// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/version_set.h" #include #include #include #include "db/filename.h" #include "db/log_reader.h" #include "db/log_writer.h" #include "db/memtable.h" #include "db/merge_context.h" #include "db/table_cache.h" #include "db/compaction.h" #include "rocksdb/env.h" #include "rocksdb/merge_operator.h" #include "rocksdb/table.h" #include "table/merger.h" #include "table/two_level_iterator.h" #include "util/coding.h" #include "util/logging.h" #include "util/stop_watch.h" namespace rocksdb { static uint64_t TotalFileSize(const std::vector& files) { uint64_t sum = 0; for (size_t i = 0; i < files.size() && files[i]; i++) { sum += files[i]->file_size; } return sum; } Version::~Version() { assert(refs_ == 0); // Remove from linked list prev_->next_ = next_; next_->prev_ = prev_; // Drop references to files for (int level = 0; level < num_levels_; level++) { for (size_t i = 0; i < files_[level].size(); i++) { FileMetaData* f = files_[level][i]; assert(f->refs > 0); f->refs--; if (f->refs <= 0) { if (f->table_reader_handle) { vset_->table_cache_->ReleaseHandle(f->table_reader_handle); f->table_reader_handle = nullptr; } vset_->obsolete_files_.push_back(f); } } } delete[] files_; } int FindFile(const InternalKeyComparator& icmp, const std::vector& files, const Slice& key) { uint32_t left = 0; uint32_t right = files.size(); while (left < right) { uint32_t mid = (left + right) / 2; const FileMetaData* f = files[mid]; if (icmp.InternalKeyComparator::Compare(f->largest.Encode(), key) < 0) { // Key at "mid.largest" is < "target". Therefore all // files at or before "mid" are uninteresting. left = mid + 1; } else { // Key at "mid.largest" is >= "target". Therefore all files // after "mid" are uninteresting. right = mid; } } return right; } static bool AfterFile(const Comparator* ucmp, const Slice* user_key, const FileMetaData* f) { // nullptr user_key occurs before all keys and is therefore never after *f return (user_key != nullptr && ucmp->Compare(*user_key, f->largest.user_key()) > 0); } static bool BeforeFile(const Comparator* ucmp, const Slice* user_key, const FileMetaData* f) { // nullptr user_key occurs after all keys and is therefore never before *f return (user_key != nullptr && ucmp->Compare(*user_key, f->smallest.user_key()) < 0); } bool SomeFileOverlapsRange( const InternalKeyComparator& icmp, bool disjoint_sorted_files, const std::vector& files, const Slice* smallest_user_key, const Slice* largest_user_key) { const Comparator* ucmp = icmp.user_comparator(); if (!disjoint_sorted_files) { // Need to check against all files for (size_t i = 0; i < files.size(); i++) { const FileMetaData* f = files[i]; if (AfterFile(ucmp, smallest_user_key, f) || BeforeFile(ucmp, largest_user_key, f)) { // No overlap } else { return true; // Overlap } } return false; } // Binary search over file list uint32_t index = 0; if (smallest_user_key != nullptr) { // Find the earliest possible internal key for smallest_user_key InternalKey small(*smallest_user_key, kMaxSequenceNumber,kValueTypeForSeek); index = FindFile(icmp, files, small.Encode()); } if (index >= files.size()) { // beginning of range is after all files, so no overlap. return false; } return !BeforeFile(ucmp, largest_user_key, files[index]); } // An internal iterator. For a given version/level pair, yields // information about the files in the level. For a given entry, key() // is the largest key that occurs in the file, and value() is an // 16-byte value containing the file number and file size, both // encoded using EncodeFixed64. class Version::LevelFileNumIterator : public Iterator { public: LevelFileNumIterator(const InternalKeyComparator& icmp, const std::vector* flist) : icmp_(icmp), flist_(flist), index_(flist->size()) { // Marks as invalid } virtual bool Valid() const { return index_ < flist_->size(); } virtual void Seek(const Slice& target) { index_ = FindFile(icmp_, *flist_, target); } virtual void SeekToFirst() { index_ = 0; } virtual void SeekToLast() { index_ = flist_->empty() ? 0 : flist_->size() - 1; } virtual void Next() { assert(Valid()); index_++; } virtual void Prev() { assert(Valid()); if (index_ == 0) { index_ = flist_->size(); // Marks as invalid } else { index_--; } } Slice key() const { assert(Valid()); return (*flist_)[index_]->largest.Encode(); } Slice value() const { assert(Valid()); EncodeFixed64(value_buf_, (*flist_)[index_]->number); EncodeFixed64(value_buf_+8, (*flist_)[index_]->file_size); return Slice(value_buf_, sizeof(value_buf_)); } virtual Status status() const { return Status::OK(); } private: const InternalKeyComparator icmp_; const std::vector* const flist_; uint32_t index_; // Backing store for value(). Holds the file number and size. mutable char value_buf_[16]; }; static Iterator* GetFileIterator(void* arg, const ReadOptions& options, const EnvOptions& soptions, const Slice& file_value, bool for_compaction) { TableCache* cache = reinterpret_cast(arg); if (file_value.size() != 16) { return NewErrorIterator( Status::Corruption("FileReader invoked with unexpected value")); } else { ReadOptions options_copy; if (options.prefix) { // suppress prefix filtering since we have already checked the // filters once at this point options_copy = options; options_copy.prefix = nullptr; } FileMetaData meta(DecodeFixed64(file_value.data()), DecodeFixed64(file_value.data() + 8)); return cache->NewIterator(options.prefix ? options_copy : options, soptions, meta, nullptr /* don't need reference to table*/, for_compaction); } } bool Version::PrefixMayMatch(const ReadOptions& options, const EnvOptions& soptions, const Slice& internal_prefix, Iterator* level_iter) const { bool may_match = true; level_iter->Seek(internal_prefix); if (!level_iter->Valid()) { // we're past end of level may_match = false; } else if (ExtractUserKey(level_iter->key()).starts_with( ExtractUserKey(internal_prefix))) { // TODO(tylerharter): do we need this case? Or are we guaranteed // key() will always be the biggest value for this SST? may_match = true; } else { may_match = vset_->table_cache_->PrefixMayMatch( options, DecodeFixed64(level_iter->value().data()), DecodeFixed64(level_iter->value().data() + 8), internal_prefix, nullptr); } return may_match; } Iterator* Version::NewConcatenatingIterator(const ReadOptions& options, const EnvOptions& soptions, int level) const { Iterator* level_iter = new LevelFileNumIterator(vset_->icmp_, &files_[level]); if (options.prefix) { InternalKey internal_prefix(*options.prefix, 0, kTypeValue); if (!PrefixMayMatch(options, soptions, internal_prefix.Encode(), level_iter)) { delete level_iter; // nothing in this level can match the prefix return NewEmptyIterator(); } } return NewTwoLevelIterator(level_iter, &GetFileIterator, vset_->table_cache_, options, soptions); } void Version::AddIterators(const ReadOptions& options, const EnvOptions& soptions, std::vector* iters) { // Merge all level zero files together since they may overlap for (const FileMetaData* file : files_[0]) { iters->push_back(vset_->table_cache_->NewIterator(options, soptions, *file)); } // For levels > 0, we can use a concatenating iterator that sequentially // walks through the non-overlapping files in the level, opening them // lazily. for (int level = 1; level < num_levels_; level++) { if (!files_[level].empty()) { iters->push_back(NewConcatenatingIterator(options, soptions, level)); } } } // Callback from TableCache::Get() namespace { enum SaverState { kNotFound, kFound, kDeleted, kCorrupt, kMerge // saver contains the current merge result (the operands) }; struct Saver { SaverState state; const Comparator* ucmp; Slice user_key; bool* value_found; // Is value set correctly? Used by KeyMayExist std::string* value; const MergeOperator* merge_operator; // the merge operations encountered; MergeContext* merge_context; Logger* logger; bool