OK(); } virtual Status Sync() { return Status::OK(); } }; } // Fix user-supplied options to be reasonable template static void ClipToRange(T* ptr, V minvalue, V maxvalue) { if (*ptr > maxvalue) *ptr = maxvalue; if (*ptr < minvalue) *ptr = minvalue; } Options SanitizeOptions(const std::string& dbname, const InternalKeyComparator* icmp, const Options& src) { Options result = src; result.comparator = icmp; ClipToRange(&result.max_open_files, 20, 50000); ClipToRange(&result.write_buffer_size, 64<<10, 1<<30); ClipToRange(&result.large_value_threshold, 16<<10, 1<<30); ClipToRange(&result.block_size, 1<<10, 4<<20); if (result.info_log == NULL) { // Open a log file in the same directory as the db src.env->CreateDir(dbname); // In case it does not exist src.env->RenameFile(InfoLogFileName(dbname), OldInfoLogFileName(dbname)); Status s = src.env->NewWritableFile(InfoLogFileName(dbname), &result.info_log); if (!s.ok()) { // No place suitable for logging result.info_log = new NullWritableFile; } } return result; } DBImpl::DBImpl(const Options& options, const std::string& dbname) : env_(options.env), internal_comparator_(options.comparator), options_(SanitizeOptions(dbname, &internal_comparator_, options)), owns_info_log_(options_.info_log != options.info_log), dbname_(dbname), db_lock_(NULL), shutting_down_(NULL), bg_cv_(&mutex_), compacting_cv_(&mutex_), last_sequence_(0), mem_(new MemTable(internal_comparator_)), logfile_(NULL), log_(NULL), log_number_(0), bg_compaction_scheduled_(false), compacting_(false) { // Reserve ten files or so for other uses and give the rest to TableCache. const int table_cache_size = options.max_open_files - 10; table_cache_ = new TableCache(dbname_, &options_, table_cache_size); versions_ = new VersionSet(dbname_, &options_, table_cache_, &internal_comparator_); } DBImpl::~DBImpl() { // Wait for background work to finish mutex_.Lock(); shutting_down_.Release_Store(this); // Any non-NULL value is ok if (bg_compaction_scheduled_) { while (bg_compaction_scheduled_) { bg_cv_.Wait(); } } mutex_.Unlock(); if (db_lock_ != NULL) { env_->UnlockFile(db_lock_); } delete versions_; delete mem_; delete log_; delete logfile_; delete table_cache_; if (owns_info_log_) { delete options_.info_log; } } Status DBImpl::NewDB() { assert(log_number_ == 0); assert(last_sequence_ == 0); VersionEdit new_db; new_db.SetComparatorName(user_comparator()->Name()); new_db.SetLogNumber(log_number_); new_db.SetNextFile(2); new_db.SetLastSequence(0); const std::string manifest = DescriptorFileName(dbname_, 1); WritableFile* file; Status s = env_->NewWritableFile(manifest, &file); if (!s.ok()) { return s; } { log::Writer log(file); std::string record; new_db.EncodeTo(&record); s = log.AddRecord(record); if (s.ok()) { s = file->Close(); } } delete file; if (s.ok()) { // Make "CURRENT" file that points to the new manifest file. s = SetCurrentFile(env_, dbname_, 1); } else { env_->DeleteFile(manifest); } return s; } Status DBImpl::Install(VersionEdit* edit, uint64_t new_log_number, MemTable* cleanup_mem) { mutex_.AssertHeld(); edit->SetLogNumber(new_log_number); edit->SetLastSequence(last_sequence_); return versions_->LogAndApply(edit, cleanup_mem); } void DBImpl::MaybeIgnoreError(Status* s) const { if (s->ok() || options_.paranoid_checks) { // No change needed } else { Log(env_, options_.info_log, "Ignoring error %s", s->ToString().c_str()); *s = Status::OK(); } } void DBImpl::DeleteObsoleteFiles() { // Make a set of all of the live files std::set live = pending_outputs_; versions_->AddLiveFiles(&live); versions_->CleanupLargeValueRefs(live, log_number_); std::vector filenames; env_->GetChildren(dbname_, &filenames); // Ignoring errors on purpose uint64_t number; LargeValueRef