// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include #include #include #include #include #include #include #include #include #ifdef OS_LINUX #include #include #endif #include #include #include #include #if defined(OS_LINUX) #include #endif #include #include #include "rocksdb/env.h" #include "rocksdb/slice.h" #include "port/port.h" #include "util/coding.h" #include "util/logging.h" #include "util/posix_logger.h" #include "util/random.h" #include "util/iostats_context_imp.h" #include "util/sync_point.h" #include "util/thread_status_updater.h" #include "util/thread_status_util.h" // Get nano time includes #if defined(OS_LINUX) || defined(OS_FREEBSD) #elif defined(__MACH__) #include #include #else #include #endif #if !defined(TMPFS_MAGIC) #define TMPFS_MAGIC 0x01021994 #endif #if !defined(XFS_SUPER_MAGIC) #define XFS_SUPER_MAGIC 0x58465342 #endif #if !defined(EXT4_SUPER_MAGIC) #define EXT4_SUPER_MAGIC 0xEF53 #endif // For non linux platform, the following macros are used only as place // holder. #if !(defined OS_LINUX) && !(defined CYGWIN) #define POSIX_FADV_NORMAL 0 /* [MC1] no further special treatment */ #define POSIX_FADV_RANDOM 1 /* [MC1] expect random page refs */ #define POSIX_FADV_SEQUENTIAL 2 /* [MC1] expect sequential page refs */ #define POSIX_FADV_WILLNEED 3 /* [MC1] will need these pages */ #define POSIX_FADV_DONTNEED 4 /* [MC1] dont need these pages */ #endif namespace rocksdb { namespace { // A wrapper for fadvise, if the platform doesn't support fadvise, // it will simply return Status::NotSupport. int Fadvise(int fd, off_t offset, size_t len, int advice) { #ifdef OS_LINUX return posix_fadvise(fd, offset, len, advice); #else return 0; // simply do nothing. #endif } ThreadStatusUpdater* CreateThreadStatusUpdater() { return new ThreadStatusUpdater(); } // list of pathnames that are locked static std::set lockedFiles; static port::Mutex mutex_lockedFiles; static Status IOError(const std::string& context, int err_number) { return Status::IOError(context, strerror(err_number)); } #if defined(OS_LINUX) namespace { static size_t GetUniqueIdFromFile(int fd, char* id, size_t max_size) { if (max_size < kMaxVarint64Length*3) { return 0; } struct stat buf; int result = fstat(fd, &buf); if (result == -1) { return 0; } long version = 0; result = ioctl(fd, FS_IOC_GETVERSION, &version); if (result == -1) { return 0; } uint64_t uversion = (uint64_t)version; char* rid = id; rid = EncodeVarint64(rid, buf.st_dev); rid = EncodeVarint64(rid, buf.st_ino); rid = EncodeVarint64(rid, uversion); assert(rid >= id); return static_cast(rid-id); } } #endif class PosixSequentialFile: public SequentialFile { private: std::string filename_; FILE* file_; int fd_; bool use_os_buffer_; public: PosixSequentialFile(const std::string& fname, FILE* f, const EnvOptions& options) : filename_(fname), file_(f), fd_(fileno(f)), use_os_buffer_(options.use_os_buffer) { } virtual ~PosixSequentialFile() { fclose(file_); } virtual Status Read(size_t n, Slice* result, char* scratch) override { Status s; size_t r = 0; do { r = fread_unlocked(scratch, 1, n, file_); } while (r == 0 && ferror(file_) && errno == EINTR); *result = Slice(scratch, r); if (r < n) { if (feof(file_)) { // We leave status as ok if we hit the end of the file // We also clear the error so that the reads can continue // if a new data is written to the file clearerr(file_); } else { // A partial read with an error: return a non-ok status s = IOError(filename_, errno); } } if (!use_os_buffer_) { // we need to fadvise away the entire range of pages because // we do not want readahead pages to be cached. Fadvise(fd_, 0, 0, POSIX_FADV_DONTNEED); // free OS pages } return s; } virtual Status Skip(uint64_t n) override { if (fseek(file_, static_cast(n), SEEK_CUR)) { return IOError(filename_, errno); } return Status::OK(); } virtual Status InvalidateCache(size_t offset, size_t length) override { #ifndef OS_LINUX return Status::OK(); #else // free OS pages int ret = Fadvise(fd_, offset, length, POSIX_FADV_DONTNEED); if (ret == 0) { return Status::OK(); } return IOError(filename_, errno); #endif } }; // pread() based random-access class PosixRandomAccessFile: public RandomAccessFile { private: std::string filename_; int fd_; bool use_os_buffer_; public: PosixRandomAccessFile(const std::string& fname, int fd, const EnvOptions& options) : filename_(fname), fd_(fd), use_os_buffer_(options.use_os_buffer) { assert(!options.use_mmap_reads || sizeof(void*) < 8); } virtual ~PosixRandomAccessFile() { close(fd_); } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { Status s; ssize_t r = -1; size_t left = n; char* ptr = scratch; while (left > 0) { r = pread(fd_, ptr, left, static_cast(offset)); if (r <= 0) { if (errno == EINTR) { continue; } break; } ptr += r; offset += r; left -= r; } *result = Slice(scratch, (r < 0) ? 