didIO; // did we do any disk io? Statistics* statistics; }; } // Called from TableCache::Get and Table::Get when file/block in which // key may exist are not there in TableCache/BlockCache respectively. In this // case we can't guarantee that key does not exist and are not permitted to do // IO to be certain.Set the status=kFound and value_found=false to let the // caller know that key may exist but is not there in memory static void MarkKeyMayExist(void* arg) { Saver* s = reinterpret_cast(arg); s->state = kFound; if (s->value_found != nullptr) { *(s->value_found) = false; } } static bool SaveValue(void* arg, const Slice& ikey, const Slice& v, bool didIO){ Saver* s = reinterpret_cast(arg); MergeContext* merge_contex = s->merge_context; std::string merge_result; // temporary area for merge results later assert(s != nullptr && merge_contex != nullptr); ParsedInternalKey parsed_key; // TODO: didIO and Merge? s->didIO = didIO; if (!ParseInternalKey(ikey, &parsed_key)) { // TODO: what about corrupt during Merge? s->state = kCorrupt; } else { if (s->ucmp->Compare(parsed_key.user_key, s->user_key) == 0) { // Key matches. Process it switch (parsed_key.type) { case kTypeValue: if (kNotFound == s->state) { s->state = kFound; s->value->assign(v.data(), v.size()); } else if (kMerge == s->state) { assert(s->merge_operator != nullptr); s->state = kFound; if (!s->merge_operator->FullMerge(s->user_key, &v, merge_contex->GetOperands(), s->value, s->logger)) { RecordTick(s->statistics, NUMBER_MERGE_FAILURES); s->state = kCorrupt; } } else { assert(false); } return false; case kTypeDeletion: if (kNotFound == s->state) { s->state = kDeleted; } else if (kMerge == s->state) { s->state = kFound; if (!s->merge_operator->FullMerge(s->user_key, nullptr, merge_contex->GetOperands(), s->value, s->logger)) { RecordTick(s->statistics, NUMBER_MERGE_FAILURES); s->state = kCorrupt; } } else { assert(false); } return false; case kTypeMerge: assert(s->state == kNotFound || s->state == kMerge); s->state = kMerge; merge_contex->PushOperand(v); while (merge_contex->GetNumOperands() >= 2) { // Attempt to merge operands together via user associateive merge if (s->merge_operator->PartialMerge(s->user_key, merge_contex->GetOperand(0), merge_contex->GetOperand(1), &merge_result, s->logger)) { merge_contex->PushPartialMergeResult(merge_result); } else { // Associative merge returns false ==> stack the operands break; } } return true; case kTypeLogData: assert(false); break; } } } // s->state could be Corrupt, merge or notfound return false; } static bool NewestFirst(FileMetaData* a, FileMetaData* b) { return a->number > b->number; } static bool NewestFirstBySeqNo(FileMetaData* a, FileMetaData* b) { if (a->smallest_seqno > b->smallest_seqno) { assert(a->largest_seqno > b->largest_seqno); return true; } assert(a->largest_seqno <= b->largest_seqno); return false; } Version::Version(VersionSet* vset, uint64_t version_number) : vset_(vset), next_(this), prev_(this), refs_(0), num_levels_(vset->num_levels_), files_(new std::vector[num_levels_]), files_by_size_(num_levels_), next_file_to_compact_by_size_(num_levels_), file_to_compact_(nullptr), file_to_compact_level_(-1), compaction_score_(num_levels_), compaction_level_(num_levels_), version_number_(version_number) {} void Version::Get(const ReadOptions& options, const LookupKey& k, std::string* value, Status* status, MergeContext* merge_context, GetStats* stats, const Options& db_options, bool* value_found) { Slice ikey = k.internal_key(); Slice user_key = k.user_key(); const Comparator* ucmp = vset_->icmp_.user_comparator(); auto merge_operator = db_options.merge_operator.get(); auto logger = db_options.info_log; assert(status->ok() || status->IsMergeInProgress()); Saver saver; saver.state = status->ok()? kNotFound : kMerge; saver.ucmp = ucmp; saver.user_key = user_key; saver.value_found = value_found; saver.value = value; saver.merge_operator = merge_operator; saver.merge_context = merge_context; saver.logger = logger.get(); saver.didIO = false; saver.statistics = db_options.statistics.get(); stats->seek_file = nullptr; stats->seek_file_level = -1; FileMetaData* last_file_read = nullptr; int last_file_read_level = -1; // We can search level-by-level since entries never hop across // levels. Therefore we are guaranteed that if we find data // in an smaller level, later levels are irrelevant (unless we // are MergeInProgress). for (int level = 0; level < num_levels_; level++) { size_t num_files = files_[level].size(); if (num_files == 0) continue; // Get the list of files to search in this level FileMetaData* const* files = &files_[level][0]; // Some files may overlap each other. We find // all files that overlap user_key and process them in order from // newest to oldest. In the context of merge-operator, // this can occur at any level. Otherwise, it only occurs // at Level-0 (since Put/Deletes are always compacted into a single entry). uint32_t start_index; if (level == 0) { // On Level-0, we read through all files to check for overlap. start_index = 0; } else { // On Level-n (n>=1), files are sorted. // Binary search to find earliest index whose largest key >= ikey. // We will also stop when the file no longer overlaps ikey start_index = FindFile(vset_->icmp_, files_[level], ikey); } // Traverse each relevant file to find the desired key #ifndef NDEBUG FileMetaData* prev_file = nullptr; #endif for (uint32_t i = start_index; i < num_files; ++i) { FileMetaData* f = files[i]; if (ucmp->Compare(user_key, f->smallest.user_key()) < 0 || ucmp->Compare(user_key, f->largest.user_key()) > 0) { // Only process overlapping files. if (level > 0) { // If on Level-n (n>=1) then the files are sorted. // So we can stop looking when we are past the ikey. break; } // TODO: do we want to check file ranges for level0 files at all? // For new SST format where Get() is fast, we might want to consider // to avoid those two comparisons, if it can filter out too few files. continue; } #ifndef NDEBUG // Sanity check to make sure that the files are correctly sorted if (prev_file) { if (level != 0) { int comp_sign = vset_->icmp_.Compare(prev_file->largest, f->smallest); assert(comp_sign < 0); } else { // level == 0, the current file cannot be newer than the previous one. if (vset_->options_->compaction_style == kCompactionStyleUniversal) { assert(!NewestFirstBySeqNo(f, prev_file)); } else { assert(!NewestFirst(f, prev_file)); } } } prev_file = f; #endif bool tableIO = false; *status = vset_->table_cache_->Get(options, *f, ikey, &saver, SaveValue, &tableIO, MarkKeyMayExist); // TODO: examine the behavior for corrupted key if (!status->ok()) { return; } if (last_file_read != nullptr && stats->seek_file == nullptr) { // We have had more than one seek for this read. Charge the 1st file. stats->seek_file = last_file_read; stats->seek_file_level = last_file_read_level; } // If we did any IO as part of the read, then we remember it because // it is a possible candidate for seek-based compaction. saver.didIO // is true if the block had to be read in from storage and was not // pre-exisiting in the block cache. Also, if this file was not pre- // existing in the table cache and had to be freshly opened that needed // the index blocks to be read-in, then tableIO is true. One thing // to note is that the index blocks are not part of the block cache. if (saver.didIO || tableIO) { last_file_read = f; last_file_read_level = level; } switch (saver.state) { case kNotFound: break; // Keep searching in other files case kFound: return; case kDeleted: *status = Status::NotFound(); // Use empty error message for speed return; case kCorrupt: *status = Status::Corruption("corrupted key for ", user_key); return; case kMerge: break; } } } if (kMerge == saver.state) { // merge_operands are in saver and we hit the