large_ref; FileType type; for (int i = 0; i < filenames.size(); i++) { if (ParseFileName(filenames[i], &number, &large_ref, &type)) { bool keep = true; switch (type) { case kLogFile: keep = (number == log_number_); break; case kDescriptorFile: // Keep my manifest file, and any newer incarnations' // (in case there is a race that allows other incarnations) keep = (number >= versions_->ManifestFileNumber()); break; case kTableFile: keep = (live.find(number) != live.end()); break; case kTempFile: // Any temp files that are currently being written to must // be recorded in pending_outputs_, which is inserted into "live" keep = (live.find(number) != live.end()); break; case kLargeValueFile: keep = versions_->LargeValueIsLive(large_ref); break; case kCurrentFile: case kDBLockFile: case kInfoLogFile: keep = true; break; } if (!keep) { if (type == kTableFile) { table_cache_->Evict(number); } Log(env_, options_.info_log, "Delete type=%d #%lld\n", int(type), static_cast(number)); env_->DeleteFile(dbname_ + "/" + filenames[i]); } } } } Status DBImpl::Recover(VersionEdit* edit) { mutex_.AssertHeld(); // Ignore error from CreateDir since the creation of the DB is // committed only when the descriptor is created, and this directory // may already exist from a previous failed creation attempt. env_->CreateDir(dbname_); assert(db_lock_ == NULL); Status s = env_->LockFile(LockFileName(dbname_), &db_lock_); if (!s.ok()) { return s; } if (!env_->FileExists(CurrentFileName(dbname_))) { if (options_.create_if_missing) { s = NewDB(); if (!s.ok()) { return s; } } else { return Status::InvalidArgument( dbname_, "does not exist (create_if_missing is false)"); } } else { if (options_.error_if_exists) { return Status::InvalidArgument( dbname_, "exists (error_if_exists is true)"); } } s = versions_->Recover(&log_number_, &last_sequence_); if (s.ok()) { // Recover from the log file named in the descriptor SequenceNumber max_sequence(0); if (log_number_ != 0) { // log_number_ == 0 indicates initial empty state s = RecoverLogFile(log_number_, edit, &max_sequence); } if (s.ok()) { last_sequence_ = last_sequence_ > max_sequence ? last_sequence_ : max_sequence; } } return s; } Status DBImpl::RecoverLogFile(uint64_t log_number, VersionEdit* edit, SequenceNumber* max_sequence) { struct LogReporter : public log::Reader::Reporter { Env* env; WritableFile* info_log; const char* fname; Status* status; // NULL if options_.paranoid_checks==false virtual void Corruption(size_t bytes, const Status& s) { Log(env, info_log, "%s%s: dropping %d bytes; %s", (this->status == NULL ? "(ignoring error) " : ""), fname, static_cast(bytes), s.ToString().c_str()); if (this->status != NULL && this->status->ok()) *this->status = s; } }; mutex_.AssertHeld(); // Open the log file std::string fname = LogFileName(dbname_, log_number); SequentialFile* file; Status status = env_->NewSequentialFile(fname, &file); if (!status.ok()) { MaybeIgnoreError(&status); return status; } // Create the log reader. LogReporter reporter; reporter.env = env_; reporter.info_log = options_.info_log; reporter.fname = fname.c_str(); reporter.status = (options_.paranoid_checks ? &status : NULL); // We intentially make log::Reader do checksumming even if // paranoid_checks==false so that corruptions cause entire commits // to be skipped instead of propagating bad information (like overly // large sequence numbers). log::Reader reader(file, &reporter, true/*checksum*/); Log(env_, options_.info_log, "Recovering log #%llu", (unsigned long long) log_number); // Read all the records and add to a memtable std::string scratch; Slice record; WriteBatch batch; MemTable* mem = NULL; while (reader.ReadRecord(&record, &scratch) && status.ok()) { if (record.size() < 12) { reporter.Corruption( record.size(), Status::Corruption("log record too small")); continue; } WriteBatchInternal::SetContents(&batch, record); if (mem == NULL) { mem = new MemTable(internal_comparator_); } status = WriteBatchInternal::InsertInto(&batch, mem); MaybeIgnoreError(&status); if (!status.ok()) { break; } const SequenceNumber last_seq = WriteBatchInternal::Sequence(&batch) + WriteBatchInternal::Count(&batch) - 1; if (last_seq > *max_sequence) { *max_sequence = last_seq; } if (mem->ApproximateMemoryUsage() > options_.write_buffer_size) { status = WriteLevel0Table(mem, edit); if (!status.ok()) { // Reflect errors immediately so that conditions like full // file-systems cause the DB::Open() to fail. break; } delete mem; mem = NULL; } } if (status.ok() && mem != NULL) { status = WriteLevel0Table(mem, edit); // Reflect errors immediately so that conditions like full // file-systems cause the DB::Open() to fail. } delete mem; delete file; return status; } Status DBImpl::WriteLevel0Table(MemTable* mem, VersionEdit* edit) { mutex_.AssertHeld(); FileMetaData meta; meta.number = versions_->NewFileNumber(); pending_outputs_.insert(meta.number); Iterator* iter = mem->NewIterator(); Log(env_, options_.info_log, "Level-0 table #%llu: started", (unsigned long long) meta.number); Status s = BuildTable(dbname_, env_, options_, table_cache_, iter, &meta, edit); Log(env_, options_.info_log, "Level-0 table #%llu: %lld bytes %s", (unsigned long long) meta.number, (unsigned long long) meta.file_size, s.ToString().c_str()); delete iter; pending_outputs_.erase(meta.number); return s; } Status DBImpl::CompactMemTable() { mutex_.AssertHeld(); WritableFile* lfile = NULL; uint64_t new_log_number = versions_->NewFileNumber(); VersionEdit edit; // Save the contents of the memtable as a new Table Status s = WriteLevel0Table(mem_, &edit); if (s.ok()) { s = env_->NewWritableFile(LogFileName(dbname_, new_log_number), &lfile); } // Save a new descriptor with the new table and log number. if (s.ok()) { s = Install(&edit, new_log_number, mem_); } if (s.ok()) { // Commit to the new state mem_ = new MemTable(internal_comparator_); delete log_; delete logfile_; logfile_ = lfile; log_ = new log::Writer(lfile); log_number_ = new_log_number; DeleteObsoleteFiles(); MaybeScheduleCompaction(); } else { delete lfile; env_->DeleteFile(LogFileName(dbname_, new_log_number)); } return s; } void DBImpl::TEST_CompactRange( int level, const std::string& begin, const std::string& end) { MutexLock l(&mutex_); while (compacting_) { compacting_cv_.Wait(); } Compaction* c = versions_->CompactRange( level, InternalKey(begin, kMaxSequenceNumber, kValueTypeForSeek), InternalKey(end, 0, static_cast(0))); if (c != NULL) { CompactionState* compact = new CompactionState(c); DoCompactionWork(compact); // Ignore error in test compaction CleanupCompaction(compact); } // Start any background compaction that may have been delayed by this thread MaybeScheduleCompaction(); } Status DBImpl::TEST_CompactMemTable() { MutexLock l(&mutex_); return CompactMemTable(); } void DBImpl::MaybeScheduleCompaction() { mutex_.AssertHeld(); if (bg_compaction_scheduled_) { // Already scheduled } else if (compacting_) { // Some other thread is running a compaction. Do not conflict with it. } else if (shutting_down_.Acquire_Load()) { // DB is being deleted; no more background compactions } else if (!versions_->NeedsCompaction()) { // No work to be done } else { bg_compaction_scheduled_ = true; env_->Schedule(&DBImpl::BGWork, this); } } void DBImpl::BGWork(void* db) { reinterpret_cast(db)->BackgroundCall(); } void DBImpl::BackgroundCall() { MutexLock l(&mutex_); assert(bg_compaction_scheduled_); if (!shutting_down_.Acquire_Load() && !compacting_) { BackgroundCompaction(); } bg_compaction_scheduled_ = false; bg_cv_.SignalAll(); // Previous compaction may have produced too many files in a level, // so reschedule another compaction if needed. MaybeScheduleCompaction(); } void DBImpl::BackgroundCompaction() { mutex_.AssertHeld(); Compaction* c = versions_->PickCompaction(); if (c == NULL) { // Nothing to do return; } Status status; if (c->IsTrivialMove()) { // Move file to next level assert(c->num_input_files(0) == 1); FileMetaData* f = c->input(0, 0); c->edit()->DeleteFile(c->level(), f->number); c->edit()->AddFile(c->level() + 1, f->number, f->file_size, f->smallest, f->largest); status = Install(c->edit(), log_number_, NULL); Log(env_, options_.info_log, "Moved #%lld to level-%d %lld bytes %s\n", static_cast(f->number), c->level() + 1, static_cast(f->file_size), status.ToString().c_str()); } else { CompactionState* compact = new CompactionState(c); status = DoCompactionWork(compact); CleanupCompaction(compact); } delete c; if (status.ok()) { // Done } else if (shutting_down_.Acquire_Load()) { // Ignore compaction errors found during shutting down } else { Log(env_, options_.info_log, "Compaction error: %s", status.ToString().c_str()); if (options_.paranoid_checks && bg_error_.ok()) { bg_error_ = status; } } } void DBImpl::CleanupCompaction(CompactionState* compact) { mutex_.AssertHeld(); if (compact->builder != NULL) { // May happen if we get a shutdown call in the middle of compaction compact->builder->Abandon(); delete compact->builder; } else { assert(compact->outfile == NULL); } delete compact->outfile; for (int i = 0; i < compact->outputs.size(); i++) { const CompactionState::Output& out = compact->outputs[i]; pending_outputs_.erase(out.number); } delete compact; } Status DBImpl::OpenCompactionOutputFile(CompactionState* compact) { assert(compact != NULL); assert(compact->builder == NULL); uint64_t file_number; { mutex_.Lock(); file_number = versions_->NewFileNumber(); pending_outputs_.insert(file_number); CompactionState::Output out; out.number = file_number; out.smallest.Clear(); out.largest.Clear(); compact->outputs.push_back(out); mutex_.Unlock(); } // Make the output file std::string fname = TableFileName(dbname_, file_number); Status s = env_->NewWritableFile(fname, &compact->outfile); if (s.ok()) { compact->builder = new TableBuilder(options_, compact->outfile); } return s; } Status DBImpl::FinishCompactionOutputFile(CompactionState* compact, Iterator* input) { assert(compact != NULL); assert(compact->outfile != NULL); assert(compact->builder != NULL); const uint64_t output_number = compact->current_output()->number; assert(output_number != 0); // Check for iterator errors Status s = input->status(); const uint64_t current_entries = compact->builder->NumEntries(); if (s.ok()) { s = compact->builder->Finish(); } else { compact->builder->Abandon(); } const uint64_t current_bytes = compact->builder->FileSize(); compact->current_output()->file_size = current_bytes; compact->total_bytes += current_bytes; delete compact->builder; compact->builder = NULL; // Finish and check for file errors if (s.ok()) { s = compact->outfile->Sync(); } if (s.ok()) { s = compact->outfile->Close(); } delete compact->outfile; compact->outfile = NULL; if (s.ok() && current_entries > 0) { // Verify that the table is usable Iterator* iter = table_cache_->NewIterator(ReadOptions(), output_number, current_bytes); s = iter->status(); delete iter; if (s.ok()) { Log(env_, options_.info_log, "Generated table #%llu: %lld keys, %lld bytes", (unsigned long long) output_number, (unsigned long long) current_entries, (unsigned long long) current_bytes); } } return s; } Status