0 : n - left); if (r < 0) { // An error: return a non-ok status s = IOError(filename_, errno); } if (!use_os_buffer_) { // we need to fadvise away the entire range of pages because // we do not want readahead pages to be cached. Fadvise(fd_, 0, 0, POSIX_FADV_DONTNEED); // free OS pages } return s; } #ifdef OS_LINUX virtual size_t GetUniqueId(char* id, size_t max_size) const override { return GetUniqueIdFromFile(fd_, id, max_size); } #endif virtual void Hint(AccessPattern pattern) override { switch(pattern) { case NORMAL: Fadvise(fd_, 0, 0, POSIX_FADV_NORMAL); break; case RANDOM: Fadvise(fd_, 0, 0, POSIX_FADV_RANDOM); break; case SEQUENTIAL: Fadvise(fd_, 0, 0, POSIX_FADV_SEQUENTIAL); break; case WILLNEED: Fadvise(fd_, 0, 0, POSIX_FADV_WILLNEED); break; case DONTNEED: Fadvise(fd_, 0, 0, POSIX_FADV_DONTNEED); break; default: assert(false); break; } } virtual Status InvalidateCache(size_t offset, size_t length) override { #ifndef OS_LINUX return Status::OK(); #else // free OS pages int ret = Fadvise(fd_, offset, length, POSIX_FADV_DONTNEED); if (ret == 0) { return Status::OK(); } return IOError(filename_, errno); #endif } }; // mmap() based random-access class PosixMmapReadableFile: public RandomAccessFile { private: int fd_; std::string filename_; void* mmapped_region_; size_t length_; public: // base[0,length-1] contains the mmapped contents of the file. PosixMmapReadableFile(const int fd, const std::string& fname, void* base, size_t length, const EnvOptions& options) : fd_(fd), filename_(fname), mmapped_region_(base), length_(length) { fd_ = fd_ + 0; // suppress the warning for used variables assert(options.use_mmap_reads); assert(options.use_os_buffer); } virtual ~PosixMmapReadableFile() { int ret = munmap(mmapped_region_, length_); if (ret != 0) { fprintf(stdout, "failed to munmap %p length %" ROCKSDB_PRIszt " \n", mmapped_region_, length_); } } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { Status s; if (offset + n > length_) { *result = Slice(); s = IOError(filename_, EINVAL); } else { *result = Slice(reinterpret_cast(mmapped_region_) + offset, n); } return s; } virtual Status InvalidateCache(size_t offset, size_t length) override { #ifndef OS_LINUX return Status::OK(); #else // free OS pages int ret = Fadvise(fd_, offset, length, POSIX_FADV_DONTNEED); if (ret == 0) { return Status::OK(); } return IOError(filename_, errno); #endif } }; // We preallocate up to an extra megabyte and use memcpy to append new // data to the file. This is safe since we either properly close the // file before reading from it, or for log files, the reading code // knows enough to skip zero suffixes. class PosixMmapFile : public WritableFile { private: std::string filename_; int fd_; size_t page_size_; size_t map_size_; // How much extra memory to map at a time char* base_; // The mapped region char* limit_; // Limit of the mapped region char* dst_; // Where to write next (in range [base_,limit_]) char* last_sync_; // Where have we synced up to uint64_t file_offset_; // Offset of base_ in file // Have we done an munmap of unsynced data? bool pending_sync_; #ifdef ROCKSDB_FALLOCATE_PRESENT bool fallocate_with_keep_size_; #endif // Roundup x to a multiple of y static size_t Roundup(size_t x, size_t y) { return ((x + y - 1) / y) * y; } size_t TruncateToPageBoundary(size_t s) { s -= (s & (page_size_ - 1)); assert((s % page_size_) == 0); return s; } Status UnmapCurrentRegion() { TEST_KILL_RANDOM(rocksdb_kill_odds); if (base_ != nullptr) { if (last_sync_ < limit_) { // Defer syncing this data until next Sync() call, if any pending_sync_ = true; } int munmap_status = munmap(base_, limit_ - base_); if (munmap_status != 0) { return IOError(filename_, munmap_status); } file_offset_ += limit_ - base_; base_ = nullptr; limit_ = nullptr; last_sync_ = nullptr; dst_ = nullptr; // Increase the amount we map the next time, but capped at 1MB if (map_size_ < (1<<20)) { map_size_ *= 2; } } return Status::OK(); } Status MapNewRegion() { #ifdef ROCKSDB_FALLOCATE_PRESENT assert(base_ == nullptr); TEST_KILL_RANDOM(rocksdb_kill_odds); // we can't fallocate with FALLOC_FL_KEEP_SIZE here { IOSTATS_TIMER_GUARD(allocate_nanos); int alloc_status = fallocate(fd_, 0, file_offset_, map_size_); if (alloc_status != 0) { // fallback to posix_fallocate alloc_status = posix_fallocate(fd_, file_offset_, map_size_); } if (alloc_status != 0) { return Status::IOError("Error allocating space to file : " + filename_ + "Error : " + strerror(alloc_status)); } } TEST_KILL_RANDOM(rocksdb_kill_odds); void* ptr = mmap(nullptr, map_size_, PROT_READ | PROT_WRITE, MAP_SHARED, fd_, file_offset_); if (ptr == MAP_FAILED) { return Status::IOError("MMap failed on " + filename_); } TEST_KILL_RANDOM(rocksdb_kill_odds); base_ = reinterpret_cast(ptr); limit_ = base_ + map_size_; dst_ = base_; last_sync_ = base_; return Status::OK(); #else return Status::NotSupported("This platform doesn't support fallocate()"); #endif } public: PosixMmapFile(const std::string& fname, int fd, size_t page_size, const EnvOptions& options) : filename_(fname), fd_(fd), page_size_(page_size), map_size_(Roundup(65536, page_size)), base_(nullptr), limit_(nullptr), dst_(nullptr), last_sync_(nullptr), file_offset_(0) { #ifdef ROCKSDB_FALLOCATE_PRESENT fallocate_with_keep_size_ = options.fallocate_with_keep_size; #endif assert((page_size & (page_size - 1)) == 0); assert(options.use_mmap_writes); } ~PosixMmapFile() { if (fd_ >= 0) { PosixMmapFile::Close(); } } virtual Status Append(const Slice& data) override { const char* src = data.data(); size_t left = data.size(); while (left > 0) { assert(base_ <= dst_); assert(dst_ <= limit_); size_t avail = limit_ - dst_; if (avail == 0) { Status s = UnmapCurrentRegion(); if (!s.ok()) { return s; } s = MapNewRegion(); if (!s.ok()) { return s; } TEST_KILL_RANDOM(rocksdb_kill_odds); } size_t n = (left <= avail) ? left : avail; memcpy(dst_, src, n); dst_ += n; src += n; left -= n; } return Status::OK(); } virtual Status Close() override { Status s; size_t unused = limit_ - dst_; s = UnmapCurrentRegion(); if (!s.ok()) { s = IOError(filename_, errno); } else if (unused > 0) { // Trim the extra space at the end of the file if (ftruncate(fd_, file_offset_ - unused) < 0) { s = IOError(filename_, errno); } } if (close(fd_) < 0) { if (s.ok()) { s = IOError(filename_, errno); } } fd_ = -1; base_ = nullptr; limit_ = nullptr; return s; } virtual Status Flush() override { return Status::OK(); } virtual Status Sync() override { Status s; if (fdatasync(fd_) < 0) { s = IOError(filename_, errno); } if (dst_ > last_sync_) { // Find the beginnings of the pages that contain the first and last // bytes to be synced. size_t p1 = TruncateToPageBoundary(last_sync_ - base_); size_t p2 = TruncateToPageBoundary(dst_ - base_ - 1); last_sync_ = dst_; TEST_KILL_RANDOM(rocksdb_kill_odds); if (msync(base_ + p1, p2 - p1 + page_size_, MS_SYNC) < 0) { s = IOError(filename_, errno); } } return s; } /** * Flush data as well as metadata to stable storage. */ virtual Status Fsync() override { // Some unmapped data was not synced if (fsync(fd_) < 0) { return IOError(filename_, errno); } // This invocation to Sync will not issue the call to // fdatasync because pending_sync_ has already been cleared. return Sync(); } /** * Get the size of valid data in the file. This will not match the * size that is returned from the filesystem because we use mmap * to extend file by map_size every time. */ virtual uint64_t GetFileSize() override { size_t used = dst_ - base_; return file_offset_ + used; } virtual Status InvalidateCache(size_t offset, size_t length) override { #ifndef OS_LINUX return Status::OK(); #else // free OS pages int ret = Fadvise(fd_, offset, length, POSIX_FADV_DONTNEED); if (ret == 0) { return Status::OK(); } return IOError(filename_, errno); #endif } #ifdef ROCKSDB_FALLOCATE_PRESENT virtual Status Allocate(off_t offset, off_t len) override { TEST_KILL_RANDOM(rocksdb_kill_odds); int alloc_status = fallocate( fd_, fallocate_with_keep_size_ ? FALLOC_FL_KEEP_SIZE : 0, offset, len); if (alloc_status == 0) { return Status::OK(); } else { return IOError(filename_, errno); } } #endif }; // Use posix write to write data to a file. class PosixWritableFile : public WritableFile { private: const std::string filename_; int fd_; uint64_t filesize_; #ifdef ROCKSDB_FALLOCATE_PRESENT bool fallocate_with_keep_size_; #endif public: PosixWritableFile(const std::string& fname, int fd, const EnvOptions& options) : filename_(fname), fd_(fd), filesize_(0) { #ifdef ROCKSDB_FALLOCATE_PRESENT fallocate_with_keep_size_ = options.fallocate_with_keep_size; #endif assert(!options.use_mmap_writes); } ~PosixWritableFile() { if (fd_ >= 0) { PosixWritableFile::Close(); } } virtual Status Append(const Slice& data) override { const char* src = data.data(); size_t left = data.size(); Status s; while (left != 0) { ssize_t done = write(fd_, src, left); if (done < 0) { if (errno == EINTR) { continue; } return IOError(filename_, errno); } left -= done; src += done; } filesize_ += data.size(); return Status::OK(); } virtual Status Close() override { Status s; size_t block_size; size_t last_allocated_block; GetPreallocationStatus(&block_size, &last_allocated_block); if (last_allocated_block > 0) { // trim the extra space preallocated at the end of the file // NOTE(ljin): we probably don't want to surface failure as an IOError, // but it will be nice to log these errors. int dummy __attribute__((unused)); dummy = ftruncate(fd_, filesize_); #ifdef ROCKSDB_FALLOCATE_PRESENT // in some file systems, ftruncate only trims trailing space if the // new file size is smaller than the current size. Calling fallocate // with FALLOC_FL_PUNCH_HOLE flag to explicitly release these unused // blocks. FALLOC_FL_PUNCH_HOLE is supported on at least the following // filesystems: // XFS (since Linux 2.6.38) // ext4 (since Linux 3.0) // Btrfs (since Linux 3.7) // tmpfs (since Linux 3.5) // We ignore error since failure of this operation does not affect // correctness. IOSTATS_TIMER_GUARD(allocate_nanos); fallocate(fd_, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE, filesize_, block_size * last_allocated_block - filesize_); #endif } if (close(fd_) < 0) { s = IOError(filename_, errno); } fd_ = -1; return s; } // write out the cached data to the OS cache virtual Status Flush() override { return Status::OK(); } virtual Status Sync() override { if (fdatasync(fd_) < 0) { return IOError(filename_, errno); } return Status::OK(); } virtual Status Fsync() override { if (fsync(fd_) < 0) { return IOError(filename_, errno); } return Status::OK(); } virtual uint64_t GetFileSize() override { return filesize_; } virtual Status InvalidateCache(size_t offset, size_t length) override { #ifndef OS_LINUX return Status::OK(); #else // free OS pages int ret = Fadvise(fd_, offset, length, POSIX_FADV_DONTNEED); if (ret == 0) { return Status::OK(); } return IOError(filename_, errno); #endif } #ifdef ROCKSDB_FALLOCATE_PRESENT virtual Status Allocate(off_t offset, off_t len) override { TEST_KILL_RANDOM(rocksdb_kill_odds); IOSTATS_TIMER_GUARD(allocate_nanos); int alloc_status; alloc_status = fallocate( fd_, fallocate_with_keep_size_ ? FALLOC_FL_KEEP_SIZE : 0, offset, len); if (alloc_status == 0) { return Status::OK(); } else { return IOError(filename_, errno); } } virtual Status RangeSync(off_t offset, off_t nbytes) override { if (sync_file_range(fd_, offset, nbytes, SYNC_FILE_RANGE_WRITE) == 0) { return Status::OK(); } else { return IOError(filename_, errno); } } virtual size_t GetUniqueId(char* id, size_t max_size) const override { return GetUniqueIdFromFile(fd_, id, max_size); } #endif }; class PosixRandomRWFile : public RandomRWFile { private: const std::string filename_; int fd_; #ifdef ROCKSDB_FALLOCATE_PRESENT bool fallocate_with_keep_size_; #endif public: PosixRandomRWFile(const std::string& fname, int fd, const EnvOptions& options) : filename_(fname), fd_(fd) { #ifdef ROCKSDB_FALLOCATE_PRESENT fallocate_with_keep_size_ = options.fallocate_with_keep_size; #endif assert(!options.use_mmap_writes && !options.use_mmap_reads); } ~PosixRandomRWFile() { if (fd_ >= 0) { Close(); } } virtual Status Write(uint64_t offset, const Slice& data) override { const char* src = data.data(); size_t left = data.size(); Status s; while (left != 0) { ssize_t done = pwrite(fd_, src, left, offset); if (done < 0) { if (errno == EINTR) { continue; } return IOError(filename_, errno); } left -= done; src += done; offset += done; } return Status::OK(); } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { Status s; ssize_t r = -1; size_t left = n; char* ptr = scratch; while (left > 0) { r = pread(fd_, ptr, left, static_cast(offset)); if (r <= 0) { if (errno == EINTR) { continue; } break; } ptr += r; offset += r; left -= r; } *result = Slice(scratch, (r < 0) ? 0 : n - left); if (r < 0) { s = IOError(filename_, errno); } return s; } virtual Status Close() override { Status s = Status::OK(); if (fd_ >= 0 && close(fd_) < 0) { s = IOError(filename_, errno); } fd_ = -1; return s; } virtual Status Sync() override { if (fdatasync(fd_) < 0) { return IOError(filename_, errno); } return Status::OK(); } virtual Status Fsync() override { if (fsync(fd_) < 0) { return IOError(filename_, errno); } return Status::OK(); } #ifdef ROCKSDB_FALLOCATE_PRESENT virtual Status Allocate(off_t offset, off_t len) override { IOSTATS_TIMER_GUARD(allocate_nanos); int alloc_status = fallocate( fd_, fallocate_with_keep_size_ ? FALLOC_FL_KEEP_SIZE : 0, offset, len); if (alloc_status == 0) { return Status::OK(); } else { return IOError(filename_, errno); } } #endif }; class PosixDirectory : public Directory { public: explicit PosixDirectory(int fd) : fd_(fd) {} ~PosixDirectory() { close(fd_); } virtual Status Fsync() override { if (fsync(fd_) == -1) { return IOError("directory", errno); } return Status::OK(); } private: int fd_; }; static int LockOrUnlock(const std::string& fname, int fd, bool lock) { mutex_lockedFiles.Lock(); if (lock) { // If it already exists in the lockedFiles set, then it is already locked, // and fail this lock attempt. Otherwise, insert it into lockedFiles. // This check is needed because fcntl() does not detect lock conflict // if the fcntl is issued by the same thread that earlier acquired // this lock. if (lockedFiles.insert(fname).second == false) { mutex_lockedFiles.Unlock(); errno = ENOLCK; return -1; } } else { // If we are unlocking, then verify that we had locked it earlier, // it should already exist in lockedFiles. Remove it from lockedFiles. if (lockedFiles.erase(fname) != 1) { mutex_lockedFiles.Unlock(); errno = ENOLCK; return -1; } } errno = 0; struct flock f; memset(&f, 0, sizeof(f)); f.l_type = (lock ? F_WRLCK : F_UNLCK); f.l_whence = SEEK_SET; f.l_start = 0; f.l_len = 0; // Lock/unlock entire file int value = fcntl(fd, F_SETLK, &f); if (value == -1 && lock) { // if there is an error in locking, then remove the pathname from lockedfiles lockedFiles.erase(fname); } mutex_lockedFiles.Unlock(); return value; } class PosixFileLock : public FileLock { public: int fd_; std::string filename; }; void PthreadCall(const char* label, int result) { if (result != 0) { fprintf(stderr, "pthread %s: %s\n", label, strerror(result)); abort(); } } class PosixEnv : public Env { public: PosixEnv(); virtual ~PosixEnv() { for (const auto tid : threads_to_join_) { pthread_join(tid, nullptr); } for (int pool_id = 0; pool_id < Env::Priority::TOTAL; ++pool_id) { thread_pools_[pool_id].JoinAllThreads(); } // All threads must be joined before the deletion of // thread_status_updater_. delete thread_status_updater_; } void SetFD_CLOEXEC(int fd, const EnvOptions* options) { if ((options == nullptr || options->set_fd_cloexec) && fd > 0) { fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC); } } virtual Status NewSequentialFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) override { result->reset(); FILE* f = nullptr; do { IOSTATS_TIMER_GUARD(open_nanos); f = fopen(fname.c_str(), "r"); } while (f == nullptr && errno == EINTR); if (f == nullptr) { *result = nullptr; return IOError(fname, errno); } else { int fd = fileno(f); SetFD_CLOEXEC(fd, &options); result->reset(new PosixSequentialFile(fname, f, options)); return Status::OK(); } } virtual Status NewRandomAccessFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) override { result->reset(); Status