beginning of the key history // do a final merge of nullptr and operands; if (merge_operator->FullMerge(user_key, nullptr, saver.merge_context->GetOperands(), value, logger.get())) { *status = Status::OK(); } else { RecordTick(db_options.statistics.get(), NUMBER_MERGE_FAILURES); *status = Status::Corruption("could not perform end-of-key merge for ", user_key); } } else { *status = Status::NotFound(); // Use an empty error message for speed } } bool Version::UpdateStats(const GetStats& stats) { FileMetaData* f = stats.seek_file; if (f != nullptr) { f->allowed_seeks--; if (f->allowed_seeks <= 0 && file_to_compact_ == nullptr) { file_to_compact_ = f; file_to_compact_level_ = stats.seek_file_level; return true; } } return false; } void Version::Finalize(std::vector& size_being_compacted) { // Pre-sort level0 for Get() if (vset_->options_->compaction_style == kCompactionStyleUniversal) { std::sort(files_[0].begin(), files_[0].end(), NewestFirstBySeqNo); } else { std::sort(files_[0].begin(), files_[0].end(), NewestFirst); } double max_score = 0; int max_score_level = 0; int num_levels_to_check = (vset_->options_->compaction_style != kCompactionStyleUniversal) ? NumberLevels() - 1 : 1; for (int level = 0; level < num_levels_to_check; level++) { double score; if (level == 0) { // We treat level-0 specially by bounding the number of files // instead of number of bytes for two reasons: // // (1) With larger write-buffer sizes, it is nice not to do too // many level-0 compactions. // // (2) The files in level-0 are merged on every read and // therefore we wish to avoid too many files when the individual // file size is small (perhaps because of a small write-buffer // setting, or very high compression ratios, or lots of // overwrites/deletions). int numfiles = 0; for (unsigned int i = 0; i < files_[level].size(); i++) { if (!files_[level][i]->being_compacted) { numfiles++; } } // If we are slowing down writes, then we better compact that first if (numfiles >= vset_->options_->level0_stop_writes_trigger) { score = 1000000; // Log(options_->info_log, "XXX score l0 = 1000000000 max"); } else if (numfiles >= vset_->options_->level0_slowdown_writes_trigger) { score = 10000; // Log(options_->info_log, "XXX score l0 = 1000000 medium"); } else { score = static_cast(numfiles) / vset_->options_->level0_file_num_compaction_trigger; if (score >= 1) { // Log(options_->info_log, "XXX score l0 = %d least", (int)score); } } } else { // Compute the ratio of current size to size limit. const uint64_t level_bytes = TotalFileSize(files_[level]) - size_being_compacted[level]; score = static_cast(level_bytes) / vset_->MaxBytesForLevel(level); if (score > 1) { // Log(options_->info_log, "XXX score l%d = %d ", level, (int)score); } if (max_score < score) { max_score = score; max_score_level = level; } } compaction_level_[level] = level; compaction_score_[level] = score; } // update the max compaction score in levels 1 to n-1 max_compaction_score_ = max_score; max_compaction_score_level_ = max_score_level; // sort all the levels based on their score. Higher scores get listed // first. Use bubble sort because the number of entries are small. for (int i = 0; i < NumberLevels() - 2; i++) { for (int j = i + 1; j < NumberLevels() - 1; j++) { if (compaction_score_[i] < compaction_score_[j]) { double score = compaction_score_[i]; int level = compaction_level_[i]; compaction_score_[i] = compaction_score_[j]; compaction_level_[i] = compaction_level_[j]; compaction_score_[j] = score; compaction_level_[j] = level; } } } } namespace { // Compator that is used to sort files based on their size // In normal mode: descending size bool CompareSizeDescending(const Version::Fsize& first, const Version::Fsize& second) { return (first.file->file_size > second.file->file_size); } // A static compator used to sort files based on their seqno // In universal style : descending seqno bool CompareSeqnoDescending(const Version::Fsize& first, const Version::Fsize& second) { if (first.file->smallest_seqno > second.file->smallest_seqno) { assert(first.file->largest_seqno > second.file->largest_seqno); return true; } assert(first.file->largest_seqno <= second.file->largest_seqno); return false; } } // anonymous namespace void Version::UpdateFilesBySize() { // No need to sort the highest level because it is never compacted. int max_level = (vset_->options_->compaction_style == kCompactionStyleUniversal) ? NumberLevels() : NumberLevels() - 1; for (int level = 0; level < max_level; level++) { const std::vector& files = files_[level]; std::vector& files_by_size = files_by_size_[level]; assert(files_by_size.size() == 0); // populate a temp vector for sorting based on size std::vector temp(files.size()); for (unsigned int i = 0; i < files.size(); i++) { temp[i].index = i; temp[i].file = files[i]; } // sort the top number_of_files_to_sort_ based on file size if (vset_->options_->compaction_style == kCompactionStyleUniversal) { int num = temp.size(); std::partial_sort(temp.begin(), temp.begin() + num, temp.end(), CompareSeqnoDescending); } else { int num = Version::number_of_files_to_sort_; if (num > (int)temp.size()) { num = temp.size(); } std::partial_sort(temp.begin(), temp.begin() + num, temp.end(), CompareSizeDescending); } assert(temp.size() == files.size()); // initialize files_by_size_ for (unsigned int i = 0; i < temp.size(); i++) { files_by_size.push_back(temp[i].index); } next_file_to_compact_by_size_[level] = 0; assert(files_[level].size() == files_by_size_[level].size()); } } void Version::Ref() { ++refs_; } bool Version::Unref() { assert(this != &vset_->dummy_versions_); assert(refs_ >= 1); --refs_; if (refs_ == 0) { delete this; return true; } return false; } bool Version::NeedsCompaction() const { if (file_to_compact_ != nullptr) { return true; } // In universal compaction case, this check doesn't really // check the compaction condition, but checks num of files threshold // only. We are not going to miss any compaction opportunity // but it's likely that more compactions are scheduled but // ending up with nothing to do. We can improve it later. // TODO(sdong): improve this function to be accurate for universal // compactions. int num_levels_to_check = (vset_->options_->compaction_style != kCompactionStyleUniversal) ? NumberLevels() - 1 : 1; for (int i = 0; i < num_levels_to_check; i++) { if (compaction_score_[i] >= 1) { return true; } } return false; } bool Version::OverlapInLevel(int level, const Slice* smallest_user_key, const Slice* largest_user_key) { return SomeFileOverlapsRange(vset_->icmp_, (level > 0), files_[level], smallest_user_key, largest_user_key); } int Version::PickLevelForMemTableOutput( const Slice& smallest_user_key, const Slice& largest_user_key) { int level = 0; if (!OverlapInLevel(0, &smallest_user_key, &largest_user_key)) { // Push to next level if there is no overlap in next level, // and the #bytes overlapping in the level after that are limited. InternalKey start(smallest_user_key, kMaxSequenceNumber, kValueTypeForSeek); InternalKey limit(largest_user_key, 0, static_cast(0)); std::vector overlaps; int max_mem_compact_level = vset_->options_->max_mem_compaction_level; while (max_mem_compact_level > 0 && level < max_mem_compact_level) { if (OverlapInLevel(level + 1, &smallest_user_key, &largest_user_key)) { break; } if (level + 2 >= num_levels_) { level++; break; } GetOverlappingInputs(level + 2, &start, &limit, &overlaps); const uint64_t sum = TotalFileSize(overlaps); if (sum > vset_->compaction_picker_->MaxGrandParentOverlapBytes(level)) { break; } level++; } } return level; } // Store in "*inputs" all files in "level" that overlap [begin,end] // If hint_index is specified, then it points to a file in the // overlapping range. // The file_index returns a pointer to any file in an overlapping range. void Version::GetOverlappingInputs( int