DBImpl::InstallCompactionResults(CompactionState* compact) { mutex_.AssertHeld(); Log(env_, options_.info_log, "Compacted %d@%d + %d@%d files => %lld bytes", compact->compaction->num_input_files(0), compact->compaction->level(), compact->compaction->num_input_files(1), compact->compaction->level() + 1, static_cast(compact->total_bytes)); // Add compaction outputs compact->compaction->AddInputDeletions(compact->compaction->edit()); const int level = compact->compaction->level(); for (int i = 0; i < compact->outputs.size(); i++) { const CompactionState::Output& out = compact->outputs[i]; compact->compaction->edit()->AddFile( level + 1, out.number, out.file_size, out.smallest, out.largest); pending_outputs_.erase(out.number); } compact->outputs.clear(); Status s = Install(compact->compaction->edit(), log_number_, NULL); if (s.ok()) { compact->compaction->ReleaseInputs(); DeleteObsoleteFiles(); } else { // Discard any files we may have created during this failed compaction for (int i = 0; i < compact->outputs.size(); i++) { env_->DeleteFile(TableFileName(dbname_, compact->outputs[i].number)); } } return s; } Status DBImpl::DoCompactionWork(CompactionState* compact) { Log(env_, options_.info_log, "Compacting %d@%d + %d@%d files", compact->compaction->num_input_files(0), compact->compaction->level(), compact->compaction->num_input_files(1), compact->compaction->level() + 1); assert(versions_->NumLevelFiles(compact->compaction->level()) > 0); assert(compact->builder == NULL); assert(compact->outfile == NULL); if (snapshots_.empty()) { compact->smallest_snapshot = last_sequence_; } else { compact->smallest_snapshot = snapshots_.oldest()->number_; } // Release mutex while we're actually doing the compaction work compacting_ = true; mutex_.Unlock(); Iterator* input = versions_->MakeInputIterator(compact->compaction); input->SeekToFirst(); Status status; ParsedInternalKey ikey; std::string current_user_key; bool has_current_user_key = false; SequenceNumber last_sequence_for_key = kMaxSequenceNumber; for (; input->Valid() && !shutting_down_.Acquire_Load(); ) { Slice key = input->key(); InternalKey tmp_internal_key; tmp_internal_key.DecodeFrom(key); if (compact->compaction->ShouldStopBefore(tmp_internal_key) && compact->builder != NULL) { status = FinishCompactionOutputFile(compact, input); if (!status.ok()) { break; } } // Handle key/value, add to state, etc. bool drop = false; if (!ParseInternalKey(key, &ikey)) { // Do not hide error keys current_user_key.clear(); has_current_user_key = false; last_sequence_for_key = kMaxSequenceNumber; } else { if (!has_current_user_key || user_comparator()->Compare(ikey.user_key, Slice(current_user_key)) != 0) { // First occurrence of this user key current_user_key.assign(ikey.user_key.data(), ikey.user_key.size()); has_current_user_key = true; last_sequence_for_key = kMaxSequenceNumber; } if (last_sequence_for_key <= compact->smallest_snapshot) { // Hidden by an newer entry for same user key drop = true; // (A) } else if (ikey.type == kTypeDeletion && ikey.sequence <= compact->smallest_snapshot && compact->compaction->IsBaseLevelForKey(ikey.user_key)) { // For this user key: // (1) there is no data in higher levels // (2) data in lower levels will have larger sequence numbers // (3) data in layers that are being compacted here and have // smaller sequence numbers will be dropped in the next // few iterations of this loop (by rule (A) above). // Therefore this deletion marker is obsolete and can be dropped. drop = true; } last_sequence_for_key = ikey.sequence; } #if 0 Log(env_, options_.info_log, " Compact: %s, seq %d, type: %d %d, drop: %d, is_base: %d, " "%d smallest_snapshot: %d", ikey.user_key.ToString().c_str(), (int)ikey.sequence, ikey.type, kTypeLargeValueRef, drop, compact->compaction->IsBaseLevelForKey(ikey.user_key), (int)last_sequence_for_key, (int)compact->smallest_snapshot); #endif if (!drop) { // Open output file if necessary if (compact->builder == NULL) { status = OpenCompactionOutputFile(compact); if (!status.ok()) { break; } } if (compact->builder->NumEntries() == 0) { compact->current_output()->smallest.DecodeFrom(key); } compact->current_output()->largest.DecodeFrom(key); if (ikey.type == kTypeLargeValueRef) { if (input->value().size() != LargeValueRef::ByteSize()) { if (options_.paranoid_checks) { status = Status::Corruption("invalid large value ref"); break; } else { Log(env_, options_.info_log, "compaction found invalid large value ref"); } } else { compact->compaction->edit()->AddLargeValueRef( LargeValueRef::FromRef(input->value()), compact->current_output()->number, input->key()); compact->builder->Add(key, input->value()); } } else { compact->builder->Add(key, input->value()); } // Close output file if it is big enough if (compact->builder->FileSize() >= compact->compaction->MaxOutputFileSize()) { status = FinishCompactionOutputFile(compact, input); if (!status.ok()) { break; } } } input->Next(); } if (status.ok() && shutting_down_.Acquire_Load()) { status = Status::IOError("Deleting DB during compaction"); } if (status.ok() && compact->builder != NULL) { status = FinishCompactionOutputFile(compact, input); } if (status.ok()) { status = input->status(); } delete input; input = NULL; mutex_.Lock(); if (status.ok()) { status = InstallCompactionResults(compact); } compacting_ = false; compacting_cv_.SignalAll(); return status; } Iterator* DBImpl::NewInternalIterator(const ReadOptions& options, SequenceNumber* latest_snapshot) { mutex_.Lock(); *latest_snapshot = last_sequence_; // Collect together all needed child iterators std::vector list; list.push_back(mem_->NewIterator()); versions_->current()->AddIterators(options, &list); Iterator* internal_iter = NewMergingIterator(&internal_comparator_, &list[0], list.size()); versions_->current()->Ref(); internal_iter->RegisterCleanup(&DBImpl::Unref, this, versions_->current()); mutex_.Unlock(); return internal_iter; } Iterator* DBImpl::TEST_NewInternalIterator() { SequenceNumber ignored; return NewInternalIterator(ReadOptions(), &ignored); } int64_t DBImpl::TEST_MaxNextLevelOverlappingBytes() { MutexLock l(&mutex_); return versions_->MaxNextLevelOverlappingBytes(); } Status DBImpl::Get(const ReadOptions& options, const Slice& key, std::string* value) { // TODO(opt): faster implementation Iterator* iter = NewIterator(options); iter->Seek(key); bool found = false; if (iter->Valid() && user_comparator()->Compare(key, iter->key()) == 0) { Slice v = iter->value(); value->assign(v.data(), v.size()); found = true; } // Non-OK iterator status trumps everything else Status result = iter->status(); if (result.ok() && !found) { result = Status::NotFound(Slice()); // Use an empty error message for speed } delete iter; return result; } Iterator* DBImpl::NewIterator(const ReadOptions& options) { SequenceNumber latest_snapshot; Iterator* internal_iter = NewInternalIterator(options, &latest_snapshot); SequenceNumber sequence = (options.snapshot ? options.snapshot->number_ : latest_snapshot); return NewDBIterator(&dbname_, env_, user_comparator(), internal_iter, sequence); } void DBImpl::Unref(void* arg1, void* arg2) { DBImpl* impl = reinterpret_cast(arg1); Version* v = reinterpret_cast(arg2); MutexLock l(&impl->mutex_); v->Unref(); } const Snapshot* DBImpl::GetSnapshot() { MutexLock l(&mutex_); return snapshots_.New(last_sequence_); } void DBImpl::ReleaseSnapshot(const Snapshot* s) { MutexLock l(&mutex_); snapshots_.Delete(s); } // Convenience methods Status DBImpl::Put(const