s; int fd; { IOSTATS_TIMER_GUARD(open_nanos); fd = open(fname.c_str(), O_RDONLY); } SetFD_CLOEXEC(fd, &options); if (fd < 0) { s = IOError(fname, errno); } else if (options.use_mmap_reads && sizeof(void*) >= 8) { // Use of mmap for random reads has been removed because it // kills performance when storage is fast. // Use mmap when virtual address-space is plentiful. uint64_t size; s = GetFileSize(fname, &size); if (s.ok()) { void* base = mmap(nullptr, size, PROT_READ, MAP_SHARED, fd, 0); if (base != MAP_FAILED) { result->reset(new PosixMmapReadableFile(fd, fname, base, size, options)); } else { s = IOError(fname, errno); } } close(fd); } else { result->reset(new PosixRandomAccessFile(fname, fd, options)); } return s; } virtual Status NewWritableFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) override { result->reset(); Status s; int fd = -1; do { IOSTATS_TIMER_GUARD(open_nanos); fd = open(fname.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644); } while (fd < 0 && errno == EINTR); if (fd < 0) { s = IOError(fname, errno); } else { SetFD_CLOEXEC(fd, &options); if (options.use_mmap_writes) { if (!checkedDiskForMmap_) { // this will be executed once in the program's lifetime. // do not use mmapWrite on non ext-3/xfs/tmpfs systems. if (!SupportsFastAllocate(fname)) { forceMmapOff = true; } checkedDiskForMmap_ = true; } } if (options.use_mmap_writes && !forceMmapOff) { result->reset(new PosixMmapFile(fname, fd, page_size_, options)); } else { // disable mmap writes EnvOptions no_mmap_writes_options = options; no_mmap_writes_options.use_mmap_writes = false; result->reset(new PosixWritableFile(fname, fd, no_mmap_writes_options)); } } return s; } virtual Status NewRandomRWFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) override { result->reset(); // no support for mmap yet if (options.use_mmap_writes || options.use_mmap_reads) { return Status::NotSupported("No support for mmap read/write yet"); } Status s; int fd; { IOSTATS_TIMER_GUARD(open_nanos); fd = open(fname.c_str(), O_CREAT | O_RDWR, 0644); } if (fd < 0) { s = IOError(fname, errno); } else { SetFD_CLOEXEC(fd, &options); result->reset(new PosixRandomRWFile(fname, fd, options)); } return s; } virtual Status NewDirectory(const std::string& name, unique_ptr* result) override { result->reset(); int fd; { IOSTATS_TIMER_GUARD(open_nanos); fd = open(name.c_str(), 0); } if (fd < 0) { return IOError(name, errno); } else { result->reset(new PosixDirectory(fd)); } return Status::OK(); } virtual bool FileExists(const std::string& fname) override { return access(fname.c_str(), F_OK) == 0; } virtual Status GetChildren(const std::string& dir, std::vector* result) override { result->clear(); DIR* d = opendir(dir.c_str()); if (d == nullptr) { return IOError(dir, errno); } struct dirent* entry; while ((entry = readdir(d)) != nullptr) { result->push_back(entry->d_name); } closedir(d); return Status::OK(); } virtual Status DeleteFile(const std::string& fname) override { Status result; if (unlink(fname.c_str()) != 0) { result = IOError(fname, errno); } return result; }; virtual Status CreateDir(const std::string& name) override { Status result; if (mkdir(name.c_str(), 0755) != 0) { result = IOError(name, errno); } return result; }; virtual Status CreateDirIfMissing(const std::string& name) override { Status result; if (mkdir(name.c_str(), 0755) != 0) { if (errno != EEXIST) { result = IOError(name, errno); } else if (!DirExists(name)) { // Check that name is actually a // directory. // Message is taken from mkdir result = Status::IOError("`"+name+"' exists but is not a directory"); } } return result; }; virtual Status DeleteDir(const std::string& name) override { Status result; if (rmdir(name.c_str()) != 0) { result = IOError(name, errno); } return result; }; virtual Status GetFileSize(const std::string& fname, uint64_t* size) override { Status s; struct stat sbuf; if (stat(fname.c_str(), &sbuf) != 0) { *size = 0; s = IOError(fname, errno); } else { *size = sbuf.st_size; } return s; } virtual Status GetFileModificationTime(const std::string& fname, uint64_t* file_mtime) override { struct stat s; if (stat(fname.c_str(), &s) !=0) { return IOError(fname, errno); } *file_mtime = static_cast(s.st_mtime); return Status::OK(); } virtual Status RenameFile(const std::string& src, const std::string& target) override { Status result; if (rename(src.c_str(), target.c_str()) != 0) { result = IOError(src, errno); } return result; } virtual Status LinkFile(const std::string& src, const std::string& target) override { Status result; if (link(src.c_str(), target.c_str()) != 0) { if (errno == EXDEV) { return Status::NotSupported("No cross FS links allowed"); } result = IOError(src, errno); } return result; } virtual Status LockFile(const std::string& fname, FileLock** lock) override { *lock = nullptr; Status result; int fd; { IOSTATS_TIMER_GUARD(open_nanos); fd = open(fname.c_str(), O_RDWR | O_CREAT, 0644); } if (fd < 0) { result = IOError(fname, errno); } else if (LockOrUnlock(fname, fd, true) == -1) { result = IOError("lock " + fname, errno); close(fd); } else { SetFD_CLOEXEC(fd, nullptr); PosixFileLock* my_lock = new PosixFileLock; my_lock->fd_ = fd; my_lock->filename = fname; *lock = my_lock; } return result; } virtual Status UnlockFile(FileLock* lock) override { PosixFileLock* my_lock = reinterpret_cast(lock); Status result; if (LockOrUnlock(my_lock->filename, my_lock->fd_, false) == -1) { result = IOError("unlock", errno); } close(my_lock->fd_); delete my_lock; return result; } virtual void Schedule(void (*function)(void* arg1), void* arg, Priority pri = LOW, void* tag = nullptr) override; virtual int UnSchedule(void* arg, Priority pri) override; virtual void StartThread(void (*function)(void* arg), void* arg) override; virtual void WaitForJoin() override; virtual unsigned int GetThreadPoolQueueLen(Priority pri = LOW) const override; virtual Status GetTestDirectory(std::string* result) override { const char* env = getenv("TEST_TMPDIR"); if (env && env[0] != '\0') { *result = env; } else { char buf[100]; snprintf(buf, sizeof(buf), "/tmp/rocksdbtest-%d", int(geteuid())); *result = buf; } // Directory may already exist CreateDir(*result); return Status::OK(); } virtual Status GetThreadList( std::vector* thread_list) override { assert(thread_status_updater_); return thread_status_updater_->GetThreadList(thread_list); } static uint64_t gettid(pthread_t tid) { uint64_t thread_id = 0; memcpy(&thread_id, &tid, std::min(sizeof(thread_id), sizeof(tid))); return thread_id; } static uint64_t gettid() { pthread_t tid = pthread_self(); return gettid(tid); } virtual uint64_t GetThreadID() const override { return gettid(pthread_self()); } virtual Status NewLogger(const std::string& fname, shared_ptr* result) override { FILE* f; { IOSTATS_TIMER_GUARD(open_nanos); f = fopen(fname.c_str(), "w"); } if (f == nullptr) { result->reset(); return IOError(fname, errno); } else { int fd = fileno(f); SetFD_CLOEXEC(fd, nullptr); result->reset(new PosixLogger(f, &PosixEnv::gettid, this)); return Status::OK(); } } virtual uint64_t NowMicros() override { struct timeval tv; gettimeofday(&tv, nullptr); return static_cast(tv.tv_sec) * 1000000 + tv.tv_usec; } virtual uint64_t NowNanos() override { #if defined(OS_LINUX) || defined(OS_FREEBSD) struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return static_cast(ts.tv_sec) * 1000000000 + ts.tv_nsec; #elif defined(__MACH__) clock_serv_t cclock; mach_timespec_t ts; host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock); clock_get_time(cclock, &ts); mach_port_deallocate(mach_task_self(), cclock); return static_cast(ts.tv_sec) * 1000000000 + ts.tv_nsec; #else return std::chrono::duration_cast( std::chrono::steady_clock::now().time_since_epoch()).count(); #endif } virtual void SleepForMicroseconds(int micros) override { usleep(micros); } virtual Status GetHostName(char* name, uint64_t len) override { int ret = gethostname(name, static_cast(len)); if (ret < 0) { if (errno == EFAULT || errno == EINVAL) return Status::InvalidArgument(strerror(errno)); else return IOError("GetHostName", errno); } return Status::OK(); } virtual Status GetCurrentTime(int64_t* unix_time) override { time_t ret = time(nullptr); if (ret == (time_t) -1) { return IOError("GetCurrentTime", errno); } *unix_time = (int64_t) ret; return Status::OK(); } virtual Status GetAbsolutePath(const std::string& db_path, std::string* output_path) override { if (db_path.find('/') == 0) { *output_path = db_path; return Status::OK(); } char the_path[256]; char* ret = getcwd(the_path, 256); if (ret == nullptr) { return Status::IOError(strerror(errno)); } *output_path = ret; return Status::OK(); } // Allow increasing the number of worker threads. virtual void SetBackgroundThreads(int num, Priority pri) override { assert(pri >= Priority::LOW && pri <= Priority::HIGH); thread_pools_[pri].SetBackgroundThreads(num); } // Allow increasing the number of worker threads. virtual void IncBackgroundThreadsIfNeeded(int num, Priority pri) override { assert(pri >= Priority::LOW && pri <= Priority::HIGH); thread_pools_[pri].IncBackgroundThreadsIfNeeded(num); } virtual void LowerThreadPoolIOPriority(Priority pool = LOW) override { assert(pool >= Priority::LOW && pool <= Priority::HIGH); #ifdef OS_LINUX thread_pools_[pool].LowerIOPriority(); #endif } virtual std::string TimeToString(uint64_t secondsSince1970) override { const time_t seconds = (time_t)secondsSince1970; struct tm t; int maxsize = 64; std::string dummy; dummy.reserve(maxsize); dummy.resize(maxsize); char* p = &dummy[0]; localtime_r(&seconds, &t); snprintf(p, maxsize, "%04d/%02d/%02d-%02d:%02d:%02d ", t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec); return dummy; } EnvOptions OptimizeForLogWrite(const EnvOptions& env_options, const DBOptions& db_options) const override { EnvOptions optimized = env_options; optimized.use_mmap_writes = false; optimized.bytes_per_sync = db_options.wal_bytes_per_sync; // TODO(icanadi) it's faster if fallocate_with_keep_size is false, but it // breaks TransactionLogIteratorStallAtLastRecord unit test. Fix the unit // test and make this false optimized.fallocate_with_keep_size = true; return optimized; } EnvOptions OptimizeForManifestWrite( const EnvOptions& env_options) const override { EnvOptions optimized = env_options; optimized.use_mmap_writes = false; optimized.fallocate_with_keep_size = true; return optimized; } private: bool checkedDiskForMmap_; bool forceMmapOff; // do we override Env options? // Returns true iff the named directory exists and is a directory. virtual bool