level, const InternalKey* begin, const InternalKey* end, std::vector* inputs, int hint_index, int* file_index) { inputs->clear(); Slice user_begin, user_end; if (begin != nullptr) { user_begin = begin->user_key(); } if (end != nullptr) { user_end = end->user_key(); } if (file_index) { *file_index = -1; } const Comparator* user_cmp = vset_->icmp_.user_comparator(); if (begin != nullptr && end != nullptr && level > 0) { GetOverlappingInputsBinarySearch(level, user_begin, user_end, inputs, hint_index, file_index); return; } for (size_t i = 0; i < files_[level].size(); ) { FileMetaData* f = files_[level][i++]; const Slice file_start = f->smallest.user_key(); const Slice file_limit = f->largest.user_key(); if (begin != nullptr && user_cmp->Compare(file_limit, user_begin) < 0) { // "f" is completely before specified range; skip it } else if (end != nullptr && user_cmp->Compare(file_start, user_end) > 0) { // "f" is completely after specified range; skip it } else { inputs->push_back(f); if (level == 0) { // Level-0 files may overlap each other. So check if the newly // added file has expanded the range. If so, restart search. if (begin != nullptr && user_cmp->Compare(file_start, user_begin) < 0) { user_begin = file_start; inputs->clear(); i = 0; } else if (end != nullptr && user_cmp->Compare(file_limit, user_end) > 0) { user_end = file_limit; inputs->clear(); i = 0; } } else if (file_index) { *file_index = i-1; } } } } // Store in "*inputs" all files in "level" that overlap [begin,end] // Employ binary search to find at least one file that overlaps the // specified range. From that file, iterate backwards and // forwards to find all overlapping files. void Version::GetOverlappingInputsBinarySearch( int level, const Slice& user_begin, const Slice& user_end, std::vector* inputs, int hint_index, int* file_index) { assert(level > 0); int min = 0; int mid = 0; int max = files_[level].size() -1; bool foundOverlap = false; const Comparator* user_cmp = vset_->icmp_.user_comparator(); // if the caller already knows the index of a file that has overlap, // then we can skip the binary search. if (hint_index != -1) { mid = hint_index; foundOverlap = true; } while (!foundOverlap && min <= max) { mid = (min + max)/2; FileMetaData* f = files_[level][mid]; const Slice file_start = f->smallest.user_key(); const Slice file_limit = f->largest.user_key(); if (user_cmp->Compare(file_limit, user_begin) < 0) { min = mid + 1; } else if (user_cmp->Compare(user_end, file_start) < 0) { max = mid - 1; } else { foundOverlap = true; break; } } // If there were no overlapping files, return immediately. if (!foundOverlap) { return; } // returns the index where an overlap is found if (file_index) { *file_index = mid; } ExtendOverlappingInputs(level, user_begin, user_end, inputs, mid); } // Store in "*inputs" all files in "level" that overlap [begin,end] // The midIndex specifies the index of at least one file that // overlaps the specified range. From that file, iterate backward // and forward to find all overlapping files. void Version::ExtendOverlappingInputs( int level, const Slice& user_begin, const Slice& user_end, std::vector* inputs, unsigned int midIndex) { const Comparator* user_cmp = vset_->icmp_.user_comparator(); #ifndef NDEBUG { // assert that the file at midIndex overlaps with the range assert(midIndex < files_[level].size()); FileMetaData* f = files_[level][midIndex]; const Slice fstart = f->smallest.user_key(); const Slice flimit = f->largest.user_key(); if (user_cmp->Compare(fstart, user_begin) >= 0) { assert(user_cmp->Compare(fstart, user_end) <= 0); } else { assert(user_cmp->Compare(flimit, user_begin) >= 0); } } #endif int startIndex = midIndex + 1; int endIndex = midIndex; int count __attribute__((unused)) = 0; // check backwards from 'mid' to lower indices for (int i = midIndex; i >= 0 ; i--) { FileMetaData* f = files_[level][i]; const Slice file_limit = f->largest.user_key(); if (user_cmp->Compare(file_limit, user_begin) >= 0) { startIndex = i; assert((count++, true)); } else { break; } } // check forward from 'mid+1' to higher indices for (unsigned int i = midIndex+1; i < files_[level].size(); i++) { FileMetaData* f = files_[level][i]; const Slice file_start = f->smallest.user_key(); if (user_cmp->Compare(file_start, user_end) <= 0) { assert((count++, true)); endIndex = i; } else { break; } } assert(count == endIndex - startIndex + 1); // insert overlapping files into vector for (int i = startIndex; i <= endIndex; i++) { FileMetaData* f = files_[level][i]; inputs->push_back(f); } } // Returns true iff the first or last file in inputs contains // an overlapping user key to the file "just outside" of it (i.e. // just after the last file, or just before the first file) // REQUIRES: "*inputs" is a sorted list of non-overlapping files bool Version::HasOverlappingUserKey( const std::vector* inputs, int level) { // If inputs empty, there is no overlap. // If level == 0, it is assumed that all needed files were already included. if (inputs->empty() || level == 0){ return false; } const Comparator* user_cmp = vset_->icmp_.user_comparator(); const std::vector& files = files_[level]; const size_t kNumFiles = files.size(); // Check the last file in inputs against the file after it size_t last_file = FindFile(vset_->icmp_, files, inputs->back()->largest.Encode()); assert(0 <= last_file && last_file < kNumFiles); // File should exist! if (last_file < kNumFiles-1) { // If not the last file const Slice last_key_in_input = files[last_file]->largest.user_key(); const Slice first_key_after = files[last_file+1]->smallest.user_key(); if (user_cmp->Compare(last_key_in_input, first_key_after) == 0) { // The last user key in input overlaps with the next file's first key return true; } } // Check the first file in inputs against the file just before it size_t first_file = FindFile(vset_->icmp_, files, inputs->front()->smallest.Encode()); assert(0 <= first_file && first_file <= last_file); // File should exist! if (first_file > 0) { // If not first file const Slice& first_key_in_input = files[first_file]->smallest.user_key(); const Slice& last_key_before = files[first_file-1]->largest.user_key(); if (user_cmp->Compare(first_key_in_input, last_key_before) == 0) { // The first user key in input overlaps with the previous file's last key return true; } } return false; } int64_t Version::NumLevelBytes(int level) const { assert(level >= 0); assert(level < NumberLevels()); return TotalFileSize(files_[level]); } const char* Version::LevelSummary(LevelSummaryStorage* scratch) const { int len = snprintf(scratch->buffer, sizeof(scratch->buffer), "files["); for (int i = 0; i < NumberLevels(); i++) { int sz = sizeof(scratch->buffer) - len; int ret = snprintf(scratch->buffer + len, sz, "%d ", int(files_[i].size())); if (ret < 0 || ret >= sz) break; len += ret; } snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "]"); return scratch->buffer; } const char* Version::LevelFileSummary(FileSummaryStorage* scratch, int level) const { int len = snprintf(scratch->buffer, sizeof(scratch->buffer), "files_size["); for (const auto& f : files_[level]) { int sz = sizeof(scratch->buffer) - len; int ret = snprintf(scratch->buffer + len, sz, "#%lu(seq=%lu,sz=%lu,%lu) ", (unsigned long)f->number, (unsigned long)f->smallest_seqno, (unsigned long)f->file_size, (unsigned long)f->being_compacted); if (ret < 0 || ret >= sz) break; len += ret; } snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "]"); return scratch->buffer; } int64_t Version::MaxNextLevelOverlappingBytes() { uint64_t result = 0; std::vector overlaps; for (int level = 1; level < NumberLevels() - 1; level++) { for (const auto& f : files_[level]) { GetOverlappingInputs(level + 1, &f->smallest, &f->largest, &overlaps); const uint64_t sum = TotalFileSize(overlaps); if (sum > result) { result = sum; } } } return result; } void Version::AddLiveFiles(std::set* live) { for (int level = 0; level < NumberLevels(); level++) { const std::vector& files = files_[level]; for (const auto& file : files) { live->insert(file->number); } } } std::string Version::DebugString(bool hex) const { std::string r; for (int level = 0; level < num_levels_; level++) { // E.g., // --- level 1 --- // 17:123['a' .. 