WriteOptions& o, const Slice& key, const Slice& val) { return DB::Put(o, key, val); } Status DBImpl::Delete(const WriteOptions& options, const Slice& key) { return DB::Delete(options, key); } Status DBImpl::Write(const WriteOptions& options, WriteBatch* updates) { Status status; WriteBatch* final = NULL; { MutexLock l(&mutex_); if (!bg_error_.ok()) { status = bg_error_; } else if (mem_->ApproximateMemoryUsage() > options_.write_buffer_size) { status = CompactMemTable(); } if (status.ok()) { status = HandleLargeValues(last_sequence_ + 1, updates, &final); } if (status.ok()) { WriteBatchInternal::SetSequence(final, last_sequence_ + 1); last_sequence_ += WriteBatchInternal::Count(final); // Add to log and apply to memtable status = log_->AddRecord(WriteBatchInternal::Contents(final)); if (status.ok() && options.sync) { status = logfile_->Sync(); } if (status.ok()) { status = WriteBatchInternal::InsertInto(final, mem_); } } if (options.post_write_snapshot != NULL) { *options.post_write_snapshot = status.ok() ? snapshots_.New(last_sequence_) : NULL; } } if (final != updates) { delete final; } return status; } bool DBImpl::HasLargeValues(const WriteBatch& batch) const { if (WriteBatchInternal::ByteSize(&batch) >= options_.large_value_threshold) { for (WriteBatchInternal::Iterator it(batch); !it.Done(); it.Next()) { if (it.op() == kTypeValue && it.value().size() >= options_.large_value_threshold) { return true; } } } return false; } // Given "raw_value", determines the appropriate compression format to use // and stores the data that should be written to the large value file in // "*file_bytes", and sets "*ref" to the appropriate large value reference. // May use "*scratch" as backing store for "*file_bytes". void DBImpl::MaybeCompressLargeValue( const Slice& raw_value, Slice* file_bytes, std::string* scratch, LargeValueRef* ref) { switch (options_.compression) { case kSnappyCompression: { if (port::Snappy_Compress(raw_value.data(), raw_value.size(), scratch) && (scratch->size() < (raw_value.size() / 8) * 7)) { *file_bytes = *scratch; *ref = LargeValueRef::Make(raw_value, kSnappyCompression); return; } // Less than 12.5% compression: just leave as uncompressed data break; } case kNoCompression: // Use default code outside of switch break; } // Store as uncompressed data *file_bytes = raw_value; *ref = LargeValueRef::Make(raw_value, kNoCompression); } Status DBImpl::HandleLargeValues(SequenceNumber assigned_seq, WriteBatch* updates, WriteBatch** final) { if (!HasLargeValues(*updates)) { // Fast path: no large values found *final = updates; } else { // Copy *updates to a new WriteBatch, replacing the references to *final = new WriteBatch; SequenceNumber seq = assigned_seq; for (WriteBatchInternal::Iterator it(*updates); !it.Done(); it.Next()) { switch (it.op()) { case kTypeValue: if (it.value().size() < options_.large_value_threshold) { (*final)->Put(it.key(), it.value()); } else { std::string scratch; Slice file_bytes; LargeValueRef large_ref; MaybeCompressLargeValue( it.value(), &file_bytes, &scratch, &large_ref); InternalKey ikey(it.key(), seq, kTypeLargeValueRef); if (versions_->RegisterLargeValueRef(large_ref, log_number_,ikey)) { // TODO(opt): avoid holding the lock here (but be careful about // another thread doing a Write and changing log_number_ or // having us get a different "assigned_seq" value). uint64_t tmp_number = versions_->NewFileNumber(); pending_outputs_.insert(tmp_number); std::string tmp = TempFileName(dbname_, tmp_number); WritableFile* file; Status s = env_->NewWritableFile(tmp, &file); if (!s.ok()) { return s; // Caller will delete *final } file->Append(file_bytes); s = file->Close(); delete file; if (s.ok()) { const std::string fname = LargeValueFileName(dbname_, large_ref); s = env_->RenameFile(tmp, fname); } else { Log(env_, options_.info_log, "Write large value: %s", s.ToString().c_str()); } pending_outputs_.erase(tmp_number); if (!s.ok()) { env_->DeleteFile(tmp); // Cleanup; intentionally ignoring error return s; // Caller will delete *final } } // Put an indirect reference in the write batch in place // of large value WriteBatchInternal::PutLargeValueRef(*final, it.key(), large_ref); } break; case kTypeLargeValueRef: return Status::Corruption("Corrupted write batch"); break; case kTypeDeletion: (*final)->Delete(it.key()); break; } seq = seq + 1; } } return Status::OK(); } bool DBImpl::GetProperty(const Slice& property, uint64_t* value) { MutexLock l(&mutex_); Slice in = property; Slice prefix("leveldb."); if (!in.starts_with(prefix)) return false; in.remove_prefix(prefix.size()); if (in.starts_with("num-files-at-level")) { in.remove_prefix(strlen("num-files-at-level")); uint64_t level; bool ok = ConsumeDecimalNumber(&in, &level) && in.empty(); if (!ok || level < 0 || level >= config::kNumLevels) { return false; } else { *value = versions_->NumLevelFiles(level); return true; } } return false; } void DBImpl::GetApproximateSizes( const Range* range, int n, uint64_t* sizes) { // TODO(opt): better implementation Version* v; { MutexLock l(&mutex_); versions_->current()->Ref(); v = versions_->current(); } for (int i = 0; i < n; i++) { // Convert user_key into a corresponding internal key. InternalKey k1(range[i].start, kMaxSequenceNumber, kValueTypeForSeek); InternalKey k2(range[i].limit, kMaxSequenceNumber, kValueTypeForSeek); uint64_t start = versions_->ApproximateOffsetOf(v, k1); uint64_t limit = versions_->ApproximateOffsetOf(v, k2); sizes[i] = (limit >= start ? limit - start : 0); } { MutexLock l(&mutex_); v->Unref(); } } // Default implementations of convenience methods that subclasses of DB // can call if they wish Status DB::Put(const WriteOptions& opt, const Slice& key, const Slice& value) { WriteBatch batch; batch.Put(key, value); return Write(opt, &batch); } Status DB::Delete(const WriteOptions& opt, const Slice& key) { WriteBatch batch; batch.Delete(key); return Write(opt, &batch); } DB::~DB() { } Status DB::Open(const Options& options, const std::string& dbname, DB** dbptr) { *dbptr = NULL; DBImpl* impl = new DBImpl(options, dbname); impl->mutex_.Lock(); VersionEdit edit; Status s = impl->Recover(&edit); // Handles create_if_missing, error_if_exists if (s.ok()) { impl->log_number_ = impl->versions_->NewFileNumber(); WritableFile* lfile; s = options.env->NewWritableFile(LogFileName(dbname, impl->log_number_), &lfile); if (s.ok()) { impl->logfile_ = lfile; impl->log_ = new log::Writer(lfile); s = impl->Install(&edit, impl->log_number_, NULL); } if (s.ok()) { impl->DeleteObsoleteFiles(); } } impl->mutex_.Unlock(); if (s.ok()) { *dbptr = impl; } else { delete impl; } return s; } Status DestroyDB(const std::string& dbname, const Options& options) { Env* env = options.env; std::vector filenames; // Ignore error in case directory does not exist env->GetChildren(dbname, &filenames); if (filenames.empty()) { return Status::OK(); } FileLock* lock; Status result = env->LockFile(LockFileName(dbname), &lock); if (result.ok()) { uint64_t number; LargeValueRef large_ref; FileType type; for (int i = 0; i < filenames.size(); i++) { if (ParseFileName(filenames[i], &number, &large_ref, &type)) { Status del = env->DeleteFile(dbname + "/" + filenames[i]); if (result.ok() && !del.ok()) { result = del; } } } env->UnlockFile(lock); // Ignore error since state is already gone env->DeleteFile(LockFileName(dbname)); env->DeleteDir(dbname); // Ignore error in case dir contains other files } return result; } }