DirExists(const std::string& dname) { struct stat statbuf; if (stat(dname.c_str(), &statbuf) == 0) { return S_ISDIR(statbuf.st_mode); } return false; // stat() failed return false } bool SupportsFastAllocate(const std::string& path) { #ifdef ROCKSDB_FALLOCATE_PRESENT struct statfs s; if (statfs(path.c_str(), &s)){ return false; } switch (s.f_type) { case EXT4_SUPER_MAGIC: return true; case XFS_SUPER_MAGIC: return true; case TMPFS_MAGIC: return true; default: return false; } #else return false; #endif } size_t page_size_; class ThreadPool { public: ThreadPool() : total_threads_limit_(1), bgthreads_(0), queue_(), queue_len_(0), exit_all_threads_(false), low_io_priority_(false), env_(nullptr) { PthreadCall("mutex_init", pthread_mutex_init(&mu_, nullptr)); PthreadCall("cvar_init", pthread_cond_init(&bgsignal_, nullptr)); } ~ThreadPool() { assert(bgthreads_.size() == 0U); } void JoinAllThreads() { PthreadCall("lock", pthread_mutex_lock(&mu_)); assert(!exit_all_threads_); exit_all_threads_ = true; PthreadCall("signalall", pthread_cond_broadcast(&bgsignal_)); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); for (const auto tid : bgthreads_) { pthread_join(tid, nullptr); } bgthreads_.clear(); } void SetHostEnv(Env* env) { env_ = env; } void LowerIOPriority() { #ifdef OS_LINUX PthreadCall("lock", pthread_mutex_lock(&mu_)); low_io_priority_ = true; PthreadCall("unlock", pthread_mutex_unlock(&mu_)); #endif } // Return true if there is at least one thread needs to terminate. bool HasExcessiveThread() { return static_cast(bgthreads_.size()) > total_threads_limit_; } // Return true iff the current thread is the excessive thread to terminate. // Always terminate the running thread that is added last, even if there are // more than one thread to terminate. bool IsLastExcessiveThread(size_t thread_id) { return HasExcessiveThread() && thread_id == bgthreads_.size() - 1; } // Is one of the threads to terminate. bool IsExcessiveThread(size_t thread_id) { return static_cast(thread_id) >= total_threads_limit_; } // Return the thread priority. // This would allow its member-thread to know its priority. Env::Priority GetThreadPriority() { return priority_; } // Set the thread priority. void SetThreadPriority(Env::Priority priority) { priority_ = priority; } void BGThread(size_t thread_id) { bool low_io_priority = false; while (true) { // Wait until there is an item that is ready to run PthreadCall("lock", pthread_mutex_lock(&mu_)); // Stop waiting if the thread needs to do work or needs to terminate. while (!exit_all_threads_ && !IsLastExcessiveThread(thread_id) && (queue_.empty() || IsExcessiveThread(thread_id))) { PthreadCall("wait", pthread_cond_wait(&bgsignal_, &mu_)); } if (exit_all_threads_) { // mechanism to let BG threads exit safely PthreadCall("unlock", pthread_mutex_unlock(&mu_)); break; } if (IsLastExcessiveThread(thread_id)) { // Current thread is the last generated one and is excessive. // We always terminate excessive thread in the reverse order of // generation time. auto terminating_thread = bgthreads_.back(); pthread_detach(terminating_thread); bgthreads_.pop_back(); if (HasExcessiveThread()) { // There is still at least more excessive thread to terminate. WakeUpAllThreads(); } PthreadCall("unlock", pthread_mutex_unlock(&mu_)); break; } void (*function)(void*) = queue_.front().function; void* arg = queue_.front().arg; queue_.pop_front(); queue_len_.store(static_cast(queue_.size()), std::memory_order_relaxed); bool decrease_io_priority = (low_io_priority != low_io_priority_); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); #ifdef OS_LINUX if (decrease_io_priority) { #define IOPRIO_CLASS_SHIFT (13) #define IOPRIO_PRIO_VALUE(class, data) \ (((class) << IOPRIO_CLASS_SHIFT) | data) // Put schedule into IOPRIO_CLASS_IDLE class (lowest) // These system calls only have an effect when used in conjunction // with an I/O scheduler that supports I/O priorities. As at // kernel 2.6.17 the only such scheduler is the Completely // Fair Queuing (CFQ) I/O scheduler. // To change scheduler: // echo cfq > /sys/block//queue/schedule // Tunables to consider: // /sys/block//queue/slice_idle // /sys/block//queue/slice_sync syscall(SYS_ioprio_set, 1, // IOPRIO_WHO_PROCESS 0, // current thread IOPRIO_PRIO_VALUE(3, 0)); low_io_priority = true; } #else (void)decrease_io_priority; // avoid 'unused variable' error #endif (*function)(arg); } } // Helper struct for passing arguments when creating threads. struct BGThreadMetadata { ThreadPool* thread_pool_; size_t thread_id_; // Thread count in the thread. explicit BGThreadMetadata(ThreadPool* thread_pool, size_t thread_id) : thread_pool_(thread_pool), thread_id_(thread_id) {} }; static void* BGThreadWrapper(void* arg) { BGThreadMetadata* meta = reinterpret_cast(arg); size_t thread_id = meta->thread_id_; ThreadPool* tp = meta->thread_pool_; #if ROCKSDB_USING_THREAD_STATUS // for thread-status ThreadStatusUtil::RegisterThread(tp->env_, (tp->GetThreadPriority() == Env::Priority::HIGH ? ThreadStatus::HIGH_PRIORITY : ThreadStatus::LOW_PRIORITY)); #endif delete meta; tp->BGThread(thread_id); #if ROCKSDB_USING_THREAD_STATUS ThreadStatusUtil::UnregisterThread(); #endif return nullptr; } void WakeUpAllThreads() { PthreadCall("signalall", pthread_cond_broadcast(&bgsignal_)); } void