'd'] // 20:43['e' .. 'g'] r.append("--- level "); AppendNumberTo(&r, level); r.append(" --- version# "); AppendNumberTo(&r, version_number_); r.append(" ---\n"); const std::vector& files = files_[level]; for (size_t i = 0; i < files.size(); i++) { r.push_back(' '); AppendNumberTo(&r, files[i]->number); r.push_back(':'); AppendNumberTo(&r, files[i]->file_size); r.append("["); r.append(files[i]->smallest.DebugString(hex)); r.append(" .. "); r.append(files[i]->largest.DebugString(hex)); r.append("]\n"); } } return r; } // this is used to batch writes to the manifest file struct VersionSet::ManifestWriter { Status status; bool done; port::CondVar cv; VersionEdit* edit; explicit ManifestWriter(port::Mutex* mu, VersionEdit* e) : done(false), cv(mu), edit(e) {} }; // A helper class so we can efficiently apply a whole sequence // of edits to a particular state without creating intermediate // Versions that contain full copies of the intermediate state. class VersionSet::Builder { private: // Helper to sort by v->files_[file_number].smallest struct BySmallestKey { const InternalKeyComparator* internal_comparator; bool operator()(FileMetaData* f1, FileMetaData* f2) const { int r = internal_comparator->Compare(f1->smallest, f2->smallest); if (r != 0) { return (r < 0); } else { // Break ties by file number return (f1->number < f2->number); } } }; typedef std::set FileSet; struct LevelState { std::set deleted_files; FileSet* added_files; }; VersionSet* vset_; Version* base_; LevelState* levels_; public: // Initialize a builder with the files from *base and other info from *vset Builder(VersionSet* vset, Version* base) : vset_(vset), base_(base) { base_->Ref(); levels_ = new LevelState[base->NumberLevels()]; BySmallestKey cmp; cmp.internal_comparator = &vset_->icmp_; for (int level = 0; level < base->NumberLevels(); level++) { levels_[level].added_files = new FileSet(cmp); } } ~Builder() { for (int level = 0; level < base_->NumberLevels(); level++) { const FileSet* added = levels_[level].added_files; std::vector to_unref; to_unref.reserve(added->size()); for (FileSet::const_iterator it = added->begin(); it != added->end(); ++it) { to_unref.push_back(*it); } delete added; for (uint32_t i = 0; i < to_unref.size(); i++) { FileMetaData* f = to_unref[i]; f->refs--; if (f->refs <= 0) { if (f->table_reader_handle) { vset_->table_cache_->ReleaseHandle( f->table_reader_handle); f->table_reader_handle = nullptr; } delete f; } } } delete[] levels_; base_->Unref(); } void CheckConsistency(Version* v) { #ifndef NDEBUG for (int level = 0; level < v->NumberLevels(); level++) { // Make sure there is no overlap in levels > 0 if (level > 0) { for (uint32_t i = 1; i < v->files_[level].size(); i++) { const InternalKey& prev_end = v->files_[level][i-1]->largest; const InternalKey& this_begin = v->files_[level][i]->smallest; if (vset_->icmp_.Compare(prev_end, this_begin) >= 0) { fprintf(stderr, "overlapping ranges in same level %s vs. %s\n", prev_end.DebugString().c_str(), this_begin.DebugString().c_str()); abort(); } } } } #endif } void CheckConsistencyForDeletes(VersionEdit* edit, unsigned int number, int level) { #ifndef NDEBUG // a file to be deleted better exist in the previous version bool found = false; for (int l = 0; !found && l < base_->NumberLevels(); l++) { const std::vector& base_files = base_->files_[l]; for (unsigned int i = 0; i < base_files.size(); i++) { FileMetaData* f = base_files[i]; if (f->number == number) { found = true; break; } } } // if the file did not exist in the previous version, then it // is possibly moved from lower level to higher level in current // version for (int l = level+1; !found && l < base_->NumberLevels(); l++) { const FileSet* added = levels_[l].added_files; for (FileSet::const_iterator added_iter = added->begin(); added_iter != added->end(); ++added_iter) { FileMetaData* f = *added_iter; if (f->number == number) { found = true; break; } } } // maybe this file was added in a previous edit that was Applied if (!found) { const FileSet* added = levels_[level].added_files; for (FileSet::const_iterator added_iter = added->begin(); added_iter != added->end(); ++added_iter) { FileMetaData* f = *added_iter; if (f->number == number) { found = true; break; } } } assert(found); #endif } // Apply all of the edits in *edit to the current state. void Apply(VersionEdit* edit) { CheckConsistency(base_); // Delete files const VersionEdit::DeletedFileSet& del = edit->deleted_files_; for (const auto& del_file : del) { const auto level = del_file.first; const auto number = del_file.second; levels_[level].deleted_files.insert(number); CheckConsistencyForDeletes(edit, number, level); } // Add new files for (const auto& new_file : edit->new_files_) { const int level = new_file.first; FileMetaData* f = new FileMetaData(new_file.second); f->refs = 1; // We arrange to automatically compact this file after // a certain number of seeks. Let's assume: // (1) One seek costs 10ms // (2) Writing or reading 1MB costs 10ms (100MB/s) // (3) A compaction of 1MB does 25MB of IO: // 1MB read from this level // 10-12MB read from next level (boundaries may be misaligned) // 10-12MB written to next level // This implies that 25 seeks cost the same as the compaction // of 1MB of data. I.e., one seek costs approximately the // same as the compaction of 40KB of data. We are a little // conservative and allow approximately one seek for every 16KB // of data before triggering a compaction. f->allowed_seeks = (f->file_size / 16384); if (f->allowed_seeks < 100) f->allowed_seeks = 100; levels_[level].deleted_files.erase(f->number); levels_[level].added_files->insert(f); } } // Save the current state in *v. void SaveTo(Version* v) { CheckConsistency(base_); CheckConsistency(v); BySmallestKey cmp; cmp.internal_comparator = &vset_->icmp_; for (int level = 0; level < base_->NumberLevels(); level++) { // Merge the set of added files with the set of pre-existing files. // Drop any deleted files. Store the result in *v. const auto& base_files = base_->files_[level]; auto base_iter = base_files.begin(); auto base_end = base_files.end(); const auto& added_files = *levels_[level].added_files; v->files_[level].reserve(base_files.size() + added_files.size()); for (const auto& added : added_files) { // Add all smaller files listed in base_ for (auto bpos = std::upper_bound(base_iter, base_end, added, cmp); base_iter != bpos; ++base_iter) { MaybeAddFile(v, level, *base_iter); } MaybeAddFile(v, level, added); } // Add remaining base files for (; base_iter != base_end; ++base_iter) { MaybeAddFile(v, level, *base_iter); } } CheckConsistency(v); } void LoadTableHandlers() { for (int level = 0; level < vset_->NumberLevels(); level++) { for (auto& file_meta : *(levels_[level].added_files)) { assert (!file_meta->table_reader_handle); bool table_io; vset_->table_cache_->FindTable(vset_->storage_options_, file_meta->number, file_meta->file_size, &file_meta->table_reader_handle, &table_io, false); } } } void MaybeAddFile(Version* v, int level, FileMetaData* f) { if (levels_[level].deleted_files.count(f->number) > 0) { // File is deleted: do nothing } else { auto* files = &v->files_[level]; if (level > 0 && !files->empty()) { // Must not overlap assert(vset_->icmp_.Compare((*files)[files->size()-1]->largest, f->smallest) < 0); } f->refs++; files->push_back(f); } } }; VersionSet::VersionSet(const std::string& dbname, const Options* options, const EnvOptions& storage_options, TableCache* table_cache, const InternalKeyComparator* cmp) : env_(options->env), dbname_(dbname), options_(options), table_cache_(table_cache), icmp_(*cmp), next_file_number_(2), manifest_file_number_(0), // Filled by Recover() last_sequence_(0), log_number_(0), prev_log_number_(0), num_levels_(options_->num_levels), dummy_versions_(this), current_(nullptr), need_slowdown_for_num_level0_files_(false), current_version_number_(0), manifest_file_size_(0), storage_options_(storage_options), storage_options_compactions_(storage_options_) { if (options_->compaction_style == kCompactionStyleUniversal) { compaction_picker_.reset(new UniversalCompactionPicker(options_, &icmp_)); } else { compaction_picker_.reset(new LevelCompactionPicker(options_, &icmp_)); } AppendVersion(new Version(this, current_version_number_++)); } VersionSet::~VersionSet() { current_->Unref(); assert(dummy_versions_.next_ == &dummy_versions_); // List must be empty for (auto file : obsolete_files_) { delete file; } obsolete_files_.clear(); } void VersionSet::AppendVersion(Version* v) { // Make "v" current assert(v->refs_ == 0); assert(v != current_); if (current_ != nullptr) { assert(current_->refs_ > 0); current_->Unref(); } current_ = v; need_slowdown_for_num_level0_files_ = (options_->level0_slowdown_writes_trigger >= 0 && current_ != nullptr && v->NumLevelFiles(0) >= options_->level0_slowdown_writes_trigger); v->Ref(); // Append to linked list v->prev_ = dummy_versions_.prev_; v->next_ = &dummy_versions_; v->prev_->next_ = v; v->next_->prev_ = v; } Status VersionSet::LogAndApply(VersionEdit* edit, port::Mutex* mu, Directory* db_directory, bool new_descriptor_log) { mu->AssertHeld(); // queue our request ManifestWriter w(mu, edit); manifest_writers_.push_back(&w); while (!w.done && &w != manifest_writers_.front()) { w.cv.Wait(); } if (w.done) { return w.status; } std::vector batch_edits; Version* v = new Version(this, current_version_number_++); Builder builder(this, current_); // process all requests in the queue ManifestWriter* last_writer = &w; assert(!manifest_writers_.empty()); assert(manifest_writers_.front() == &w); for (const auto& writer : manifest_writers_) { last_writer = writer; LogAndApplyHelper(&builder, v, writer->edit, mu); batch_edits.push_back(writer->edit); } builder.SaveTo(v); // Initialize new descriptor log file if necessary by creating // a temporary file that contains a snapshot of the current version. std::string new_manifest_filename; uint64_t new_manifest_file_size = 0; Status s; // we will need this if we are creating new manifest uint64_t old_manifest_file_number = manifest_file_number_; // No need to perform this check if a new Manifest is being created anyways. if (!descriptor_log_ || manifest_file_size_ > options_->max_manifest_file_size) { new_descriptor_log = true; manifest_file_number_ = NewFileNumber(); // Change manifest file no. } if (new_descriptor_log) { new_manifest_filename = DescriptorFileName(dbname_, manifest_file_number_); edit->SetNextFile(next_file_number_); } // Unlock during expensive operations. New writes cannot get here // because &w is ensuring that all new writes get queued. { // calculate the amount of data being compacted at every level std::vector size_being_compacted(v->NumberLevels() - 1); compaction_picker_->SizeBeingCompacted(size_being_compacted); mu->Unlock(); if (options_->max_open_files == -1) { // unlimited table cache. Pre-load table handle now. // Need to do it out of the mutex. builder.LoadTableHandlers(); } // This is fine because everything inside of this block is serialized -- // only one thread can be here at the same time if (!new_manifest_filename.empty()) { unique_ptr descriptor_file; s = env_->NewWritableFile(new_manifest_filename, &descriptor_file, storage_options_); if (s.ok()) { descriptor_log_.reset(new log::Writer(std::move(descriptor_file))); s = WriteSnapshot(descriptor_log_.get()); } } // The calls to Finalize and UpdateFilesBySize are cpu-heavy // and is best called outside the mutex. v->Finalize(size_being_compacted); v->UpdateFilesBySize(); // Write new record to MANIFEST log if (s.ok()) { std::string record; for (unsigned int i = 0; i < batch_edits.size(); i++) { batch_edits[i]->EncodeTo(&record); s = descriptor_log_->AddRecord(record); if (!s.ok()) { break; } } if (s.ok()) { if (options_->use_fsync) { StopWatch sw(env_, options_->statistics.get(), MANIFEST_FILE_SYNC_MICROS); s = descriptor_log_->file()->Fsync(); } else { StopWatch sw(env_, options_->statistics.get(), MANIFEST_FILE_SYNC_MICROS); s = descriptor_log_->file()->Sync(); } } if (!s.ok()) { Log(options_->info_log, "MANIFEST write: %s\n", s.ToString().c_str()); if (ManifestContains(record)) { Log(options_->info_log, "MANIFEST contains log record despite error; advancing to new " "version to prevent mismatch between in-memory and logged state" " If paranoid is set, then the db is now in readonly mode."); s = Status::OK(); } } } // If we just created a new descriptor file, install it by writing a // new CURRENT file that points to it. if (s.ok() && !new_manifest_filename.empty()) { s = SetCurrentFile(env_, dbname_, manifest_file_number_); if (s.ok() && old_manifest_file_number < manifest_file_number_) { // delete old manifest file Log(options_->info_log, "Deleting manifest %lu current manifest %lu\n", (unsigned long)old_manifest_file_number, (unsigned long)manifest_file_number_); // we don't care about an error here, PurgeObsoleteFiles will take care // of it later env_->DeleteFile(DescriptorFileName(dbname_, old_manifest_file_number)); } if (!options_->disableDataSync && db_directory != nullptr) { db_directory->Fsync(); } } // find offset in manifest file where this version is stored. new_manifest_file_size = descriptor_log_->file()->GetFileSize(); LogFlush(options_->info_log); mu->Lock(); } // Install the new version if (s.ok()) { manifest_file_size_ = new_manifest_file_size; AppendVersion(v); log_number_ = edit->log_number_; prev_log_number_ = edit->prev_log_number_; } else { Log(options_->info_log, "Error in committing version %lu", (unsigned long)v->GetVersionNumber()); delete v; if (!new_manifest_filename.empty()) { descriptor_log_.reset(); env_->DeleteFile(new_manifest_filename); } } // wake up all the waiting writers while (true) { ManifestWriter* ready = manifest_writers_.front(); manifest_writers_.pop_front(); if (ready != &w) { ready->status = s; ready->done = true; ready->cv.Signal(); } if (ready == last_writer) break; } // Notify new head of write queue if (!manifest_writers_.empty()) { manifest_writers_.front()->cv.Signal(); } return s; } void VersionSet::LogAndApplyHelper(Builder* builder, Version* v, VersionEdit* edit, port::Mutex* mu) { mu->AssertHeld(); if (edit->has_log_number_) { assert(edit->log_number_ >= log_number_); assert(edit->log_number_ < next_file_number_); } else { edit->SetLogNumber(log_number_); } if (!edit->has_prev_log_number_) { edit->SetPrevLogNumber(prev_log_number_); } edit->SetNextFile(next_file_number_); edit->SetLastSequence(last_sequence_); builder->Apply(edit); } Status VersionSet::Recover() { struct LogReporter : public log::Reader::Reporter { Status* status; virtual void Corruption(size_t bytes, const Status& s) { if (this->status->ok()) *this->status = s; } }; // Read "CURRENT" file, which contains a pointer to the current manifest file std::string manifest_filename; Status s = ReadFileToString( env_, CurrentFileName(dbname_), &manifest_filename ); if (!s.ok()) { return s; } if (manifest_filename.empty() || manifest_filename.back() != '\n') { return Status::Corruption("CURRENT file does not end with newline"); } // remove the trailing '\n' manifest_filename.resize(manifest_filename.size() - 1); Log(options_->info_log, "Recovering from manifest file:%s\n", manifest_filename.c_str()); manifest_filename = dbname_ + "/" + manifest_filename; unique_ptr manifest_file; s = env_->NewSequentialFile( manifest_filename, &manifest_file, storage_options_ ); if (!s.ok()) { return s; } uint64_t manifest_file_size; s = env_->GetFileSize(manifest_filename, &manifest_file_size); if (!s.ok()) { return s; } bool have_log_number = false; bool have_prev_log_number = false; bool have_next_file = false; bool have_last_sequence = false; uint64_t next_file = 0; uint64_t last_sequence = 0; uint64_t log_number = 0; uint64_t prev_log_number = 0; Builder builder(this, current_); { LogReporter reporter; reporter.status = &s; log::Reader reader(std::move(manifest_file), &reporter, true /*checksum*/, 0 /*initial_offset*/); Slice record; std::string scratch; while (reader.ReadRecord(&record, &scratch) && s.ok()) { VersionEdit edit; s = edit.DecodeFrom(record); if (!s.ok()) { break; } if (edit.max_level_ >= current_->NumberLevels()) { s = Status::InvalidArgument( "db has more levels than options.num_levels"); break; } if (edit.has_comparator_ && edit.comparator_ != icmp_.user_comparator()->Name()) { s = Status::InvalidArgument(icmp_.user_comparator()->Name(), "does not match existing comparator " + edit.comparator_); break; } builder.Apply(&edit); if (edit.has_log_number_) { log_number = edit.log_number_; have_log_number = true; } if (edit.has_prev_log_number_) { prev_log_number = edit.prev_log_number_; have_prev_log_number = true; } if (edit.has_next_file_number_) { next_file = edit.next_file_number_; have_next_file = true; } if (edit.has_last_sequence_) { last_sequence = edit.last_sequence_; have_last_sequence = true; } } } if (s.ok()) { if (!have_next_file) { s = Status::Corruption("no meta-nextfile entry in descriptor"); } else if (!have_log_number) { s = Status::Corruption("no meta-lognumber entry in descriptor"); } else if (!have_last_sequence) { s = Status::Corruption("no last-sequence-number entry in descriptor"); } if (!have_prev_log_number) { prev_log_number = 0; } MarkFileNumberUsed(prev_log_number); MarkFileNumberUsed(log_number); } if (s.ok()) { Version* v = new Version(this, current_version_number_++); builder.SaveTo(v); // Install recovered version std::vector size_being_compacted(v->NumberLevels() - 1); compaction_picker_->SizeBeingCompacted(size_being_compacted); v->Finalize(size_being_compacted); manifest_file_size_ = manifest_file_size; AppendVersion(v); manifest_file_number_ = next_file; next_file_number_ = next_file + 1; last_sequence_ = last_sequence; log_number_ = log_number; prev_log_number_ = prev_log_number; Log(options_->info_log, "Recovered from manifest file:%s succeeded," "manifest_file_number is %lu, next_file_number is %lu, " "last_sequence is %lu, log_number is %lu," "prev_log_number is %lu\n", manifest_filename.c_str(), (unsigned long)manifest_file_number_, (unsigned long)next_file_number_, (unsigned long)last_sequence_, (unsigned long)log_number_, (unsigned long)prev_log_number_); } return s; } Status VersionSet::ReduceNumberOfLevels(const std::string& dbname, const Options* options, const EnvOptions& storage_options, int new_levels) { if (new_levels <= 1) { return Status::InvalidArgument( "Number of levels needs to be bigger than 1"); } const InternalKeyComparator cmp(options->comparator); TableCache tc(dbname, options, storage_options, 10); VersionSet versions(dbname, options, storage_options, &tc, &cmp); Status status; status = versions.Recover(); if (!status.ok()) { return status; } Version* current_version = versions.current(); int current_levels = current_version->NumberLevels(); if (current_levels <= new_levels) { return Status::OK(); } // Make sure there are file only on one level from // (new_levels-1) to (current_levels-1) int first_nonempty_level = -1; int first_nonempty_level_filenum = 0; for (int i = new_levels - 1; i < current_levels; i++) { int file_num = current_version->NumLevelFiles(i); if (file_num != 0) { if (first_nonempty_level < 0) { first_nonempty_level = i; first_nonempty_level_filenum = file_num; } else { char msg[255]; snprintf(msg, sizeof(msg), "Found at least two levels containing files: " "[%d:%d],[%d:%d].\n", first_nonempty_level, first_nonempty_level_filenum, i, file_num); return Status::InvalidArgument(msg); } } } std::vector* old_files_list = current_version->files_; // we need to allocate an array with the old number of levels size to // avoid SIGSEGV in WriteSnapshot() // however, all levels bigger or equal to new_levels will be empty std::vector* new_files_list = new std::vector[current_levels]; for (int i = 0; i < new_levels - 1; i++) { new_files_list[i] = old_files_list[i]; } if (first_nonempty_level > 0) { new_files_list[new_levels - 1] = old_files_list[first_nonempty_level]; } delete[] current_version->files_; current_version->files_ = new_files_list; current_version->num_levels_ = new_levels; VersionEdit ve; port::Mutex dummy_mutex; MutexLock l(&dummy_mutex); return versions.LogAndApply(&ve, &dummy_mutex, nullptr, true); } Status VersionSet::DumpManifest(Options& options, std::string& dscname, bool verbose, bool hex) { struct LogReporter : public log::Reader::Reporter { Status* status; virtual void Corruption(size_t bytes, const Status& s) { if (this->status->ok()) *this->status = s; } }; // Open the specified manifest file. unique_ptr file; Status s = options.env->NewSequentialFile(dscname, &file, storage_options_); if (!s.ok()) { return s; } bool have_log_number = false; bool have_prev_log_number = false; bool have_next_file = false; bool have_last_sequence = false; uint64_t next_file = 0; uint64_t last_sequence = 0; uint64_t log_number = 0; uint64_t prev_log_number = 0; int count = 0; VersionSet::Builder builder(this, current_); { LogReporter reporter; reporter.status = &s; log::Reader reader(std::move(file), &reporter, true/*checksum*/, 0/*initial_offset*/); Slice record; std::string scratch; while (reader.ReadRecord(&record, &scratch) && s.ok()) { VersionEdit edit; s = edit.DecodeFrom(record); if (s.ok()) { if (edit.has_comparator_ && edit.comparator_ != icmp_.user_comparator()->Name()) { s = Status::InvalidArgument(icmp_.user_comparator()->Name(), "does not match existing comparator " + edit.comparator_); } } // Write out each individual edit if (verbose) { printf("*************************Edit[%d] = %s\n", count, edit.DebugString(hex).c_str()); } count++; if (s.ok()) { builder.Apply(&edit); } if (edit.has_log_number_) { log_number = edit.log_number_; have_log_number = true; } if (edit.has_prev_log_number_) { prev_log_number = edit.prev_log_number_; have_prev_log_number = true; } if (edit.has_next_file_number_) { next_file = edit.next_file_number_; have_next_file = true; } if (edit.has_last_sequence_) { last_sequence = edit.last_sequence_; have_last_sequence = true; } } } file.reset(); if (s.ok()) { if (!have_next_file) { s = Status::Corruption("no meta-nextfile entry in descriptor"); printf("no meta-nextfile entry in descriptor"); } else if (!have_log_number) { s = Status::Corruption("no meta-lognumber entry in descriptor"); printf("no meta-lognumber entry in descriptor"); } else if (!have_last_sequence) { printf("no last-sequence-number entry in descriptor"); s = Status::Corruption("no last-sequence-number entry in descriptor"); } if (!have_prev_log_number) { prev_log_number = 0; } MarkFileNumberUsed(prev_log_number); MarkFileNumberUsed(log_number); } if (s.ok()) { Version* v = new Version(this, 0); builder.SaveTo(v); // Install recovered version std::vector size_being_compacted(v->NumberLevels() - 1); compaction_picker_->SizeBeingCompacted(size_being_compacted); v->Finalize(size_being_compacted); AppendVersion(v); manifest_file_number_ = next_file; next_file_number_ = next_file + 1; last_sequence_ = last_sequence; log_number_ = log_number; prev_log_number_ = prev_log_number; printf("manifest_file_number %lu next_file_number %lu last_sequence " "%lu log_number %lu prev_log_number %lu\n", (unsigned long)manifest_file_number_, (unsigned long)next_file_number_, (unsigned long)last_sequence, (unsigned long)log_number, (unsigned long)prev_log_number); printf("%s \n", v->DebugString(hex).c_str()); } return s; } void VersionSet::MarkFileNumberUsed(uint64_t number) { if (next_file_number_ <= number) { next_file_number_ = number + 1; } } Status VersionSet::WriteSnapshot(log::Writer* log) { // TODO: Break up into multiple records to reduce memory usage on recovery? // Save metadata VersionEdit edit; edit.SetComparatorName(icmp_.user_comparator()->Name()); // Save files for (int level = 0; level < current_->NumberLevels(); level++) { const auto& files = current_->files_[level]; for (size_t i = 0; i < files.size(); i++) { const auto f = files[i]; edit.AddFile(level, f->number, f->file_size, f->smallest, f->largest, f->smallest_seqno, f->largest_seqno); } } std::string record; edit.EncodeTo(&record); return log->AddRecord(record); } // Opens the mainfest file and reads all records // till it finds the record we are looking for. bool VersionSet::ManifestContains(const std::string& record) const { std::string fname = DescriptorFileName(dbname_, manifest_file_number_); Log(options_->info_log, "ManifestContains: checking %s\n", fname.c_str()); unique_ptr file; Status s = env_->NewSequentialFile(fname, &file, storage_options_); if (!s.ok()) { Log(options_->info_log, "ManifestContains: %s\n", s.ToString().c_str()); Log(options_->info_log, "ManifestContains: is unable to reopen the manifest file %s", fname.c_str()); return false; } log::Reader reader(std::move(file), nullptr, true/*checksum*/, 0); Slice r; std::string scratch; bool result = false; while (reader.ReadRecord(&r, &scratch)) { if (r == Slice(record)) { result = true; break; } } Log(options_->info_log, "ManifestContains: result = %d\n", result ? 1 : 0); return result; } uint64_t VersionSet::ApproximateOffsetOf(Version* v, const InternalKey& ikey) { uint64_t result = 0; for (int level = 0; level < v->NumberLevels(); level++) { const std::vector& files = v->files_[level]; for (size_t i = 0; i < files.size(); i++) { if (icmp_.Compare(files[i]->largest, ikey) <= 0) { // Entire file is before "ikey", so just add the file size result += files[i]->file_size; } else if (icmp_.Compare(files[i]->smallest, ikey) > 0) { // Entire file is after "ikey", so ignore if (level > 0) { // Files other than level 0 are sorted by meta->smallest, so // no further files in this level will contain data for // "ikey". break; } } else { // "ikey" falls in the range for this table. Add the // approximate offset of "ikey" within the table. TableReader* table_reader_ptr; Iterator* iter = table_cache_->NewIterator( ReadOptions(), storage_options_, *(files[i]), &table_reader_ptr); if (table_reader_ptr != nullptr) { result += table_reader_ptr->ApproximateOffsetOf(ikey.Encode()); } delete iter; } } } return result; } void VersionSet::AddLiveFiles(std::vector* live_list) { // pre-calculate space requirement int64_t total_files = 0; for (Version* v = dummy_versions_.next_; v != &dummy_versions_; v = v->next_) { for (int level = 0; level < v->NumberLevels(); level++) { total_files += v->files_[level].size(); } } // just one time extension to the right size live_list->reserve(live_list->size() + total_files); for (Version* v = dummy_versions_.next_; v != &dummy_versions_; v = v->next_) { for (int level = 0; level < v->NumberLevels(); level++) { for (const auto& f : v->files_[level]) { live_list->push_back(f->number); } } } } Compaction* VersionSet::PickCompaction() { return compaction_picker_->PickCompaction(current_); } Compaction* VersionSet::CompactRange(int input_level, int output_level, const InternalKey* begin, const InternalKey* end, InternalKey** compaction_end) { return compaction_picker_->CompactRange(current_, input_level, output_level, begin, end, compaction_end); } Iterator* VersionSet::MakeInputIterator(Compaction* c) { ReadOptions options; options.verify_checksums = options_->paranoid_checks; options.fill_cache = false; // Level-0 files have to be merged together. For other levels, // we will make a concatenating iterator per level. // TODO(opt): use concatenating iterator for level-0 if there is no overlap const int space = (c->level() == 0 ? c->inputs(0)->size() + 1 : 2); Iterator** list = new Iterator*[space]; int num = 0; for (int which = 0; which < 2; which++) { if (!c->inputs(which)->empty()) { if (c->level() + which == 0) { for (const auto& file : *c->inputs(which)) { list[num++] = table_cache_->NewIterator( options, storage_options_compactions_, *file, nullptr, true /* for compaction */); } } else { // Create concatenating iterator for the files from this level list[num++] = NewTwoLevelIterator( new Version::LevelFileNumIterator(icmp_, c->inputs(which)), &GetFileIterator, table_cache_, options, storage_options_, true /* for compaction */); } } } assert(num <= space); Iterator* result = NewMergingIterator(env_, &icmp_, list, num); delete[] list; return result; } double VersionSet::MaxBytesForLevel(int level) { return compaction_picker_->MaxBytesForLevel(level); } uint64_t VersionSet::MaxFileSizeForLevel(int level) { return compaction_picker_->MaxFileSizeForLevel(level); } // verify that the files listed in this compaction are present // in the current version bool VersionSet::VerifyCompactionFileConsistency(Compaction* c) { #ifndef NDEBUG if (c->input_version() != current_) { Log(options_->info_log, "VerifyCompactionFileConsistency version mismatch"); } // verify files in level int level = c->level(); for (int i = 0; i < c->num_input_files(0); i++) { uint64_t number = c->input(0,i)->number; // look for this file in the current version bool found = false; for (unsigned int j = 0; j < current_->files_[level].size(); j++) { FileMetaData* f = current_->files_[level][j]; if (f->number == number) { found = true; break; } } if (!found) { return false; // input files non existant in current version } } // verify level+1 files level++; for (int i = 0; i < c->num_input_files(1); i++) { uint64_t number = c->input(1,i)->number; // look for this file in the current version bool found = false; for (unsigned int j = 0; j < current_->files_[level].size(); j++) { FileMetaData* f = current_->files_[level][j]; if (f->number == number) { found = true; break; } } if (!found) { return false; // input files non existant in current version } } #endif return true; // everything good } void VersionSet::ReleaseCompactionFiles(Compaction* c, Status status) { compaction_picker_->ReleaseCompactionFiles(c, status); } Status VersionSet::GetMetadataForFile(uint64_t number, int* filelevel, FileMetaData** meta) { for (int level = 0; level < NumberLevels(); level++) { const std::vector& files = current_->files_[level]; for (size_t i = 0; i < files.size(); i++) { if (files[i]->number == number) { *meta = files[i]; *filelevel = level; return Status::OK(); } } } return Status::NotFound("File not present in any level"); } void VersionSet::GetLiveFilesMetaData(std::vector* metadata) { for (int level = 0; level < NumberLevels(); level++) { const std::vector& files = current_->files_[level]; for (size_t i = 0; i < files.size(); i++) { LiveFileMetaData filemetadata; filemetadata.name = TableFileName("", files[i]->number); filemetadata.level = level; filemetadata.size = files[i]->file_size; filemetadata.smallestkey = files[i]->smallest.user_key().ToString(); filemetadata.largestkey = files[i]->largest.user_key().ToString(); filemetadata.smallest_seqno = files[i]->smallest_seqno; filemetadata.largest_seqno = files[i]->largest_seqno; metadata->push_back(filemetadata); } } } void VersionSet::GetObsoleteFiles(std::vector* files) { files->insert(files->end(), obsolete_files_.begin(), obsolete_files_.end()); obsolete_files_.clear(); } } // namespace rocksdb