SetBackgroundThreadsInternal(int num, bool allow_reduce) { PthreadCall("lock", pthread_mutex_lock(&mu_)); if (exit_all_threads_) { PthreadCall("unlock", pthread_mutex_unlock(&mu_)); return; } if (num > total_threads_limit_ || (num < total_threads_limit_ && allow_reduce)) { total_threads_limit_ = std::max(1, num); WakeUpAllThreads(); StartBGThreads(); } PthreadCall("unlock", pthread_mutex_unlock(&mu_)); } void IncBackgroundThreadsIfNeeded(int num) { SetBackgroundThreadsInternal(num, false); } void SetBackgroundThreads(int num) { SetBackgroundThreadsInternal(num, true); } void StartBGThreads() { // Start background thread if necessary while ((int)bgthreads_.size() < total_threads_limit_) { pthread_t t; PthreadCall( "create thread", pthread_create(&t, nullptr, &ThreadPool::BGThreadWrapper, new BGThreadMetadata(this, bgthreads_.size()))); // Set the thread name to aid debugging #if defined(_GNU_SOURCE) && defined(__GLIBC_PREREQ) #if __GLIBC_PREREQ(2, 12) char name_buf[16]; snprintf(name_buf, sizeof name_buf, "rocksdb:bg%" ROCKSDB_PRIszt, bgthreads_.size()); name_buf[sizeof name_buf - 1] = '\0'; pthread_setname_np(t, name_buf); #endif #endif bgthreads_.push_back(t); } } void Schedule(void (*function)(void* arg1), void* arg, void* tag) { PthreadCall("lock", pthread_mutex_lock(&mu_)); if (exit_all_threads_) { PthreadCall("unlock", pthread_mutex_unlock(&mu_)); return; } StartBGThreads(); // Add to priority queue queue_.push_back(BGItem()); queue_.back().function = function; queue_.back().arg = arg; queue_.back().tag = tag; queue_len_.store(static_cast(queue_.size()), std::memory_order_relaxed); if (!HasExcessiveThread()) { // Wake up at least one waiting thread. PthreadCall("signal", pthread_cond_signal(&bgsignal_)); } else { // Need to wake up all threads to make sure the one woken // up is not the one to terminate. WakeUpAllThreads(); } PthreadCall("unlock", pthread_mutex_unlock(&mu_)); } int UnSchedule(void* arg) { int count = 0; PthreadCall("lock", pthread_mutex_lock(&mu_)); // Remove from priority queue BGQueue::iterator it = queue_.begin(); while (it != queue_.end()) { if (arg == (*it).tag) { it = queue_.erase(it); count++; } else { it++; } } queue_len_.store(static_cast(queue_.size()), std::memory_order_relaxed); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); return count; } unsigned int GetQueueLen() const { return queue_len_.load(std::memory_order_relaxed); } private: // Entry per Schedule() call struct BGItem { void* arg; void (*function)(void*); void* tag; }; typedef std::deque BGQueue; pthread_mutex_t mu_; pthread_cond_t bgsignal_; int total_threads_limit_; std::vector bgthreads_; BGQueue queue_; std::atomic_uint queue_len_; // Queue length. Used for stats reporting bool exit_all_threads_; bool low_io_priority_; Env::Priority priority_; Env* env_; }; std::vector thread_pools_; pthread_mutex_t mu_; std::vector threads_to_join_; }; PosixEnv::PosixEnv() : checkedDiskForMmap_(false), forceMmapOff(false), page_size_(getpagesize()), thread_pools_(Priority::TOTAL) { PthreadCall("mutex_init", pthread_mutex_init(&mu_, nullptr)); for (int pool_id = 0; pool_id < Env::Priority::TOTAL; ++pool_id) { thread_pools_[pool_id].SetThreadPriority( static_cast(pool_id)); // This allows later initializing the thread-local-env of each thread. thread_pools_[pool_id].SetHostEnv(this); } thread_status_updater_ = CreateThreadStatusUpdater(); } void PosixEnv::Schedule(void (*function)(void* arg1), void* arg, Priority pri, void* tag) { assert(pri >= Priority::LOW && pri <= Priority::HIGH); thread_pools_[pri].Schedule(function, arg, tag); } int PosixEnv::UnSchedule(void* arg, Priority pri) { return thread_pools_[pri].UnSchedule(arg); } unsigned int PosixEnv::GetThreadPoolQueueLen(Priority pri) const { assert(pri >= Priority::LOW && pri <= Priority::HIGH); return thread_pools_[pri].GetQueueLen(); } struct StartThreadState { void (*user_function)(void*); void* arg; }; static void* StartThreadWrapper(void* arg) { StartThreadState* state = reinterpret_cast(arg); state->user_function(state->arg); delete state; return nullptr; } void PosixEnv::StartThread(void (*function)(void* arg), void* arg) { pthread_t t; StartThreadState* state = new StartThreadState; state->user_function = function; state->arg = arg; PthreadCall("start thread", pthread_create(&t, nullptr, &StartThreadWrapper, state)); PthreadCall("lock", pthread_mutex_lock(&mu_)); threads_to_join_.push_back(t); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); } void PosixEnv::WaitForJoin() { for (const auto tid : threads_to_join_) { pthread_join(tid, nullptr); } threads_to_join_.clear(); } } // namespace std::string Env::GenerateUniqueId() { std::string uuid_file = "/proc/sys/kernel/random/uuid"; if (FileExists(uuid_file)) { std::string uuid; Status s = ReadFileToString(this, uuid_file, &uuid); if (s.ok()) { return uuid; } } // Could not read uuid_file - generate uuid using "nanos-random" Random64 r(time(nullptr)); uint64_t random_uuid_portion = r.Uniform(std::numeric_limits::max()); uint64_t nanos_uuid_portion = NowNanos(); char uuid2[200]; snprintf(uuid2, 200, "%lx-%lx", (unsigned long)nanos_uuid_portion, (unsigned long)random_uuid_portion); return uuid2; } Env* Env::Default() { static PosixEnv default_env; return &default_env; } } // namespace rocksdb